
Learning in Tabular MDPs: Upper Confidence Bound Value Iteration

Wen Sun

1 Preliminaries

We consider episodic finite horizon MDP with horizon H ,M = {S,A, {rh}H−1h=0 , {Ph}
H−1
h=0 , H, s0}, where s0 is a

fixed initial state, rh : S ×A 7→ [0, 1] and Ph : S ×A 7→ ∆(S) are time-dependent reward function and transition
kernel. We assume S and A are finite and denote S = |S| and A = |A|. Note that for time-dependent finite horizon
MDP, the optimal policy will be time-dependent as well. For simplicity, we overload notations a bit and denote
π = {π0, . . . , πH−1}, where each πh : S 7→ A. We also denote V π := V π

0 (s0), i.e., the expected total reward of π
starting at h = 0 and s0.

We define the learning protocol below. Learning happens in an episodic setting. Every episode k, learner
first proposes a policy πk based on all the history information up to the end of episode k − 1. The learner then
executes πk in the underlying MDP to generate a single trajectory τk = {skh, akh}

H−1
h=0 with ah = πkh(skh) and

skh+1 ∼ Ph(·|skh, akh). The goal of the learner is to minimize the following cumulative regret over N episodes:

Regret := E

[
N∑
k=1

(
V ? − V πk

)]
,

where the expectation is with respect to the randomness of the MDP environment and potentially the randomness of
the learner (i.e., the learner might make decisions in a randomized fashion).

2 Algorithm and Regret Bound

Algorithm 1 UCBVI
1: for n = 1 . . . N do
2: Compute P̂nh for all h (Eq. 1)
3: Compute reward bonus bnh for all h (Eq. 2)
4: Run Value-Iteration on {P̂nh , rh + bnh}

H−1
h=0 (Eq. 3)

5: Set πn as the returned policy of VI.
6: end for

In this section, we present the UCBVI algorithm from Azar et al. (2017).
We first define some notations below. Consider the very beginning of episode n. We use the history information

up to the end of episode n− 1 (denoted asH<n) to form some statistics. Specifically, we define:

Nn
h (s, a, s′) =

n−1∑
i=1

1{(sih, aih, sih+1) = (s, a, s′)}, ∀h, s, a, s′,

Nn
h (s, a) =

n−1∑
i=1

1{(sih, aih) = (s, a)}, ∀h, s, a.

1

Namely, we maintain counts of how many times s, a, s′ and s, a are visited at time step h from the beginning of the
learning process to the end of the episode n− 1. We use these statistics to form an empirical model:

P̂nh (s′|s, a) =
Nn
h (s, a, s′)

Nk
h (s, a)

, ∀h, s, a, s′. (1)

We will also use the counts to define a reward bonus, denoted as bh(s, a) for all h, s, a. Denote L :=
ln (SAHN/δ) (δ as usual represents the failure probability which we will define later). We define reward bonus as
follows:

bnh(s, a) = H

√
L

Nn
h (s, a)

. (2)

With reward bonus and the empirical model, the learner uses Value Iteration on the empirical transition P̂nh and
the combined reward rh + bnh. Starting at H (note that H is a fictitious extra step as an episode terminates at H − 1),
we perform dynamic programming all the way to h = 0:

V̂ n
H(s) = 0, ∀s,

Q̂nh(s, a) = min
{
rh(s, a) + bnh(s, a) + P̂nh (·|s, a) · V̂ n

h+1, H
}
,

V̂ n
h (s) = max

a
Q̂nh(s, a), πnh(s) = argmax

a
Q̂nh(s, a),∀h, s, a. (3)

Note that when using V̂ n
h+1 to compute Q̂nh, we truncate the value by H . This is because we know that due to the

assumption that r(s, a) ∈ [0, 1], no policy’s Q value will ever be larger than H .
Denote πn = {πn0 , . . . , πnH−1}. Learner then executes πn in the MDP to get a new trajectory τn.
UCBVI repeats the above procedure for N episodes.
We will prove the following theorem.

Theorem 1 (Regret Bound of UCBVI). UCBVI achives the following regret bound:

Regret := E

[
N∑
k=1

(
V ? − V πk

)]
≤ 2H2S

√
AN · ln(SAH2N2) = Õ

(
H2S

√
AN

)
Remark While the above regret is sub-optimal, the algorithm we presented here indeed achieves a sharper bound
in the leading term Õ(H2

√
SAN) (Azar et al., 2017), which gives the tight dependency bound on S,A,N . The

dependency on H is not tight and tightening the dependency on H requires modifications to the reward bonus (use
Bernstein rather than Hoeffding for reward bonus design).

3 Analysis

We prove the main theorem in this section.
We start with Hoeffding’s inequality and union bound to bound state-action wise model error.

Lemma 2 (State-action wise `1 model error). Fix δ ∈ (0, 1). For all n ∈ [1, . . . , N], s ∈ S, a ∈ A, h ∈
[0, . . . ,H − 1], with probability at least 1− δ, we have:∥∥∥P̂nh (·|s, a)− P ?h (·|s, a)

∥∥∥
1
≤

√
S ln(SAHN/δ)

Nn
h (s, a)

.

2

We have seen exactly the same bound in the generative model lecture.
The following lemma is still about model error, but this time we consider an average model error.

Lemma 3 (State-action wise average model error). Fix δ ∈ (0, 1). For all n ∈ [1, . . . , N], s ∈ S, a ∈ A, h ∈
[0, . . . ,H − 1], and any fixed f : S → [0, H], with probability at least 1− δ, we have:∣∣∣P̂nh (·|s, a) · f − P ?h (·|s, a) · f

∣∣∣ ≤ H√ ln(SAHN/δ)

Nn
h (s, a)

.

Please complete the proof of Lemma 3.
The above lemma is also used in the generative model lecture (recall we have V ? as f here). The key here is

that f (and V ?) needs to be independent of the data that used to form P̂nh . This obviously is true for V ? which is a
deterministic quantity that exists at the moment when the MDP is specified.

We denote the two inequalities in Lemma 2 and Lemma 3 as event Emodel. Note that the failure probability of
Emodel is at most 2δ. Below we condition on Emodel being true (we deal with failure event at the very end).

We also need the following simulation lemma (recall the simulation lemma we had in the generative model
lecture here).

Lemma 4 (Simulation Lemma). Consider an arbitrary reward function r̂h and an arbitrary transition kernel P̂h for
h ∈ [0, . . . ,H − 1]. For any policy π, we have:

V π − V̂ π =
H−1∑
h=0

Es,a∼dπh
[
rh(s, a)− r̂h(s, a) + Es′∼P ?h (·|s,a)V̂

π
h+1(s

′)− E
s′∼P̂ (·|s,a)V̂

π
h+1(s

′)
]

Please complete the proof of the above simulation lemma.
One thing we want to emphasize here is that the above simulation lemma indeed applies to any MDPs (i.e., it

has nothing to do with the discrete nature of S and A), and it is a straight equality! Simulation Lemma is one of the
most important lemmas one use over and over again in proving regret bounds for RL algorithms.

Now we study the effect of reward bonus. Similar to the idea in multi-armed bandits, we want to pick a policy
πn, such that the value of πn in under the combined reward rh+bnh and the empirical model P̂nh is optimistic, i.e., we
want V̂ n

0 (s0) ≥ V ?
0 (s0). The following lemma shows that via reward bonus, we are able to achieve this optimism.

Lemma 5 (Optimism). Assume Emodel is true. For all episode n, we have:

V̂ n
0 (s0) ≥ V ?

0 (s0),

where V̂ n
h is computed based on VI in Eq. 3.

Proof. We prove via induction. Below we provide a proof sketch.
Starting at h+ 1, and assuming we have V̂ k

h+1(s) ≥ V ?
h+1(s) for all s, we move to h below.

Q̂nh(s, a)−Q?h(s, a) = bnh(s, a) + P̂nh (·|s, a) · V̂ n
h+1 − P ?h (·|s, a) · V ?

h+1

≥ bnh(s, a) + P̂nh (·|s, a) · V ?
h+1 − P ?h (·|s, a) · V ?

h+1

= bnh(s, a) +
(
P̂nh (·|s, a)− P ?h (·|s, a)

)
· V ?

h+1

≥ bnh(s, a)−H

√
ln(SAHN/δ)

Nn
h (s, a)

≥ 0.

where the first inequality is from the inductive hypothesis, and the last inequality uses Lemma 3.
From Q̂h+1, one can finish the proof by showing V̂ n

h (s) ≥ V ?
h (s),∀s.

3

Now we are almost ready to conduct the final steps.
Let us consider episode n and denoteH<n as the history up to the end of episode n− 1. We consider bounding

V ? − V πn . Using Optimism and the simulation lemma, we can get the following result:

V ? − V πn ≤ V̂ n
0 (s0)− V πn

0 (s0) ≤
H−1∑
h=0

Esh,ah∼dπnh
[
bnh(sh, ah) +

(
P̂nh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ πn

h+1

]
(4)

We prove the above two inequalities in the lecture. Please provide a proof of the above inequality ((4)). Note
that this is slightly different from the usual simulation lemma, as here we truncate V̂ by H during VI.

We can bound
(
P̂nh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ πn

h+1 using Lemma 2 with a Holder’s inequality:∣∣∣(P̂nh (·|sh, ah)− P ?(·|sh, ah)
)
· V̂ πn

h+1

∣∣∣ ≤ ∥∥∥P̂nh (·|sh, ah)− P ?(·|sh, ah)
∥∥∥
1

∥∥∥V̂ πn

h+1

∥∥∥
∞

≤ H

√
S ln(SANH/δ)

Nn
h (s, a)

.

Hence, back to per-episode regret V ? − V πn , we get:

V ? − V πn ≤
H−1∑
h=0

Esh,ah∼dπnh
[
bnh(sh, ah) +H

√
S ln(SAHN/δ)/Nn

h (sh, ah)
]

≤
H−1∑
h=0

Esh,ah∼dπnh
[
2H
√
S ln(SAHN/δ)/Nn

h (sh, ah)
]

= 2H
√

ln(SAHN/δ)E

[
H−1∑
h=0

1√
Nn
h (snh, a

n
h)
|H<n

]
,

where in the last term the expectation is taken with respect to the trajectory {snh, anh} (which is generated from πn)
while conditioning on all historyH<n up to the end of episode n− 1.

Now we sum all episodes together and take the failure event into consideration.

E

[
N∑
n=1

V ? − V πn

]
= E

[
1{Emodel}

(
N∑
n=1

V ? − V πn

)]
+ E

[
1{Emodel}

(
N∑
n=1

V ? − V πn

)]

≤ E

[
1{Emodel}

(
N∑
n=1

V ? − V πn

)]
+ 2δNH

≤ 2H
√
S ln(SAHN/δ)E

[
N∑
n=1

H−1∑
h=0

1√
Nn
h (snh, a

n
h)

]
+ 2δNH

We can bound the double summation term above using the following lemma:

Lemma 6. Consider arbitrary N sequence of trajectories τn = {snh, anh}
H−1
h=0 for n = 1, . . . , N . We have

N∑
n=1

H−1∑
h=0

1√
Nn
h (snh, a

n
h)
≤ H
√
SAN.

4

We went through the proof in the lecture and please complete the proof of the above lemma
With this lemma, we can conclude that:

E

[
N∑
n=1

V ? − V πn

]
≤ 2H2S

√
AN ln(SAHN/δ) + 2δNH.

Now set δ = 1/NH , we get:

E

[
N∑
n=1

V ? − V πn

]
≤ 2H2S

√
AN ln(SAH2N2) + 2 = O

(
H2S

√
AN ln(SAH2N2).

)

5

References

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning.
arXiv preprint arXiv:1703.05449, 2017.

6

	Preliminaries
	Algorithm and Regret Bound
	Analysis

