Computational Limits &
The LP formulation



Announcements

HWO: due this Thursday 11:59pm
Gradescope (please self-enroll)

Norms for class?
e Video:
e Questions:



Today:

* Recap:
 value/policy iteration + contraction

» Today: computational complexity & the linear programming approach

Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute Q*
(or find ™) in polynomial time?



Recap



Define Bellman Operator J :

Given a functionf: S X A —» R,
Tf:SXA P R,

(57]”) (s,a) :=r(s,a) + YEy _p(|s.qo Maxf(s',a’),Vs,a € S X A
a'€eA

ﬂCQ; & = AC//W@M 65'



Value lteration Algorithm:

e 0 0 1
1. Initialization: Q” : [|Q”||, € (0,1—)
-7

2. lterate until convergence: Q™! = 7O’



Policy Iteration Algorithm:

Closed-form for PE 1. Initialization: z° : S A(A)

(see 1.1.3 in Monograph) t
2. Policy Evaluation: Q" (s, a), Vs, a

3. Policy Improvement 7' (s) = arg max Q” (s, a), Vs ‘>

a



Final Quality of the Policy (for VI):

7' 7'(s) = argmax Q'(s, a)

, 2y
Theorem: V" (s) > V*(s) — 1—y||Q0 —Q0*|| Vs €S
-7

£
-
2 & J/( — v
log Ty 7 Y \L/X\
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Same rate for PI.



Today



Polynomial Time &
Strongly Polynomial Complexity

« Complexity to compute an exact solution given .Z . (Aside: Why?>
« Assume that basic arithmetic operations (+,-,x,~) take unit time.
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Polynomial Time &
Strongly Polynomial Complexity

« Complexity to compute an exact solution given .. (Aside: Why?
« Assume that basic arithmetic operations (+,-,x,~) take unit time.

« Polytime computation: Suppose that (P, r, y) in our MDP . is specified
with rational entries, where L(P, r, y) is total bit-size required to specify
(P,1,7).

Can we (exactly) compute O in time that is polynomial in L(P, r, ),
# states S, and #actions A.

« Strongly polynomial time: Suppose (P, r, y) is specified with real numbers.
Can we compute Q™ in poly(S, A, log(1/(1 — ¥))), with no dependence
on L(P,r,y)?



Computational Complexities of
our lterative Algorithms



Value lteration

* When the gap in the current objective value and the optimal objective value is

smaller than 27XE71) then the greedy policy will be optimal.
(this is a standard argument in optimization)



Value lteration
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(this is a standard argument in optimization) L )
VI: ¢ 0y

. heeds 10g<1/(€(1 — y))/(l — y) iterations to obtain an € accurate solution.
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Value lteration

* When the gap in the current objective value and the optimal objective value is

smaller than 27XE71) then the greedy policy will be optimal.

(this is a standard argument in optimization)
e VI

. heeds log(l/(e(l — y))/(l — y) iterations to obtain an € accurate solution.

« Per iteration complexity: S2A — [ [/ 0
« Poly runtime? For fixed 7, VI is poly: e Matca 7 ) Ko P2

O SZAL(P,r,y)Tog(1/(1—y)) (Ew Cvad Y “NHS/)

_’—/
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Value lteration

When the gap in the current objective value and the optimal objective value is

smaller than 27XE71) then the greedy policy will be optimal.

(this is a standard argument in optimization)
VI:

. heeds 10g<1/(€(1 — y))/(l — y) iterations to obtain an € accurate solution.
» Per iteration complexity: S?A

Poly runtime? For fixed y, VI is poly:

§24 L(P,r,y) log(1/(1 —p)) : 3

L7 e dop o ) L,y

Strongly poly? No
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« PI Per iteration complexity@+ S?A N / N Vf’ 7 50 "G
* Pl is more costly than VI per iteration. a  lveqr Y Stem .
* Plis observed to be much faster than VI to obtain an exact opt policy.



Policy lteration

« Pl Per iteration complexity: S° + S2A

* Pl is more costly than VI per iteration.
* Plis observed to be much f s/er than VI to obtain an exact opt policy.

» Poly runtime? For fixed y, Vit is poly (Uﬁ/e/ 5M(/ >
L(P,r,y) log(1/(1 — |
(S° 4+ 52A) (P,r,y) log(1/(1 —y))
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Policy lteration

PI Per iteration complexity: S° + S°A
* Pl is more costly than VI per iteration.
* Plis observed to be much faster than VI to obtain an exact opt policy.

Poly runtime? For fixed y, VI is poly:

L(P7 r, y) log(l/(l - 7/))

(S° + S2A) 1
Does Pl compute an optlmal policy in time independent of L(P, r, y)?
NMe s \ qc/z,‘fi W W&/cﬂé%

45



Is Pl a strongly poly algo?

« Does Pl compute an optimal policy in time independent of L(P, r,y)?
. Yes: after A” iterations (A° is the number of policies)
Refinement: [Mansour & Singh ’99] Pl halts after A®/S iterations.



Is Pl a strongly poly algo?

« Does Pl compute an optimal policy in time independent of L(P, r,y)?
. Yes: after A” iterations (A° is the number of policies)
Refinement: [Mansour & Singh ’99] Pl halts after A®/S iterations.

e |s y polynomial? / e %@fﬂm/(%ca
Foryes: 1
G,
SAlog(1—py 7 L0 T
[Ye ’12] PI halts after iterations.

1 -y




Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Pl | SATEREEES | (st ?
?Strongly Poly.z\ X (83 4 S2A) - min {%S, SQAllc_’g;% } %
O
L

S N
L VTETT ,
« VI Per iteration complexity: S<A
Trese a2 « PI Per iteration complexity: S° + S?A

o, e A T




Are VI and Pl Polynomial Time algorithms?
(technically, no)
e, do Lrped ¥
Is there a polytime (and strongly polytime) algo
for an MDP??
YES! Linear Programming



The Primal Linear Program

« We can write the Bellman equations with values rather than Q-values:
V(s) = max {r(s, a) + vEypisa) [V(s)] }
a

* An equivalent way to write the Bellman equations is as a linear program.
With variables V € R®, the LP is:

T Vs
st V(s) 2 r(s,a) + By p sV (8) Vs,a€SXA ey le

¥
i f({[s/oﬂ I/CS/) =) \/7/\/
%



| P Runtimes and Comments =
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« Using a polytime LP solver, gives us a ;S/oly time algorithm.



LP Runtimes and Comments

L Using a polytime LP solver, gives us a pmorithm.
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LP Runtimes and Comments

» Using a polytime LP solver, gives us a poly time algorithm.
* [Ye, '05]: there is an interior point algorithm (CIPA) which is also
strongly polynomial.

* Relations:
« VI is best thought of as a fixed point algorithm
* Pl is equivalent to a (block) simplex algorithm
(Recall the simplex algo, in general, could be exp time.

But not for MDPS, at least for fixed y.)



Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Poly,. | s2a™Prlers (8% + 524) HEI e I SSAL(P,1,7)
2 Alog 52
Strongly Poly X 5+ 524 min {47, TS | statiog
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« VI Per iteration complexity: S2A
« Pl Per iteration complexity: S° + S2A
« The LP approach is only logarithmicin 1 —y




What about the Dual LP?

* The linear programming is helpful in understanding the problem.
(even though it is not used often)

* Let us now consider the dual LP.
* |tis also very helpful conceptually.
* In some cases, it also provides a reasonable algorithmic approach

» Let us start by understanding the dual variables
and the “state-action polytope”



State-Action Visitation Measures

» For a fixed (possibly stochastic) policy x, define the

state-action visitation distribution v/” as: @ (§ ot\
vi(s,a)=(1—y) Z y'Pr(s, = s,a, = a| sp) B i (50 %@
=0 “ \/Y

where Pr”(s, = s, a, = a| sy) is the state-action visitation probabllity
when we execute 7 starting at state s,.



State-Action Visitation Measures

For a fixed (possibly stochastic) policy x, define the
state-action visitation distribution /" as:

(S
v(s,a) = (1 —y) Z y'Pr(s, = s,a, = a| sp)
=0
where Pr”(s, = 5, a, = a| sy) is the state-action visitation probability

when we execute 7 starting at state s,.

We can verify that have v” satisfies, for all states s € S:

D v(s.a) = (1 = (s = sp) +7 ) P(s|s',aw™s', )

a s’,a’



The “State-Action” Polytope
» Let us define the state-action polytope K as follows:

K = {ylvzo and

Z v(s,a) = —p)I(s = sp) + yz P(s|s’,a (s, a’)}

a s',a’



The “State-Action” Polytope
» Let us define the state-action polytope K as follows:

K = {ylvzo and

Z v(s,a) = —p)I(s = sp) + yz P(s|s’,a (s, a’)}

a s',a’



The “State-Action” Polytope
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* This set precisely characterizes all state-action visitation distributions:



The “State-Action” Polytope

» Let us define the state-action polytope K as follows:

K = {ylz/ZO and

Z v(s,a) = —p)I(s = sp) + yz P(s|s',a)u(s’, a’)}

a s',a’
* This set precisely characterizes all state-action visitation distributions:

K is equal to the set of all feasible state-action distributions,
i.e. v € K if and only if there exists a (possibly randomized) policy 7
stV =v



The Dual LP

max Z v(s,a)r(s,a)

s,a

st. vreK

* One can verify that this is the dual of the primal LP.
* Note that K is a polytope



