
Computational Limits &  
The LP formulation

 



Announcements

• HW0: due this Thursday 11:59pm

• Gradescope (please self-enroll)


• Norms for class?

• Video:

• Questions:



Today: 


 

• Recap:

• value/policy iteration + contraction


• Today: computational complexity & the linear programming approach


Question: Given an MDP  can we exactly compute  
(or find ) in polynomial time?


ℳ = (S, A, P, r, γ) Q⋆

π⋆



Recap



Define Bellman Operator :#

Given a function , 


,


f : S × A ↦ ℝ

#f : S × A ↦ ℝ

(#f)(s, a) := r(s, a) + γ's′ ∼P(⋅|s,a) max
a′ ∈A

f(s′ , a′ ), ∀s, a ∈ S × A

TQ Q Bellman egg



Value Iteration Algorithm:

1. Initialization:  Q0 : ∥Q0∥∞ ∈ (0, 1
1 − γ

)

2. Iterate until convergence: Qt+1 = #Qt



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ Δ(A)

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Closed-form for PE 

(see 1.1.3 in Monograph)



Theorem:  

 
 

Set . After  iterations, we have:  

Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

⟹

Q0 = 0 t ≥
log 2

ϵ(1 − γ)2

1 − γ
Vπt(s) ≥ V⋆(s) − ϵ ∀s ∈ S

Final Quality of the Policy (for VI):
πt : πt(s) = arg max

a
Qt(s, a)

Same rate for  PI.
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Today



Polynomial Time &  
Strongly Polynomial Complexity

• Complexity  to compute an exact solution given . (Aside: Why?

• Assume that basic arithmetic operations (+,-,x, ) take unit time.

ℳ
÷



Polynomial Time &  
Strongly Polynomial Complexity

• Complexity  to compute an exact solution given . (Aside: Why?

• Assume that basic arithmetic operations (+,-,x, ) take unit time.

ℳ
÷

• Polytime computation: Suppose that  in our MDP  is specified  
with rational entries, where  is total bit-size required to specify 

.  
Can we (exactly) compute  in  time that is polynomial in , 
# states , and #actions .

(P, r, γ) ℳ
L(P, r, γ)

(P, r, γ)
Q⋆ L(P, r, γ)
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Polynomial Time &  
Strongly Polynomial Complexity

• Complexity  to compute an exact solution given . (Aside: Why?

• Assume that basic arithmetic operations (+,-,x, ) take unit time.

ℳ
÷

• Polytime computation: Suppose that  in our MDP  is specified  
with rational entries, where  is total bit-size required to specify 

.  
Can we (exactly) compute  in  time that is polynomial in , 
# states , and #actions .

(P, r, γ) ℳ
L(P, r, γ)

(P, r, γ)
Q⋆ L(P, r, γ)

S A
• Strongly polynomial time: Suppose  is specified with real numbers.  

Can we compute  in poly( ), with no dependence  
on ?

(P, r, γ)
Q⋆ S, A, log(1/(1 − γ))

L(P, r, γ)



Computational Complexities of  
our Iterative Algorithms



Value Iteration
• When the gap in the current objective value and the optimal objective value is  

smaller than , then the greedy policy will be optimal. 
(this is a standard argument in optimization)

2−L(P,r,γ)



Value Iteration
• When the gap in the current objective value and the optimal objective value is  

smaller than , then the greedy policy will be optimal. 
(this is a standard argument in optimization)

2−L(P,r,γ)

• VI: 


• needs  iterations to obtain an  accurate solution.


• Per iteration complexity: 

log(1/(ϵ(1 − γ))/(1 − γ) ϵ
S2A
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Value Iteration
• When the gap in the current objective value and the optimal objective value is  

smaller than , then the greedy policy will be optimal. 
(this is a standard argument in optimization)

2−L(P,r,γ)

• VI: 


• needs  iterations to obtain an  accurate solution.


• Per iteration complexity: 

log(1/(ϵ(1 − γ))/(1 − γ) ϵ
S2A

• Poly runtime?  For fixed , VI is poly: 
 

γ

S2A
L(P, r, γ) log(1/(1 − γ))

1 − γOL
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Value Iteration
• When the gap in the current objective value and the optimal objective value is  

smaller than , then the greedy policy will be optimal. 
(this is a standard argument in optimization)

2−L(P,r,γ)

• VI: 


• needs  iterations to obtain an  accurate solution.


• Per iteration complexity: 

log(1/(ϵ(1 − γ))/(1 − γ) ϵ
S2A

• Poly runtime?  For fixed , VI is poly: 
 

γ

S2A
L(P, r, γ) log(1/(1 − γ))

1 − γ
• Strongly poly? No must have dep on L Cbr 8



Policy Iteration

• PI Per iteration complexity: 

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A
j

na

u to compute V
forgiven

a involves solving
a linear system



Policy Iteration

• PI Per iteration complexity: 

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A

• Poly runtime?  For fixed , VI is poly: 
 

γ

(S3 + S2A) L(P, r, γ) log(1/(1 − γ))
1 − γ

PE
upper bound

difference



Policy Iteration

• PI Per iteration complexity: 

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A

• Poly runtime?  For fixed , VI is poly: 
 

γ

(S3 + S2A) L(P, r, γ) log(1/(1 − γ))
1 − γ

• Does PI compute an optimal policy in time independent of ?L(P, r, γ)
Yes finite of policies

as



Is PI a strongly poly algo?

• Does PI compute an optimal policy in time independent of ?

• Yes: after  iterations (   is the number of policies)  

Refinement: [Mansour & Singh ’99] PI halts after  iterations. 

L(P, r, γ)
AS AS

AS /S



Is PI a strongly poly algo?

• Does PI compute an optimal policy in time independent of ?

• Yes: after  iterations (   is the number of policies)  

Refinement: [Mansour & Singh ’99] PI halts after  iterations. 

L(P, r, γ)
AS AS

AS /S

• Is PI strongly polynomial?  
For fixed , yes: 

[Ye ’12] PI halts after  iterations.

γ
S2A log(S2/(1 − γ))

1 − γ
I g no dependence

on L P r r



Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� ?

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
?

• VI Per iteration complexity: 

• PI Per iteration complexity: 

S2A
S3 + S2A

r

t
for VEe PI
these are

tar fixed T



Are VI and PI Polynomial Time algorithms? 
(technically, no)  

 
Is there a polytime (and strongly polytime) algo 

for an MDP?? 
YES! Linear Programming

yes fes fixed V



The Primal Linear Program

• We can write the Bellman equations with values rather than Q-values: 
 

• An equivalent way to write the Bellman equations is as a linear program. 
With variables , the LP is: 
 

V(s) = max
a {r(s, a) + γ's′ ∼P(⋅|s,a) [V(s)]}

V ∈ ℝS

min V(s0)
s.t.  V(s) ≥ r(s, a) + 's′ ∼P(⋅|s,a)V(s′ ) ∀s, a ∈ S × A

V

s
if V is

feasible
Plots a Ves g zv



LP Runtimes and Comments

• Using a polytime LP solver, gives us a poly time algorithm.I truly
4 fly Ltr



LP Runtimes and Comments

• Using a polytime LP solver, gives us a poly time algorithm.
• [Ye, ’05]: there is an interior point algorithm (CIPA) which is also  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LP Runtimes and Comments

• Using a polytime LP solver, gives us a poly time algorithm.
• [Ye, ’05]: there is an interior point algorithm (CIPA) which is also  

strongly polynomial. 

• Relations:

• VI is best thought of as a fixed point algorithm

• PI is equivalent to a (block) simplex algorithm 

(Recall the simplex algo, in general, could be exp time.  
But not for MDPS, at least for fixed .)γ



Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� S3AL(P, r, �)

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
S4A4 log S

1��

• VI Per iteration complexity: 

• PI Per iteration complexity: 

• The LP approach is only logarithmic in 

S2A
S3 + S2A

1 − γ

fixed 8



What about the Dual LP?
• The linear programming is helpful in understanding the problem. 

(even though it is not used often)

• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach


• Let us start by understanding the dual variables  
and the “state-action polytope”




State-Action Visitation Measures
• For a fixed (possibly stochastic) policy , define the  

state-action visitation distribution  as:

 

where  is the state-action visitation probability  
when we execute   starting at state . 

π
νπ

νπ(s, a) = (1 − γ)
∞

∑
t=0

γtPrπ(st = s, at = a |s0)

Pr π(st = s, at = a |s0)
π s0

Q G a

Fr g
remotes



State-Action Visitation Measures
• For a fixed (possibly stochastic) policy , define the  

state-action visitation distribution  as:

 

where  is the state-action visitation probability  
when we execute   starting at state . 

π
νπ

νπ(s, a) = (1 − γ)
∞

∑
t=0

γtPrπ(st = s, at = a |s0)

Pr π(st = s, at = a |s0)
π s0

• We can verify that have  satisfies, for all states :νπ s ∈ S

∑
a

νπ(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′ 

P(s |s′ , a′ )νπ(s′ , a′ )



The “State-Action” Polytope
• Let us define the state-action polytope K as follows:

K := {ν | ν ≥ 0  and 

∑
a

ν(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′ 

P(s |s′ , a′ )ν(s′ , a′ )}
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• Let us define the state-action polytope K as follows:
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∑
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ν(s, a) = (1 − γ)I(s = s0) + γ∑
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• This set precisely characterizes all state-action visitation distributions:  



The “State-Action” Polytope
• Let us define the state-action polytope K as follows:

K := {ν | ν ≥ 0  and 

∑
a

ν(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′ 

P(s |s′ , a′ )ν(s′ , a′ )}
• This set precisely characterizes all state-action visitation distributions:  

Lemma: K is equal to the set of all feasible state-action distributions, 
i.e.  if and only if there exists a (possibly randomized) policy   
s.t. 

ν ∈ K π
νπ = ν



The Dual LP




• One can verify that this is the dual of the primal LP.

• Note that K is a polytope

max ∑
s,a

ν(s, a)r(s, a)

s.t.  ν ∈ K


