
Generalization in RL

Sham M. Kakade (and Wen Sun)

S. M. Kakade Generalization 1 / 23

 



Outline

1 Recap

2 Today: SL vs. RL

3 Supervised Learning (SL) : Let’s review

4 RL and generalization
Is Agnostic Learning Possible?
Lower bounds

5 Interpretation: How should we study RL

S. M. Kakade Generalization 1 / 23

Announcements

It's
nice

to see you
all



The need for strategic exploration

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]
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agent starts at s0

length of chain is H
chance of hitting goal state in H steps is (1/3)H with a random policy
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What we can solve:
(the small state space case)
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What we want to solve:
(the large state space case)
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Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?

Up to now, we have focussed on “tabular” MDPs
(theoretically important)

We ultimately seek learnability results where number of states is large
(or |S| = 1).
This is a question of generalization.

Supervised Learning: two lines of thinking
Optimal learning: try to learn the Bayes optimal classifier. need very
strong assumptions.
Agnostic learning: try to do as well best classifier in some (restricted)
class H.

If rather than trying to be ’optimal’ in RL, does trying to do agnostic
learning make our task easier?
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Binary Classification

n labeled examples: (xi , yi)
n
i=1, with xi 2 X and yi 2 {0, 1}.

A set H of binary classifiers, where for h 2 H, h : X ! {0, 1}.
Define the empirical error and the true error as:

cerr(h) =
1
N

NX

i=1

1(h(xi) 6= yi), err(h) = E(X ,Y )⇠D1(h(X ) 6= Y ).

where 1(h(x) 6= y) is 0 if h(x) = y and 1 otherwise.

If the samples are drawn i.i.d. according to a joint distribution D over
(x , y), then, by Hoeffding’s inequality, for a fixed h 2 H, with
probability at least 1 � �:

|err(h)� cerr(h)| 
r

1
2N

log
2
�
.
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SL is an RL problem with � = 0

Binary classification is special case of RL.
Consider learning in an MDP, with two actions where the effective
horizon is 1.
|A| = 2, � = 0, and the reward function is r(s, a) = 1(label(s) = a).
Note in SL, we rarely make restrictions that X (i.e. S) is finite.
Note that µ(s0) $ D(x) (D is the distribution of our data)
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Occams Razor and Generalization

Your HW0: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

Proposition
(The “Occam’s razor” bound) Suppose H is finite. Let
bh = argminh2H cerr(h) and h? = argminh2H err(h). With probability at
least 1 � �:

err(bh)� err(h?) 

r
2
N

log
2|H|

�
.

(The logarithmic dependence is the most naive complexity measure of
H, yet the bound is strong.)
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The VC Dimension

|H|: a set of Boolean functions on X .
Even though |H| may be infinite, the number of possible behaviors of
on a finite set of states is not necessarily exhaustive.

We say that the set {x1, x2, . . . xd} is shattered if there exists an
h 2 H that can realize any of the possible 2d labellings.
The Vapnik–Chervonenkis (VC) dimension is the size of the largest
shattered set.
Let d = VC(H). The Sauer–Shelah lemma: the number of possible
labellings on a set of n points by functions in H is at most

�en
d
�d .

For d << m, this is much less than 2n.
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Review: Half Spaces

Let Hhalf be the set of halspaces on X = Rd .
The VC dimension is VC(Hhalf) = d + 1
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Infinite Hypothesis Classes

The following classical bound highlights how generalization is possible
on infinite hypothesis classes with bounded complexity.

Proposition
(VC dimension and generalization) Let
bh = argminh2H

Pn
i=1 1(h(xi) 6= yi) and h? = argminh2H err(h).

Suppose H has a bounded VC dimension. For m � VC(H), we have
that with probability at least 1 � �:

err(bh)� err(h?) 

s
c
n

✓
VC(H) log

2n
VC(H)

+ log
2
�

◆
,

where c is an absolute constant
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RL and Agnostic Learning

We have a set of policies ⇧ (either finite or infinite).
⇧ could be a parametric set.
⇧ could be greedy policys on a a set of parametric value functions
V = {f✓ : S ⇥A ! R| ✓ 2 Rd

}.
⇧ may not contain ⇡?.

in agnostic learning, we have the optimization problem:

max
⇡2⇧

Es0⇠µV⇡(s0)

We want to (approx) solve this with a small number of sample
trajectories.
analogous to agnostic learning in SL

binary classification: |A| = 2, � = 0, r(·) being the labeling reward.
relevant dependencies for RL:

Complexity(⇧), |S|, |A|,N

S. M. Kakade Generalization 15 / 23
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RL Sampling Model

Assume sampling access to the MDP in a µ-reset model:
start at a state s0 ⇠ µ
we can rollout a policy ⇡ of our choosing
we can terminate the trajectory at will.

(weaker model than generative model)

Lemma
(Effective Horizon and Truncation) We have that:

|V⇡(s0)� E⇡

" HX

t=0

�t r(st , at) | s0

#
|  �H/(1 � �),

For H =
log

�
1/
�
✏(1��))

�

1�� we will have an ✏ approximation to V⇡(s0).
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Importance Sampling

Lemma
(Near unbiased estimation of V⇡(s0)) Let ⇡uar denote the policy which
chooses actions uniformly at random at every state. We have that:

|A|
H E⇡uar

"
1
⇣
⇡(s0) = a0, . . . ,⇡(sH) = aH

⌘ HX

t=0

�t r(st , at)

#

= E⇡

" HX

t=0

�t r(st , at)

#
.

the estimated the reward of ⇡ on a trajectory is nonzero only when ⇡
takes precisely the same actions as the ⇡uar on the trajectory
then estimated reward of |A|

H is equal to that of ⇡uar.
the factor of |A|

H which is due to this being a high variance estimate.
We will return to this point in the next section.

S. M. Kakade Generalization 17 / 23
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An Occams Razor Bound for RL

Denote the n-th sample by (sn
0 , a

n
0, r

n
1 , s

n
1 , . . . , s

n
H), where H is a cutoff

time where the trajectory ends. A nearly, unbiased estimate of the
�-discounted reward of a given policy ⇡ is given by:

bV⇡(s0) =
|A|

H

N

NX

n=1

1
⇣
⇡(sn

0) = an
0, . . .⇡(s

n
H) = an

H

⌘ HX

t=0

�t r(sn
t , a

n
t ).

Proposition

(Generalization in RL) Suppose ⇧ is finite. Let b⇡ = argmax⇡2⇧ bV⇡(s0)
and ⇡? = argmax⇡2⇧ V⇡(s0). With probability at least 1 � �:

V b⇡(s0) � argmax
⇡2⇧

V⇡(s0)�
✏

2
� |A|

H

r
2
N

log
2|⇧|
�

.
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A VC Theorem for RL

Suppose |A| = 2. Each ⇡ 2 ⇧ can be viewed as Boolean function.
VC(⇧) is well defined.
For N trajectories, the Sauer–Shelah lemma bounds the number of
possible labellings on a set of N trajectories (of length H) by

�eNH
d

�d ,
where d = VC(⇧).
this leads to the following proposition:

Proposition

(A VC Theorem for RL) Suppose |A| = 2. Let b⇡ = argmax⇡2⇧ bV⇡(s0)
and ⇡? = argmax⇡2⇧ V⇡(s0). With probability at least 1 � �:

V b⇡(s0) � argmax
⇡2⇧

V⇡(s0)� 2H

s
c
n

✓
VC(⇧) log

2n
VC(⇧)

+ log
2
�

◆
,

where c is an absolute constant.
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Can we do “effective” agnostic learning?

What we want, for our agnostic sample complexity:
no dependence on |S| (or logarithmic)
poly H dependence
to depend reasonably on a complexity measure of H
e.g. poly log |H| dependence

Is this possible?
No :(
This is why RL is hard!

it is hard in practice...
how should we study it?
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A “Easy” Lower Bound

Proposition
(Lower Bound for The Complete Policy Class) Suppose |A| = 2 and
|S| = 2H, where H = b

log(2)
1�� c. Let ⇧ be the set of all 2H policies. There

exists a family of MDPs such that if a deterministic algorithm A is
guaranteed to find a policy ⇡ such that:

V b⇡(s0) � argmax
⇡2⇧

V⇡(s0)� 1/4.

then A must use N � 2H trajectories.

Observe that log |⇧| = H log(2), so this already rules out the possibility
of logarithmic dependence on the size of the policy class, without
having an exponential dependence on H.

S. M. Kakade Generalization 21 / 23
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A General Lower Bound

before: we had a complete policy class.
practice: ⇧ is a restricted (and smaller) class.

Proposition
(Lower Bound for an Arbitrary Policy Class) Suppose |A| = 2 and ⇧ is
an arbitrary policy class. There exists a family of MDPs s.t. any
algorithm A that is guaranteed to find a policy b⇡ s.t.:

E
h
V b⇡(s0)

i
� argmax

⇡2⇧
V⇡(s0)� ✏.

then A must use an expected number of trajectories N where

N � c
min{2H , 2VC(⇧)

}

✏2 .

in the worst case, we (nearly) have to do exhaustive search (trying
2VC(⇧) polices, which is the effective the number of policies in ⇧)

S. M. Kakade Generalization 22 / 23
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How should we study RL?

The tabular case:
we can understand fundamental issues of exploration vs exploitation
we can’t get at generalization.

need stronger assumptions/side info.
this course (and the field) take the following approaches:

Structural (and Modelling) Assumptions: By making stronger
assumptions about the world, we can move away from agnostic learning
and escape the curse of dimensionality. We will see examples of this in
Part 2.
Distribution Dependent Results (and Distribution Shift): When we move
to policy gradient methods (in Part 3), we will consider results which
depend on given distribution of how we obtain samples. Here, we will
make connections to transfer learning.
Imitation learning and behavior cloning: here will consider models where
the agent has input from, effectively, a teacher, and we will see how this
alleviates the problem of curse of dimensionality.
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