### **Linear Bandits**

Sham M. Kakade (and Wen Sun)

- Recap
- Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- 3 Analysis
  - Regret Analysis
  - Confidence Analysis

### Generalization in RL

- (distribution free) Agnostic learning is not possible in RL: we showed that to get  $O(\log |\Pi|)$  sample complexity we need either:
  - poly(|S|) samples OR
  - exp(H) samples.

in order to learn the best policy in some policy class.

upshot: we need stronger assumptions for RL analysis.

# Multi-Armed-Bandits: High-level picture

#### Setting

- Set of alternatives (arms)
- Each arm has a reward distribution
- · Learner adaptively selects arms
- Challenge: Distributions not known





# Upper Confidence Bound (UCB)

#### Pick arm with highest Upper Confidence Bound

 $UCB^{t}(a) = \widetilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$   $LCB^{t}(a) = \widetilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$ 

Actual reward means

By Hoeffding and union bound, with probability  $\geq 1 - \delta$ , it holds  $\forall a \in [k], t \in [T]$ :

$$\mu(a) \in [LCB^t(a), UCB^t(a)]$$

<u>Claim</u>: In the event that all confidence intervals confidence intervals hold, the regret is at most  $\sum_{t}(UCB^{t}(a^{t}) - LCB^{t}(a^{t})) + \delta \cdot T$ 

Proof: 
$$Reg^t = \mu(a^*) - \mu(a^t)$$
  
 $\leq UCB^t(a^*) - LCB^t(a^t)$   
 $\leq UCB^t(a^t) - LCB^t(a^t)$ 

# Upper Confidence Bound (UCB)

$$\mathit{UCB}^t(a) = \widetilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}} \qquad \qquad \mathit{LCB}^t(a) = \widetilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

<u>Claim</u>: In the event that all confidence intervals confidence intervals hold, the regret is at most  $\sum_t (UCB^t (a^t) - LCB^t (a^t)) + + \delta \cdot T$ 

#### Regret bound by confidence sum

$$\sum_{t} (UCB^{t}(a^{t}) - LCB^{t}(a^{t})) \leq 2 \cdot \sum_{t} \sqrt{\frac{\log\left(\frac{2kT}{\delta}\right)}{2n^{t}(a^{t})}} = \sum_{a} \sum_{j=1}^{N(a)} \sqrt{\frac{\log\left(\frac{2kT}{\delta}\right)}{2 \cdot j}}$$

$$\leq \sum_{a} \sum_{j=1}^{T} \sqrt{\frac{\log\left(\frac{2kT}{\delta}\right)}{2 \cdot j}} \leq k \cdot \sqrt{\log\left(\frac{2kT}{\delta}\right) \cdot \frac{T}{k}} = O\left(\sqrt{T \cdot k \cdot \log\left(\frac{kT}{\delta}\right)}\right)$$

- Recap
- 2 Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- 3 Analysis
  - Regret Analysis
  - Confidence Analysis

# Handling Large Actions Spaces

- On each round, we must choose a decision  $x_t \in D \subset R^d$ .
- Obtain a reward  $r_t \in [-1, 1]$ , where

$$\mathbb{E}[r_t|x_t=x]=\mu^{\star}\cdot x\in[-1,1],$$

- so the the conditional expectation of  $r_t$  is linear)
- Also, we have the noise sequence,

$$\eta_t = r_t - \mu^\star \cdot x_t$$

is i.i.d noise.

model due to Abe & Long '99

# Our Objective

If  $x_0, \dots x_{T-1}$  are our decisions, then our cumulative regret is

$$R_T = \mu^* \cdot x^* - \sum_{t=0}^{T-1} \mu^* \cdot x_t$$

where  $x^* \in D$  is an optimal decision for  $\mu^*$ , i.e.

$$\mathbf{X}^{\star} \in \operatorname{argmax}_{\mathbf{X} \in \mathbf{D}} \mu^{\star} \cdot \mathbf{X}$$

- Recap
- 2 Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- Analysis
  - Regret Analysis
  - Confidence Analysis

### The "Confidence Ball"

After t rounds, define our uncertainty region  $BALL_t$ : with center,  $\widehat{\mu}_t$ , and shape,  $\Sigma_t$ , using the  $\lambda$ -regularized least squares solution:

$$\widehat{\mu}_{t} = \arg\min_{\mu} \sum_{\tau=0}^{t-1} \|\mu \cdot x_{\tau} - r_{\tau}\|_{2}^{2} + \lambda \|\mu\|_{2}^{2}$$

$$= \Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} r_{\tau} x_{\tau},$$

$$\Sigma_{t} = \lambda I + \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top}, \text{ with } \Sigma_{0} = \lambda I.$$

Define the uncertainty region:

$$\mathsf{BALL}_t = \left\{ (\widehat{\mu}_t - \mu^\star)^\top \Sigma_t^{-1} (\widehat{\mu}_t - \mu^\star) \le \beta_t \right\},\,$$

where  $\beta_t$  is a parameter of the algorithm.

# LinUCB (the algo)

- **1** Input:  $\lambda$ ,  $\beta_t$
- ② For t = 0, 1, ...
  - Execute

$$\mathbf{X}_t = \operatorname{argmax}_{\mathbf{X} \in \mathcal{D}} \max_{\mu \in \mathsf{BALL}_t} \mu \cdot \mathbf{X}$$

and observe the reward  $r_t$ .

② Update  $BALL_{t+1}$ .

# LinUCB Regret Bound

Sublinear regret:  $R_T \leq O^*(d\sqrt{T})$ 

poly dependence on d, no dependence on the cardinality |D|.

#### **Theorem**

Suppose: bounded noise  $|\eta_t| \le \sigma$ , that  $||\mu^*|| \le W$ , and that  $||x|| \le B$  for all  $x \in D$ . Set  $\lambda = \sigma^2/W^2$  and

$$eta_t := \sigma^2 \Big( 2 + 4d \log \left( 1 + rac{TB^2W^2}{d} 
ight) + 8 \log(4/\delta) \Big).$$

With probability greater than  $1 - \delta$ , that for all  $t \ge 0$ ,

$$R_T \leq c\sigma\sqrt{T}\left(d\log\left(1+rac{TB^2W^2}{d\sigma^2}
ight) + \log(4/\delta)
ight)$$

where c is an absolute constant.

due to Dani, Hayes, K. '09

- Recap
- 2 Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- Analysis
  - Regret Analysis
  - Confidence Analysis

### Confidence

In establishing the upper bounds there are two main propositions from which the upper bounds follow. The first is in showing that the confidence region is valid.

### Proposition

(Confidence) Let  $\delta > 0$ . We have that

$$Pr(\forall t, \mu^* \in BALL_t) \geq 1 - \delta.$$

# Sum of Squares Regret Bound

Assuming the confidence event holds, the following controls on the growth of the regret.

### Proposition

(Sum of Squares Regret Bound) Define:

$$\operatorname{regret}_t = \mu^{\star} \cdot \mathbf{X}^* - \mu^{\star} \cdot \mathbf{X}_t$$

Suppose  $||x|| \le B$  for  $x \in D$ . Suppose  $\beta_t$  is increasing and larger than 1. Suppose  $\mu^* \in \mathsf{BALL}_t$  for all t, then

$$\sum_{t=0}^{T-1} \operatorname{regret}_t^2 \le 4\beta_T d \log \left(1 + \frac{TB^2}{d\lambda}\right)$$

# Completing the Proof

**Proof:**[Proof of Theorem 1] With the two previous Propositions, along with the Cauchy-Schwarz inequality, we have, with probability at least  $1 - \delta$ ,

$$R_T = \sum_{t=0}^{T-1} \operatorname{regret}_t \leq \sqrt{T \sum_{t=0}^{T-1} \operatorname{regret}_t^2} \leq \sqrt{4T\beta_T d \log \left(1 + \frac{TB^2}{d\lambda}\right)}.$$

The remainder of the proof follows from using our chosen value of  $\beta_T$  and algebraic manipulations.

- Recap
- 2 Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- 3 Analysis
  - Regret Analysis
  - Confidence Analysis

### "Width" of Confidence Ball

#### Lemma

Let  $x \in D$ . If  $\mu \in \mathsf{BALL}_t$  and  $x \in D$ . Then

$$|(\mu - \widehat{\mu}_t)^{\top} x| \le \sqrt{\beta_t x^{\top} \Sigma_t^{-1} x}$$

Proof: By Cauchy-Schwarz, we have:

$$\begin{aligned} &|(\mu - \widehat{\mu}_t)^\top x| = |(\mu - \widehat{\mu}_t)^\top \Sigma_t^{1/2} \Sigma_t^{-1/2} x| = |(\Sigma_t^{1/2} (\mu - \widehat{\mu}_t))^\top \Sigma_t^{-1/2} x| \\ &\leq \|\Sigma_t^{1/2} (\mu - \widehat{\mu}_t)\| \|\Sigma_t^{-1/2} x\| = \|\Sigma_t^{1/2} (\mu - \widehat{\mu}_t)\| \sqrt{x^\top \Sigma_t^{-1} x} \leq \sqrt{\beta_t x^\top \Sigma_t^{-1} x} \end{aligned}$$

where the last inequality holds since  $\mu \in \mathsf{BALL}_t$ .

## Instantaneous Regret Lemma

Define

$$w_t := \sqrt{x_t^{\top} \Sigma_t^{-1} x_t}$$

which is the "normalized width" at time *t* in the direction of our decision.

#### Lemma

Fix  $t \leq T$ . If  $\mu^* \in \mathsf{BALL}_t$ , then

$$\operatorname{regret}_t \leq 2 \min \left( \sqrt{\beta_t} w_t, 1 \right) \leq 2 \sqrt{\beta_T} \min \left( w_t, 1 \right)$$

**Proof:** Let  $\widetilde{\mu} \in \mathsf{BALL}_t$  denote the vector which minimizes the dot product  $\widetilde{\mu}^\top x_t$ . By choice of  $x_t$ , we have

$$\widetilde{\boldsymbol{\mu}}^{\top} \mathbf{X}_t = \max_{\boldsymbol{\mu} \in \mathsf{BALL}_t} \max_{\mathbf{X} \in \mathcal{D}} \boldsymbol{\mu}^{\top} \mathbf{X} \ge (\boldsymbol{\mu}^{\star})^{\top} \mathbf{X}^{*},$$

where the inequality used the hypothesis  $\mu^{\star} \in \mathsf{BALL}_t$ . Hence,

$$\operatorname{regret}_{t} = (\mu^{\star})^{\top} X^{*} - (\mu^{\star})^{\top} X_{t} \leq (\widetilde{\mu} - \mu^{\star})^{\top} X_{t}$$
$$= (\widetilde{\mu} - \widehat{\mu}_{t})^{\top} X_{t} + (\widehat{\mu}_{t} - \mu^{\star})^{\top} X_{t} \leq 2\sqrt{\beta_{t}} w_{t}$$

# Geometric Argument: Part 1

The next two lemmas give us 'geometric' potential function argument, where can bound the sum of widths independently of the choices made by the algorithm.

### Lemma

We have:

$$\det \Sigma_T = \det \Sigma_0 \prod_{t=0}^{r-1} (1 + w_t^2).$$

**Proof:** By the definition of  $\Sigma_{t+1}$ , we have

$$\begin{split} \det \Sigma_{t+1} &= \det (\Sigma_t + x_t x_t^\top) = \det (\Sigma_t^{1/2} (I + \Sigma_t^{-1/2} x_t x_t^\top \Sigma_t^{-1/2}) \Sigma_t^{1/2}) \\ &= \det (\Sigma_t) \det (I + \Sigma_t^{-1/2} x_t (\Sigma_t^{-1/2} x_t)^\top) = \det (\Sigma_t) \det (I + v_t v_t^\top), \end{split}$$

where  $v_t := \sum_{t=1}^{-1/2} x_t$ . Now observe that  $v_t^{\top} v_t = w_t^2$  and ...

## Geometric Argument: Part 2

#### Lemma

For any sequence  $x_0, \dots x_{T-1}$  such that, for t < T,  $||x_t||_2 \le B$ , we have:

$$\log\left(\det\Sigma_{T-1}/\det\Sigma_0\right) = \log\det\left(I + \frac{1}{\lambda}\sum_{t=0}^{T-1}x_tx_t^\top\right) \le d\log\left(1 + \frac{TB^2}{d\lambda}\right).$$

**Proof:** Denote the eigenvalues of  $\sum_{t=0}^{T-1} x_t x_t^{\top}$  as  $\sigma_1, \dots, \sigma_d$ , and note:

$$\sum_{i=1}^{d} \sigma_i = \text{Trace}\Big(\sum_{t=0}^{T-1} x_t x_t^{\top}\Big) = \sum_{t=0}^{T-1} \|x_t\|^2 \le TB^2.$$

Using the AM-GM inequality,

$$\log \det \left(I + \frac{1}{\lambda} \sum_{t=0}^{T-1} x_t x_t^{\top}\right) = \log \left(\prod_{i=1}^{d} \left(1 + \sigma_i/\lambda\right)\right)$$

$$= d \log \left(\prod_{i=1}^{d} \left(1 + \sigma_i/\lambda\right)\right)^{1/d} \le d \log \left(\frac{1}{d} \sum_{i=1}^{d} \left(1 + \sigma_i/\lambda\right)\right) \le d \log \left(1 + \frac{TB^2}{d\lambda}\right)$$

# Proving "sum of squares regret" Proposition

**Proof:**[Proof of Proposition 3] Assume  $\mu^* \in BALL_t$  for all t. We have:

$$\begin{split} &\sum_{t=0}^{T-1} \operatorname{regret}_t^2 \leq \sum_{t=0}^{T-1} 4\beta_t \min(w_t^2, 1) \leq 4\beta_T \sum_{t=0}^{T-1} \min(w_t^2, 1) \\ &\leq 4\beta_T \sum_{t=0}^{T-1} \ln(1 + w_t^2) \leq 4\beta_T \log\left(\det \Sigma_{T-1} / \det \Sigma_0\right) \\ &= 4\beta_T d \log\left(1 + \frac{TB^2}{d\lambda}\right) \end{split}$$

where the first inequality follow from by Lemma 5; the second from that  $\beta_t$  is an increasing function of t; the third uses that for  $0 \le y \le 1$ ,  $\ln(1+y) \ge y/2$ ; the final two inequalities follow by Lemmas 6 and 7.

- Recap
- 2 Linear Bandits
  - Setting
  - LinUCB
  - An Optimal Regret Bound
- 3 Analysis
  - Regret Analysis
  - Confidence Analysis

18/21

# Confidence [Proof of Proposition 2]

**Proof:** Since  $r_{\tau} = x_{\tau} \cdot \mu^{\star} + \eta_{\tau}$ , we have:

$$\widehat{\mu}_{t} - \mu^{*} = \sum_{t=0}^{t-1} \sum_{\tau=0}^{t-1} r_{\tau} x_{\tau} - \mu^{*} = \sum_{t=0}^{t-1} \sum_{\tau=0}^{t-1} x_{\tau} (x_{\tau} \cdot \mu^{*} + \eta_{\tau}) - \mu^{*}$$

$$= \sum_{t=0}^{t-1} \left( \sum_{\tau=0}^{t-1} x_{\tau} (x_{\tau})^{\top} \right) \mu^{*} - \mu^{*} + \sum_{t=0}^{t-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}$$

$$= \lambda \sum_{t=0}^{t-1} \mu^{*} + \sum_{t=0}^{t-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}$$

By the triangle inequality,

$$\sqrt{(\widehat{\mu}_t - \mu^*)^\top \Sigma_t (\widehat{\mu}_t - \mu^*)} \leq \left\| \lambda \Sigma_t^{-1/2} \mu^* \right\| + \left\| \Sigma_t^{-1/2} \sum_{\tau=0}^{t-1} \eta_\tau X_\tau \right\| \\
\leq \sqrt{\lambda} \|\mu^*\| + ??.$$

How can we bound "??" To be continued...

S. M. Kakade RL 19/21

# Self-Normalizing Sum

## Lemma (Self-Normalized Bound for Vector-Valued Martingales)

(Abassi et. al '11) Suppose  $\{\varepsilon_i\}_{i=1}^{\infty}$  are mean zero random variables (can be generalized to martingales), and  $\varepsilon_i$  is bounded by  $\sigma$ . Let  $\{X_i\}_{i=1}^{\infty}$  be a stochastic process. Define  $\Sigma_t = \Sigma_0 + \sum_{i=1}^t X_i X_i^{\top}$ . With probability at least  $1 - \delta$ , we have for all  $t \geq 1$ :

$$\left\| \sum_{i=1}^t X_i \varepsilon_i \right\|_{\Sigma_{-}^{-1}}^2 \leq \sigma^2 \log \left( \frac{\det(\Sigma_t) \det(\Sigma_0)^{-1}}{\delta^2} \right).$$

# Continued... [Proof of Proposition 2]

#### **Proof:**

$$\begin{split} (\widehat{\mu}_t - \mu^\star)^\top \Sigma_t (\widehat{\mu}_t - \mu^\star) &\leq \left\| \lambda \Sigma_t^{-1/2} \mu^\star \right\| + \left\| \Sigma_t^{-1/2} \sum_{\tau=0}^{t-1} \eta_\tau x_\tau \right\| \\ &\leq \sqrt{\lambda} \|\mu^\star\| + \sqrt{2\sigma^2 \log \left( \det(\Sigma_t) \det(\Sigma^0)^{-1} / \delta_t \right)}. \end{split}$$

We seek to lower bound  $\Pr(\forall t, \mu^* \in \mathsf{BALL}_t)$ . Assign failure probability  $\delta_t = (3/\pi^2)/t^2$  for the t-th event, which gives us:

$$1 - \Pr(\forall t, \, \mu^{\star} \in \mathsf{BALL}_t) = \Pr(\exists t, \, \mu^{\star} \notin \mathsf{BALL}_t) \leq \sum_{t=1}^{\infty} \Pr(\mu^{\star} \notin \mathsf{BALL}_t)$$
$$< \sum_{t=1}^{\infty} (1/t^2)(3/\pi^2) = 1/2.$$

This along with Lemma 7 completes the proof.