Generalization in Large scale MDPs

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

Two types of Bellman error of $f(s, a) (\approx Q^{\star})$

$$BE_Q(s,a) = f(s,a) - \left(r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} f(s',a')\right)$$

Two types of Bellman error of $f(s, a) (\approx Q^{\star})$

$$BE_Q(s,a) = f(s,a) - \left(r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} f(s',a')\right)$$

$$V_f(s) = \arg\max_a f(s, a), \pi_f(s) = \arg\max_a f(s, a)$$

Two types of Bellman error of $f(s, a) (\approx Q^{\star})$

$$BE_Q(s,a) = f(s,a) - \left(r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} f(s',a')\right)$$

$$V_f(s) = \arg\max_a f(s, a), \pi_f(s) = \arg\max_a f(s, a)$$

Two types of Bellman error of $f(s, a) (\approx Q^{\star})$

 $BE_V(s) = V_f(s) - r(s, \pi_f(s)) - \mathbb{E}_{s' \sim P_h(s, \pi_f(s))} V_f(s')$

$$BE_Q(s,a) = f(s,a) - \left(r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} f(s',a')\right)$$

$$V_f(s) = \arg\max_a f(s, a), \pi_f(s) = \arg\max_a f(s, a)$$

If $BE(s, a) \neq 0$, then $f \neq Q^{\star}$

Two types of Bellman error of $f(s, a) (\approx Q^{\star})$

 $BE_{V}(s) = V_{f}(s) - r(s, \pi_{f}(s)) - \mathbb{E}_{s' \sim P_{h}(s, \pi_{f}(s))} V_{f}(s')$

Notations

Probability of π visiting (s, a) at time step $h: d_h^{\pi}(s, a)$

Question for Today

We have seen tabular MDP and linear MDP, is there a **more general framework** that captures these two, and potentially many more, where efficient learning is possible?

Question for Today

We have seen tabular MDP and linear MDP, is there a **more general framework** that captures these two, and potentially many more, where efficient learning is possible?

In other words, what structural conditions permit RL generalization, provably?

Outline for Today

1. Bellman rank Definitions

2. Examples that are captured by the Bellman rank framework

Finite horizon episodic MDP

Setting

$$- \left\{ \{S_h\}_{h=0}^H, \{A_h\}_{h=0}^{H-1}, H, s_0, r, P \right\}$$

State space S_h is extremely large:

Finite horizon episodic MDF

Setting

$$\left\{ \{S_h\}_{h=0}^H, \{A_h\}_{h=0}^{H-1}, H, S_0, r, P \right\}$$

State space S_h is extremely large:

- Not acceptable: poly (|S|)
- Need to generalize via (nonlinear) function approximation

We will consider **Q function class**

 $\mathcal{F} \subset S \times A \mapsto [0,1]$

- We will consider **Q function class**
 - $\mathcal{F} \subset S \times A \mapsto [0,1]$
 - **Realizability** assumption:
 - $Q^{\star} \in \mathcal{F}$

- We will consider **Q function class**
 - $\mathcal{F} \subset S \times A \mapsto [0,1]$
 - **Realizability** assumption:
 - $Q^{\star} \in \mathcal{F}$
- Define policy class: $\Pi = \{ \pi : \pi(s) = \arg \max f(s, a), \forall s \in S | f \in \mathcal{F} \}$ $a \in A$

Realizability assumption:

Ĺ

Define **policy class**: $\Pi = \{\pi : \pi($

Define value function class: $\mathcal{V} =$

We will consider **Q function class**

 $\mathcal{F} \subset S \times A \mapsto [0,1]$

$$2^{\star} \in \mathcal{F}$$

$$(s) = \arg\max_{a \in A} f(s, a), \forall s \in S \mid f \in \mathscr{F} \}$$

$$= \{V_f : V_f(s) = \arg\max_a f(s, a) | f \in \mathscr{F} \}$$

Learning Goal:

We will do PAC in this lecture rather than regret.

Learning Goal:

We will do PAC in this lecture rather than regret.

Given approximation error ϵ and failure prob δ , can we learn ϵ near optimal policy (i.e., $V^{\hat{\pi}} \ge V^* - \epsilon$) in # of samples scaling poly with all relevant parameters (here, we need poly in $\ln(|\mathcal{F}|)$)

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$$

We define **average** Bellman error of a Q-estimate g below:

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$$

We define **average** Bellman error of a Q-estimate g below:

f: defines roll-in distribution over s_h, a_h .

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$$

We define **average** Bellman error of a Q-estimate g below:

f: defines roll-in distribution over s_h , a_h .

We know that $\mathscr{C}(Q^{\star}; f, h) = 0, \forall f$

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$$

We define **average** Bellman error of a Q-estimate g below:

f: defines roll-in distribution over s_h, a_h .

We know that $\mathscr{C}(Q^{\star}; f, h) = 0, \forall f$

Hence, any g such that $\mathscr{E}(g; f, h) \neq 0$, is an incorrect Q^* approximator

We can define **average** Bellman error wrt the V-function induced by g as well: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$

$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, d_h) \right]$

We can define **average** Bellman error wrt the V-function induced by g as well:

$$(\pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1} \sim P(\cdot | s_{h}, \pi_{g}(s_{h}))} \left[V_{g}(s_{h+1}) \right]$$

Again we have $\mathscr{E}(Q^{\star}; f, h) = 0, \forall f$

$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, d_h) \right]$

(because:
$$V_{Q^{\star}}(s) - r(s, \pi_{Q^{\star}})$$

We can define **average** Bellman error wrt the V-function induced by g as well:

$$, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot \mid s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

Again we have $\mathscr{C}(Q^{\star}; f, h) = 0, \forall f$

 $V_{\mathcal{A}^{\star}}(s)) - \mathbb{E}_{s' \sim P_h(.|s,\pi_O^{\star}(s))} V_{Q^{\star}}(s') = 0$

$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} V_g(s_h) - r(s_h,$

(because: $V_{Q^{\star}}(s) - r(s, \pi_{Q^{\star}}(s)) - \mathbb{E}_{s' \sim P_{h}(.|s, \pi_{Q^{\star}}(s))} V_{Q^{\star}}(s') = 0$)

Hence, any g such that $\mathscr{E}(g; \pi, h) \neq 0$, is an incorrect Q^* approximator

We can define **average** Bellman error wrt the V-function induced by g as well:

$$, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot | s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

Again we have $\mathscr{E}(Q^{\star}; f, h) = 0, \forall f$

The Q / V-Bellman rank

$\forall h: \mathscr{E}_h \in \mathbb{R}^{|\mathcal{F}| \times |\mathcal{F}|}$

The Q / V-Bellman rank

Rank of this Matrix is defined as Bellman Rank

 $\forall h: \mathscr{E}_h \in \mathbb{R}^{|\mathcal{F}| \times |\mathcal{F}|}$

The Q / V-Bellman rank

$\forall f, g \in \mathscr{F} : \mathscr{E}(g; f, h) = \langle W_h(g), X_h(f) \rangle$

Note, we just assume the existence of W, X, but they are unknown

In other words, there are two mappings $W_h: \mathscr{F} \mapsto \mathbb{R}^d$, $X_h: \mathscr{F} \mapsto \mathbb{R}^d$ (d = Bellman-rank)

Outline for Today

2. Examples that are captured by the Bellman rank framework

Given feature ϕ , take any linear function $\theta^{\top}\phi(s, a)$:

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta^{\mathsf{T}}\phi(s',a'), \forall s,a$

Given feature ϕ , take any linear function $\theta^{\top}\phi(s, a)$:

Claim: it has Q-Bellman rank d

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta^{\mathsf{T}}\phi(s',a'), \forall s,a$

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta^{\mathsf{T}}\phi(s',a'), \forall s,a$

 $\forall g(s, a) := \theta^{\top} \phi(s, a)$, we have:

Given feature ϕ , take any linear function $\theta^{\top}\phi(s, a)$:

Given feature ϕ , take any linear function $\theta^{\dagger}\phi(s, a)$:

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta^{\mathsf{T}}\phi(s',a'), \forall s,a$

 $\forall g(s, a) := \theta^\top \phi(s, a)$, we have: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h,a_h) - r(s_h,a_h) \right]$

$$(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\max_{a \in \mathscr{A}} \theta^{\mathsf{T}} \phi(s_{h+1}, a) \right]$$

Given feature ϕ , take any linear function $\theta^{\dagger}\phi(s, a)$:

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^{\mathsf{T}}\phi(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta^{\mathsf{T}}\phi(s',a'), \forall s,a$

 $\forall g(s, a) := \theta^\top \phi(s, a)$, we have: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h,a_h) - r(s_h) \right]$ $= \mathbb{E}_{s_h, a_h \sim d_h} \left[\theta^{\mathsf{T}} \phi(s_h, a_h) - \mathcal{T}_h(\theta)^{\mathsf{T}} \phi(s_h, a_h) \right]$

$$[s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\max_{a \in \mathscr{A}} \theta^{\mathsf{T}} \phi(s_{h+1}, a) \right]$$

Given feature ϕ , take any linear function $\theta^{\top}\phi(s, a)$:

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta^\top \phi(s', a'), \forall s, a \in \mathbb{R}^d$

 $\forall g(s, a) := \theta^\top \phi(s, a)$, we have: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h,a_h) - r(s_h) \right]$ $= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h, a_h) - \mathcal{T}_h(\theta)^{\mathsf{T}} \phi(s_h, a_h) \right]$

 $= \langle \theta - \mathcal{T}_{h}(\theta), \mathbb{E}_{s_{h}, a_{h} \sim d_{h}^{\pi_{f}}} [\phi(s_{h}, \theta)] \rangle$

$$(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\max_{a \in \mathscr{A}} \theta^{\mathsf{T}} \phi(s_{h+1}, a) \right]$$

$$[a, a_h)]$$

Given feature ϕ , take any linear function $\theta^{\top}\phi(s, a)$:

 $\forall h, \exists w \in \mathbb{R}^d, s.t., w^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta^\top \phi(s', a'), \forall s, a \in \mathbb{R}^d$

 $\forall g(s, a) := \theta^\top \phi(s, a)$, we have: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h,a_h) - r(s_h) \right]$ $= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\theta^{\mathsf{T}} \phi(s_h, a_h) - \mathcal{T}_h(\theta)^{\mathsf{T}} \phi(s_h, a_h) \right]$

 $= \langle \theta - \mathcal{T}_{h}(\theta), \mathbb{E}_{s_{h}, a_{h} \sim d_{h}}^{\pi_{f}} [\phi(s_{h}, \theta)] \rangle$

Claim: it has Q-Bellman rank d

$$(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\max_{a \in \mathscr{A}} \theta^{\mathsf{T}} \phi(s_{h+1}, a) \right]$$

$$,a_h)]$$

Note linear Bell-completion captures tabular / linear mdp already

The Linear $Q^{\star} \& V^{\star}$ model:

Assume $Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$

The Linear $Q^{\star} \& V^{\star}$ model:

Assume $Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$

Assume $Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a)$

Claim: it has Q-Bellman rank 2d

$$\mathcal{F}_{h} = \left\{ (w, \theta) : \max_{a} w^{\mathsf{T}} \phi(s, a) = \theta^{\mathsf{T}} \psi(s), \forall s \right\}$$

The Linear $Q^{\star} \& V^{\star}$ model:

$$(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$$

Assume
$$Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$$

$$\mathcal{F}_{h} = \left\{ (w, \theta) : \max_{a} w^{\mathsf{T}} \phi(s, a) = \theta^{\mathsf{T}} \psi(s), \forall s \right\}$$

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot|s_h,a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

The Linear $Q^{\star} \& V^{\star}$ model:

Assume
$$Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$$

$$\mathscr{F}_{h} = \left\{ (w, \theta) : \max_{a} w^{\mathsf{T}} \phi(s, a) = \theta^{\mathsf{T}} \psi(s), \forall s \right\}$$

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot|s_h,a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

$$= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h, a_h) - (w^{\star})^{\mathsf{T}} \phi(s_h, a_h) + \mathbb{E}_{s_h} \right]$$

The Linear $Q^{\star} \& V^{\star}$ model:

 $_{h+1} \sim P_h(\cdot|s_h,a_h) \left[(\theta^{\star})^{\mathsf{T}} \psi(s_{h+1}) \right] - \mathbb{E}_{s_{h+1}} \sim P_h(\cdot|s_h,a_h) \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right]$

Assume
$$Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$$

$$\mathscr{F}_{h} = \left\{ (w, \theta) : \max_{a} w^{\mathsf{T}} \phi(s, a) = \theta^{\mathsf{T}} \psi(s), \forall s \right\}$$

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot|s_h,a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

$$= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h, a_h) - (w^{\star})^{\mathsf{T}} \phi(s_h, a_h) + \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[(\theta^{\star})^{\mathsf{T}} \psi(s_{h+1}) \right] - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

$$= \left\langle \begin{bmatrix} w - w^{\star} \\ \theta - \theta^{\star} \end{bmatrix}, \quad \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \begin{bmatrix} \phi(s_h, a_h) \\ -\mathbb{E}_{s' \sim P_h(s_h, a_h)}[\psi(s')] \end{bmatrix} \right\rangle$$

The Linear $Q^{\star} \& V^{\star}$ model:

Assume
$$Q^{\star}(s, a) = (w^{\star})^{\mathsf{T}} \phi(s, a), \quad V^{\star}(s) = (\theta^{\star})^{\mathsf{T}} \psi(s), \forall s, a$$

$$\mathscr{F}_{h} = \left\{ (w, \theta) : \max_{a} w^{\mathsf{T}} \phi(s, a) = \theta^{\mathsf{T}} \psi(s), \forall s \right\}$$

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot|s_h,a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

$$= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[w^{\mathsf{T}} \phi(s_h, a_h) - (w^{\star})^{\mathsf{T}} \phi(s_h, a_h) + \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[(\theta^{\star})^{\mathsf{T}} \psi(s_{h+1}) \right] - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\theta^{\mathsf{T}} \psi(s_{h+1}) \right] \right]$$

$$= \left\langle \begin{bmatrix} w - w^{\star} \\ \theta - \theta^{\star} \end{bmatrix}, \quad \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \begin{bmatrix} \phi(s_h, a_h) \\ -\mathbb{E}_{s' \sim P_h(s_h, a_h)}[\psi(s')] \end{bmatrix} \right\rangle$$

The Linear $Q^{\star} \& V^{\star}$ model:

As we will see, linear Q*&V* is learnable, and recall linear Q* is not...

Q^{\star} - state abstraction

We have a small latent state space Z, and a **known** mapping ξ from state s to z

 $Q^{\star}(s_1, a) = Q^{\star}(s_2, a), \forall a, \text{ if } \xi(s_1) = \xi(s_2)$

Q^{\star} - state abstraction

We have a small latent state space Z, and a **known** mapping ξ from state s to z

Claim: this model has Q-Bellman rank |Z||A| + |Z|

We can show that this model is captured by linear $Q^{\star} \& V^{\star}$

 $Q^{\star}(s_1, a) = Q^{\star}(s_2, a), \forall a, \text{ if } \xi(s_1) = \xi(s_2)$

 $P_h(s'|s,a) = \mu_h^{\star}(s')^{\top} \phi_h^{\star}(s,a)$ (neither μ^{\star} nor ϕ^{\star} is known)

 $P_h(s'|s,a) = \mu_h^{\star}(s')^{\top} \phi_h^{\star}(s,a)$ (neither μ^{\star} nor ϕ^{\star} is known)

Claim: this model has V-Bellman rank *d*

Claim: this model has V-Bellman rank *d*

Define representation class Φ , with $\phi^{\star} \in \Phi$

$$\mathscr{F}_h = \{\theta^{\mathsf{T}} \phi(\,\cdot\,,\,\cdot\,$$

 $P_h(s'|s,a) = \mu_h^{\star}(s')^{\top} \phi_h^{\star}(s,a)$ (neither μ^{\star} nor ϕ^{\star} is known)

): $\|\theta\|_2 \leq W, \phi \in \Phi$

$$P_h(s'|s,a)$$
:

Claim: this model has V-Bellman rank d

Define representation class Φ , with $\phi^{\star} \in \Phi$

$$\mathcal{F}_h = \{\theta^{\mathsf{T}} \phi(\,\cdot\,,\,\cdot\,$$

$$\mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, \pi_g(s_h))} \right]$$

 $= \mu_h^{\star}(s')^{\top} \phi_h^{\star}(s, a) \quad \text{(neither } \mu^{\star} \text{ nor } \phi^{\star} \text{ is known)}$

 $): \|\theta\|_2 \le W, \phi \in \Phi\}$

 $\left[V_g(s_{h+1})\right]$

$$P_h(s'|s,a)$$
 :

Claim: this model has V-Bellman rank *d*

$$\mathscr{F}_h = \{\theta^{\mathsf{T}} \phi(\,\cdot\,,\,\cdot\,$$

$$\mathbb{E}_{s_{h}\sim d_{h}^{\pi_{f}}} \Big[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h}, \pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \Big]$$

= $\mathbb{E}_{\tilde{s}, \tilde{a}\sim d_{h-1}^{\pi_{f}}} \mathbb{E}_{s_{h}\sim P_{h-1}(\cdot|\tilde{s}, \tilde{a})} \Big[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h}, \pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \Big]$

= $\mu_h^{\star}(s')^{\top} \phi_h^{\star}(s, a)$ (neither μ^{\star} nor ϕ^{\star} is known)

- Define representation class Φ , with $\phi^{\star} \in \Phi$
 -): $\|\theta\|_2 \leq W, \phi \in \Phi$

$$P_h(s'|s,a)$$

Claim: this model has V-Bellman rank *d*

$$\mathcal{F}_h = \{\theta^{\mathsf{T}} \phi(\,\cdot\,,\,\cdot\,$$

$$\begin{split} & \mathbb{E}_{s_{h}\sim d_{h}^{\pi_{f}}} \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h}, \pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right] \\ &= \mathbb{E}_{\tilde{s}, \tilde{a}\sim d_{h-1}^{\pi_{f}}} \mathbb{E}_{s_{h}\sim P_{h-1}(\cdot|\tilde{s}, \tilde{a})} \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h}, \pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right] \\ &= \mathbb{E}_{\tilde{s}, \tilde{a}\sim d_{h-1}^{\pi_{f}}} \int_{s_{h}} \mu_{h-1}^{\star}(s_{h})^{\mathsf{T}} \phi_{h-1}^{\star}(\tilde{s}, \tilde{a}) \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h}, \pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right] d(s_{h}) \end{split}$$

= $\mu_h^{\star}(s')^{\top} \phi_h^{\star}(s, a)$ (neither μ^{\star} nor ϕ^{\star} is known)

- Define representation class Φ , with $\phi^{\star} \in \Phi$
 -): $\|\theta\|_2 \leq W, \phi \in \Phi$

$$P_h(s'|s,a)$$

Claim: this model has V-Bellman rank d

$$\mathcal{F}_h = \{\theta^{\mathsf{T}} \phi(\,\cdot\,,\,\cdot\,$$

$$\mathbb{E}_{s_{h}\sim d_{h}^{\pi_{f}}} \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},\pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right]$$

$$= \mathbb{E}_{\tilde{s},\tilde{a}\sim d_{h-1}^{\pi_{f}}} \mathbb{E}_{s_{h}\sim P_{h-1}(\cdot|\tilde{s},\tilde{a})} \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},\pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right]$$

$$= \mathbb{E}_{\tilde{s},\tilde{a}\sim d_{h-1}^{\pi_{f}}} \int_{s_{h}} \mu_{h-1}^{\star}(s_{h})^{\mathsf{T}} \phi_{h-1}^{\star}(\tilde{s},\tilde{a}) \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},\pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right] d(s_{h})$$

$$= \left\langle \int_{s_{h}} \mu_{h-1}^{\star}(s_{h}) \left[V_{g}(s_{h}) - r(s, \pi_{g}(s_{h})) - \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},\pi_{g}(s_{h}))} [V_{g}(s_{h+1})] \right] d(s_{h}) \right\rangle$$

 $= \mu_h^{\star}(s')^{\top} \phi_h^{\star}(s, a) \quad \text{(neither } \mu^{\star} \text{ nor } \phi^{\star} \text{ is known)}$

- Define representation class Φ , with $\phi^{\star} \in \Phi$
 -): $\|\theta\|_2 \leq W, \phi \in \Phi$

 $= \left\langle \int_{s_h} \mu_{h-1}^{\star}(s_h) \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot \mid s_h, \pi_g(s_h))} [V_g(s_{h+1})] \right] d(s_h), \quad \mathbb{E}_{\tilde{s}, \tilde{a} \sim d_{h-1}}[\phi_{h-1}^{\star}(\tilde{s}, \tilde{a})] \right\rangle$

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank...

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank...

Given s, a: $z \sim \phi^*(s, a), s' \sim \nu^*(z)$

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank...

V-Bellman rank = Number of latent states

Given s, a: $z \sim \phi^*(s, a), s' \sim \nu^*(z)$

Summary

1. Q-Bellman rank: related to the Bellman error of a Q function estimate g: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$

- 1. Q-Bellman rank: related to the Bellman error of a Q function estimate g: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left| g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right|$
 - 2. V-Bellman rank: related to the Bellman error of a V function estimate

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

Summary

- 1. Q-Bellman rank: related to the Bellman error of a Q function estimate g: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$
 - 2. V-Bellman rank: related to the Bellman error of a V function estimate

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

3. Small Bellman rank means that: where $X_h(f), W_h(f)$ are $\forall f,g \in \mathcal{F} : \mathscr{E}(g;f,h) = \langle W_h(g), X_h(f) \rangle$ low-dim vectors

Summary

- 1. Q-Bellman rank: related to the Bellman error of a Q function estimate g: $\mathscr{E}(g;f,h) = \mathbb{E}_{s_h,a_h \sim d_h^{\pi_f}} \left[g(s_h,a_h) - r(s_h,a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h,a_h)} \left[\max_{a \in \mathscr{A}} g(s_{h+1},a) \right] \right]$
 - 2. V-Bellman rank: related to the Bellman error of a V function estimate

$$\mathscr{E}(g;f,h) = \mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s_h, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

4. Many models (more in the book chapter) indeed have low-Q or V Bellman rank

Summary

3. Small Bellman rank means that: where $X_h(f), W_h(f)$ are $\forall f,g \in \mathcal{F} : \mathscr{E}(g;f,h) = \langle W_h(g), X_h(f) \rangle$ low-dim vectors

A general algorithm that can learn an ϵ near optimal policy w/ # of samples

Next week:

 $poly(H, 1/\epsilon, ln(|\mathcal{H}|), b-rank)$