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Recap: Sample Complexity

Minimax Optimal Sample Complexity  
(on the policy)

Theorem: (Agarwal et al. ’20)  For , provided 

  then with prob. greater than ),  

 
  

 

ϵ < 1/(1 − γ)
N ≥ c

(1 − γ)3
log(cSA/δ)

ϵ2 1 − δ

∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Lower Bound: We can’t do better.
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What we have studied so far:
(the small state space case)
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What we want to solve:
(the large state space case)
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Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?

We seek to learn when the number of states is large (or infinite).
This is a question of generalization.
Supervised Learning: two important frameworks

Agnostic learning: try to do as well best classifier in some (restricted)
class H.
Linear models: learn the best linear regressor or binary classifier
(among halspaces)

Reinforcement Learning: analogous questions
Agnostic learning: can we find the best policy in some (restricted) class
Π (rather than trying to be optimal)?
Linear realizability: if the optimal value or policy is parameterized with a
linear model, can we learn with fewer samples?
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Binary Classification

N labeled examples: (xi , yi)
N
i=1, with xi ∈ X and yi ∈ {0,1}.

A set H of binary classifiers, where for h ∈ H, h : X → {0,1}.
Define the empirical error and the true error as:

êrr(h) =
1
N

N∑
i=1

1(h(xi) 6= yi), err(h) = E(X ,Y )∼D1(h(X ) 6= Y ).

where 1(h(x) 6= y) is 0 if h(x) = y and 1 otherwise.

If the samples are drawn i.i.d. according to a joint distribution D over
(x , y), then, by Hoeffding’s inequality, for a fixed h ∈ H, with
probability at least 1− δ:

|err(h)− êrr(h)| ≤
√

1
2N

log
2
δ
.
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Occams Razor and Generalization

Your HW0: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

Proposition
(The “Occam’s razor” bound) Suppose H is finite. Let
ĥ = arg minh∈H êrr(h) and h? = arg minh∈H err(h). With probability at
least 1− δ:

err(ĥ)− err(h?) ≤
√

2
N

log
2|H|
δ

.

(The logarithmic dependence is the most naive complexity measure of
H, yet the bound is strong.)
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Finite Horizon MDPs

finite horizon, time-dependent Markov Decision Process (MDP)
M = (S,A, {P}h, {r}h,H, µ) is specified as follows:

A integer H which defines the horizon of the problem.
A time-dependent transition function: for h ∈ [H], Ph : S ×A → ∆(S)
A time-dependent reward function: for h ∈ [H], rh : S ×A → [0,1].

Goal:

argmaxπ Es0∼µVπ(s0), where Vπ(s0) = E
[ H−1∑

t=0

rh(st ,at )
∣∣ π, s0

]
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Bellman equations: finite horizon case

Define the value functions Vπ
h : S → R as

Vπ
h (s) = E

[ H−1∑
t=h

rh(st ,at )
∣∣ π, sh = s

]
,

Define the state-action value function Qπ
h : S ×A → R is defined as

Qπ
h (s,a) = E

[ H−1∑
t=h

rh(st ,at )
∣∣ π, sh = s,ah = a

]
.

Bellman optimality equations: Define Q?
h(s,a) = supπ∈Π Qπ

h (s,a).
Suppose that QH = 0. We have that Qh = Q?

h for all h ∈ [H] if and
only if for all h ∈ [H],

Qh(s,a) = rh(s,a) + Es′∼Ph(·|s,a)

[
max
a′∈A

Qh+1(s′,a′)
]
.

Furthermore, π(s,h) = argmaxa∈AQ?
h(s,a) is an optimal policy.
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SL is an RL problem with H = 1

Binary classification is special case of RL.
Consider learning in an MDP, with two actions where the effective
horizon is 1.
|A| = 2, H = 1, and the reward function is r(s,a) = 1(label(s) = a).
Note in SL, we rarely make restrictions that X (i.e. S) is finite.
Note that µ(s0)↔ D(x) (D is the distribution of our data)
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RL and Agnostic Learning

We have a set of policies Π (either finite or infinite).
Π could be a parametric set.
Π could be greedy policys on a a set of parametric value functions
V = {fθ : S ×A → R| θ ∈ Rd}.
Π may not contain π?.

in agnostic learning, we have the optimization problem:

max
π∈Π

Vπ(s0)

We want to (approx) solve this with a small number of sample
trajectories.
analogous to agnostic learning in SL

binary classification: |A| = 2, H = 1, r(·) being the labeling reward.
relevant dependencies for RL:

Complexity(Π), |S|, |A|,H,N
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Episodic Model

Assume sampling access to the MDP in a µ-reset model:
start at a state s0 ∼ µ
we can rollout a policy π of our choosing
we can terminate the trajectory at will.

(weaker model than generative model)
How can we “reuse” data to do agnostic learning?
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Importance Sampling

Let UnifA be the uniformly random policy.
Using UnifA in the episodic model can provide an unbiased estimate
of any other policy π.

Lemma
(Unbiased estimation of Vπ

0 (s0)) For any deterministic policy π,

Vπ
0 (s0) =

|A|HEa0:H−1∼UnifA

[
1
(
π(s0) = a0, . . . , π(sH) = aH

) H−1∑
t=0

r(st ,at )

∣∣∣∣s0

]

(note that the expectation is with respect to trajectory generated by
following the actions under UnifA).
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An Occams Razor Bound for RL

Collect N trajectories with UnifA.

Denote the n-th sample by (sn
0 ,a

n
0, r

n
1 , s

n
1 , . . . , s

n
H−1).

Consider the following empirical estimator of any π:

V̂π(s0) =
|A|H

N

N∑
n=1

1
(
π(sn

0) = an
0, . . . π(sn

H−1) = an
H−1

) H−1∑
t=0

r(sn
t ,a

n
t ).

Proposition

(Generalization in RL) Suppose Π is finite. Let π̂ = arg maxπ∈Π V̂π(s0).
With probability at least 1− δ:

V π̂(s0) ≥ arg max
π∈Π

Vπ(s0)− H|A|H
√

2
N

log
2|Π|
δ
.

S. M. Kakade Generalization 14 / 16



An Occams Razor Bound for RL

Collect N trajectories with UnifA.
Denote the n-th sample by (sn

0 ,a
n
0, r

n
1 , s

n
1 , . . . , s

n
H−1).

Consider the following empirical estimator of any π:

V̂π(s0) =
|A|H

N

N∑
n=1

1
(
π(sn

0) = an
0, . . . π(sn

H−1) = an
H−1

) H−1∑
t=0

r(sn
t ,a

n
t ).

Proposition

(Generalization in RL) Suppose Π is finite. Let π̂ = arg maxπ∈Π V̂π(s0).
With probability at least 1− δ:

V π̂(s0) ≥ arg max
π∈Π

Vπ(s0)− H|A|H
√

2
N

log
2|Π|
δ
.

S. M. Kakade Generalization 14 / 16



An Occams Razor Bound for RL

Collect N trajectories with UnifA.
Denote the n-th sample by (sn

0 ,a
n
0, r

n
1 , s

n
1 , . . . , s

n
H−1).

Consider the following empirical estimator of any π:

V̂π(s0) =
|A|H

N

N∑
n=1

1
(
π(sn

0) = an
0, . . . π(sn

H−1) = an
H−1

) H−1∑
t=0

r(sn
t ,a

n
t ).

Proposition

(Generalization in RL) Suppose Π is finite. Let π̂ = arg maxπ∈Π V̂π(s0).
With probability at least 1− δ:

V π̂(s0) ≥ arg max
π∈Π

Vπ(s0)− H|A|H
√

2
N

log
2|Π|
δ
.

S. M. Kakade Generalization 14 / 16



An Occams Razor Bound for RL

Collect N trajectories with UnifA.
Denote the n-th sample by (sn

0 ,a
n
0, r

n
1 , s

n
1 , . . . , s

n
H−1).

Consider the following empirical estimator of any π:

V̂π(s0) =
|A|H

N

N∑
n=1

1
(
π(sn

0) = an
0, . . . π(sn

H−1) = an
H−1

) H−1∑
t=0

r(sn
t ,a

n
t ).

Proposition

(Generalization in RL) Suppose Π is finite. Let π̂ = arg maxπ∈Π V̂π(s0).
With probability at least 1− δ:

V π̂(s0) ≥ arg max
π∈Π

Vπ(s0)− H|A|H
√

2
N

log
2|Π|
δ
.

S. M. Kakade Generalization 14 / 16



Can we do better?

What we want, for an agnostic sample complexity:
no dependence on |S| (or logarithmic)
poly H dependence
to depend reasonably on a complexity measure of H
e.g. poly log |H| dependence

Is this possible?
No :(
This is (one reason) why RL is challenging.
(both in theory and in practice)
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An “Easy” Lower Bound

Proposition
(Lower Bound) Suppose A has access to a generative model. There
exists a policy class Π, with |Π| = |A|H such that if A returns a policy π
where

Vπ
0 (µ) ≥ arg max

π∈Π
Vπ

0 (µ)− 0.5.

with probability greater than 1/2, then A use a number of samples:

N ≥ c|A|H

(where c is an absolute constant).

Proof: Consider a full |A|-ary tree of depth H, which defines the MDP.
Suppose there is only one rewarding leaf node. There are |A|H
deterministic policies. And we require Ω(|A|H) queries to discover the
rewarding leaf node.
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