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Recap: Sample Complexity

Minimax Optimal Sample Complexity
(on the policy)

Theorem: (Agarwal et al. ’20) For e < 4/1/(1 — y), provided
¢ log(cSA/o)

>
(I-p® €

10" = 0"l <€

then with prob. greater than 1 — 9),

[Lower Bound: We can’t do better.
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e Today: SL vs. RL
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What we have studied so far:

(the small state space case)

Maze example: r = -1 per time-step and policy

Stan Start

[David Silver. Advanced Topics: BL]
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What we want to solve:

(the large state space case)

ALL SYSTEMS GO

[AlphaZero, Silver et.al, 17] [OpenAl Five, 18]

TD GAMMON [Tesauro 95]

S. M. Kakade Generalization 4/16



Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?
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Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?

@ We seek to learn when the number of states is large (or infinite).
This is a question of generalization.
@ Supervised Learning: two important frameworks
o Agnostic learning: try to do as well best classifier in some (restricted)
class H.
o Linear models: learn the best linear regressor or binary classifier
(among halspaces)
@ Reinforcement Learning: analogous questions
@ Agnostic learning: can we find the best policy in some (restricted) class
I (rather than trying to be optimal)?
e Linear realizability: if the optimal value or policy is parameterized with a
linear model, can we learn with fewer samples?
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e Supervised Learning (SL) : Let’s review
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Binary Classification

@ N labeled examples: (x,-,y,-),’\i1, with x; € X and y; € {0,1}.
A set H of binary classifiers, where for h€ H, h: X — {0,1}.
Define the empirical error and the true error as:

N

&ii(h) = S 1(h(x) £ ). en(h) = Egenpl ((X) # V).
i=1

where 1(h(x) # y) is 0 if h(x) = y and 1 otherwise.
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Binary Classification

@ N labeled examples: (x,-,y,-),-’\;, with x; € X and y; € {0,1}.
A set H of binary classifiers, where for h€ H, h: X — {0,1}.
Define the empirical error and the true error as:

N
&ii(h) = 1> 1(h(x) £ ). erm(h) = Egeyyp1(A(X) £ V).
i=1

where 1(h(x) # y) is 0 if h(x) = y and 1 otherwise.

@ If the samples are drawn i.i.d. according to a joint distribution D over
(x,y), then, by Hoeffding’s inequality, for a fixed h € #, with
probability at least 1 — ¢:

By [ 1 2
— <
lerr(h) — err(h)| < N log — 5
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Occams Razor and Generalization

Your HWO: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

Proposition

(The “Occam’s razor” bound) Suppose H is finite. Let

h = arg minpey, err(h) and h* = arg minpcy err(h). With probability at
least1 —6:

2 2|H|

err(h) — err(h*) < N lo 5

S. M. Kakade Generalization 7/16



Occams Razor and Generalization

Your HWO: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

Proposition

(The “Occam’s razor” bound) Suppose H is finite. Let
h = arg minpey, err(h) and h* = arg minpcy err(h). With probability at
least1 — §:

err(ﬁ) —err(h*) <4/ < log——.

(The logarithmic dependence is the most naive complexity measure of
‘H, yet the bound is strong.)
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e RL and generalization
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Finite Horizon MDPs

@ finite horizon, time-dependent Markov Decision Process (MDP)
M= (S, A, {P}n, {r}n, H, 1) is specified as follows:
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Finite Horizon MDPs

@ finite horizon, time-dependent Markov Decision Process (MDP)
M= (S, A, {P}n, {r}n, H, 1) is specified as follows:
o Ainteger H which defines the horizon of the problem.
e A time-dependent transition function: for h € [H], Py : S x A — A(S)
e A time-dependent reward function: for h € [H], rp : S x A — [0, 1].

@ Goal:
H—1
argmax, Eg)~, V"(sg), where V™(sg) = E{ Z r(st, ar) | T, So]
t=0
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Bellman equations: finite horizon case

@ Define the value functions V' : S — R as

H—-1

Vi(s) = E{ > (st ar) | wsp= s},
t=h
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Bellman equations: finite horizon case

@ Define the value functions V[ : S — R as

H—-1

Vi(s) = E{ > (st ar) | wsp= s},
t=h

@ Define the state-action value function Qf : S x A — R is defined as

H—-1

(s, a) = E[ > ru(star) | w,sp=s,an= a].
t=h

@ Bellman optimality equations: Define Qj(s, a) = sup,.cn Qf (S, a).
Suppose that Qy = 0. We have that Q, = Qj, for all h € [H] if and
only if for all h € [H],

Qn(s. @) = rn(s; @) + Esop(s,a) [;T)eaﬁ Qny1(S, a’)} :

Furthermore, (s, h) = argmax,c 4 Q} (S, a) is an optimal policy.
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SL is an RL problem with H = 1

@ Binary classification is special case of RL.
Consider learning in an MDP, with two actions where the effective
horizon is 1.

@ |A| =2, H=1, and the reward function is r(s, a) = 1(label(s) = a).
@ Note in SL, we rarely make restrictions that X (i.e. S) is finite.
@ Note that u(sg) <» D(x) (D is the distribution of our data)
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RL and Agnostic Learning

@ We have a set of policies I (either finite or infinite).

o [1 could be a parametric set.

o [1 could be greedy policys on a a set of parametric value functions
V={f:SxA—R|§cR.

e [1 may not contain 7*.
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RL and Agnostic Learning

@ We have a set of policies I (either finite or infinite).

o [1 could be a parametric set.

o [1 could be greedy policys on a a set of parametric value functions
V={f:SxA—R|§cR.

e [1 may not contain 7*.

@ in agnostic learning, we have the optimization problem:

VTI'
max V7 (s0)

We want to (approx) solve this with a small number of sample
trajectories.

@ analogous to agnostic learning in SL
o binary classification: | 4| = 2, H =1, r(-) being the labeling reward.
o relevant dependencies for RL:

Complexity(), |S|, |A|, H, N
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Episodic Model

@ Assume sampling access to the MDP in a u-reset model:

o start at a state sp ~
@ we can rollout a policy « of our choosing
e we can terminate the trajectory at will.

(weaker model than generative model)
How can we “reuse” data to do agnostic learning?
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Importance Sampling

@ Let Unif 4 be the uniformly random policy.

@ Using Unif 4 in the episodic model can provide an unbiased estimate
of any other policy .

Lemma

(Unbiased estimation of V(' (sy)) For any deterministic policy =,

V5 (s0) =

A" E g,y ~mi, [1 <7r(so) =ap, ...,7(SH) = aH) Z r(st, a)

(note that the expectation is with respect to trajectory generated by
following the actions under Unif ).
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4.
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@ Collect N trajectories with Unif 4.
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_L

\/m |-A|H A n n n &
n=1 t=0
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4.
@ Denote the n-th sample by (sg, ag, r{’, s7, ..., 8% _1)-
@ Consider the following empirical estimator of any 7
R LAl N H—1

V™(s0) = 5 1(n(sf) =&, 7(sf_g) = &y ) D (st ).
n=1 t=0

Proposition

(Generalization in RL) Suppose I is finite. Let T = arg max,¢n V’T(so).
With probability at least1 — §:

~ /2 2|N
g ™ _ H =1L
V™(sp) > arg max V7™(sp) — H|A| N log 5
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Can we do better?

@ What we want, for an agnostic sample complexity:

@ no dependence on |S| (or logarithmic)

e poly H dependence

o to depend reasonably on a complexity measure of ‘H
e.g. poly log || dependence
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Can we do better?

@ What we want, for an agnostic sample complexity:
@ no dependence on |S| (or logarithmic)
e poly H dependence
o to depend reasonably on a complexity measure of ‘H
e.g. poly log || dependence
@ |s this possible?
No (
@ This is (one reason) why RL is challenging.
(both in theory and in practice)
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An “Easy” Lower Bound

Proposition

(Lower Bound) Suppose A has access to a generative model. There
exists a policy class N, with |N| = |A|" such that if A returns a policy =
where

Vo (w) = argmax V() — 0.5.
with probability greater than 1/2, then A use a number of samples:

N > c| A"

(where c is an absolute constant).
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An “Easy” Lower Bound

Proposition

(Lower Bound) Suppose A has access to a generative model. There
exists a policy class N, with |N| = |A|" such that if A returns a policy =
where

VG (1) = argmax Vg () — 0.5.
with probability greater than 1/2, then A use a number of samples:

N > c| A"

(where c is an absolute constant).

Proof: Consider a full |.A|-ary tree of depth H, which defines the MDP.
Suppose there is only one rewarding leaf node. There are |A|H
deterministic policies. And we require Q(|.4|") queries to discover the
rewarding leaf node.
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© Linear Realizability
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