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Recap: Sample Complexity

Minimax Optimal Sample Complexity
(on the policy)
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Lower Bound: We can’t do better.
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© Today: SLvs. RL
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What we have studied so far:

(the small state space case)

Maze example: r =-1 per time-step and policy

Stan Start

[David Silver. Advanced Topics: RL]
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What we want to solve:

(the large state space case)
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TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAl Five, 18]
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Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?
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To what extent is generalization in RL similar to (or different from) that
in supervised learning?

@ We seek to learn when the number of states is large (or infinite).
This is a question of generalization.
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To what extent is generalization in RL similar to (or different from) that

in supervised learning?

@ We seek to learn when the number of states is large (or infinite).
This is a question of generalization.

@ Supervised Learning: two important frameworks

e Agnostic learning: try to do as well best classifier in some (restricted)

class H.
e Linear models: learn the best linear regressor or binary classifier

(among halspaces)
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Generalization: RL vs Supervised Learning (SL)

To what extent is generalization in RL similar to (or different from) that
in supervised learning?

@ We seek to learn when the number of states is large (or infinite).
This is a question of generalization.
@ Supervised Learning: two important frameworks

e Agnostic learning: try to do as well best classifier in some (restricted)
class H.

e Linear models: learn the best linear regressor or binary classifier
(among halspaces)

@ Reinforcement Learning: analogous questions

e Agnostic learning: can we find the best policy in some (restricted) class
[1 (rather than trying to be optimal)?

e Linear realizability: if the optimal value or policy is parameterized with a
linear model, can we learn with fewer samples?
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e Supervised Learning (SL) : Let’s review
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Binary Classification

Q A/Iabeled examples: (x,-,y,-)f:(with xie Xand y; € {0,1}.
A set H of binary classifiers, where for he H, h: X — {0,1}.
Define the empirical error and the true error as:

N
&ii(h) = 3 > 1(h(x0) £ y).  er(h) = Egeyyp (H(X) £ ¥).
i=1

where 1(h(x) # y) is 0 if h(x) = y and 1 otherwise.
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Binary Classification

@ nlabeled examples: (x;, y;)_,, with x; € X and y; € {0,1}.
A set H of binary classifiers, where for he H, h: X — {0,1}.
Define the empirical error and the true error as:

N
&F(h) = 1 > 1(h(x) £ ), ert(h) =B v)p1(A(X) # ).

where 1(h(x) # y) is 0 if h(x) = y and 1 otherwise.

@ If the samples are drawn i.i.d. according to a joint distribution D over
(x,y), then, by Hoeffding’s inequality, for a fixed h € H, with
probability at least 1 — o: ————

lerr(h) — err(h |<\/ Iog(S
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SL is an RL problem with v = 0
Y

@ Binary classification is special case of RL.
Consider learning in an MDP, with two actions where the effective

orizon is 1.
o = 0, and the reward function is r(s, a) = 1(label(s) :@

@ Note in SL, we rarely make restrictions that X’ (i.e. S) is finite.
@ Note that u(sy) <+ D(x) (D is the distribution of our data)
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Occams Razor and Generalization

Your HWO: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

(The “Occam’s razor” bound) Suppose H is finite. Let

h = arg minpcy err(h) and h* = arg minpcy err(h). With probability at
least1 —9:

2|
=

err(ﬂ) —err(h*) < \/% log
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Occams Razor and Generalization

Your HWO: This and the union bound give rise to what is often referred
to as the “Occam’s razor” bound:

Proposition

(The “Occam’s razor” bound) Suppose H is finite. Let

h = arg minpcy err(h) and h* = arg minpcy err(h). With probability at
least1 —9:

err(h) — err(h*) < \/N log 5

v

(The logarithmic dependence is the most naive complexity measure of
H, yet the bound is strong.)
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© RL and generalization
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Finite Horizon MDPs

@ finite horizon, time-dependent Markov Decision Process (MDP)
M= (S, A {P}n {ritn, H, 1) is specified as follows:
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@ finite horizon, time-dependent Markov Decision Process (MDP)
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e A integer H which defines the horizon of the problem.
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Finite Horizon MDPs

@ finite horizon, time-dependent Markov Decision Process (MDP)
M= (S, A {P}n {ritn, H, 1) is specified as follows:
e A integer H which defines the horizon of the problem.
e A time-dependent transition function: for h € [H], P, : S x A — A(S)
e A time-dependent reward function: for h € [H], r, : S x A — [0, 1].
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Finite Horizon MDPs
U /(f ) COVV\”\Q(/

@ finite horizon, time-dependent Markov Decision Process (MDP)
M= (S, A {P}n {ritn, H, 1) is specified as follows:
e A integer H which defines the horizon of the problem.
e A time-dependent transition function: for h € [H], P, : S x A — A(S)
e A time-dependent reward function: for h € [H], r, : S x A — [0, 1].

@ Goal:

H—1
argmax, Es;~, V"(Sp), where V™(sp) = E[ Z rn(St, ar) ‘ T, So}
t=0

NHE = H
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Bellman equations: finite horizon case

@ Define the value functions V[ : S — R as
H—1
Vi (s) = IE[ rn(st,ar) | m, sp = s},
t=h
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Bellman equations: finite horizon case

@ Define the value functions V[ : S — R as

H—1
Vi (s) = IE[ rn(st,ar) | m, sp = s},
t=h
@ Define the state-action value function Qf : S x A — R is defined as

H—1

Qh(s,a) = E[Z rh(st,ar) | 7,8n =S, an = a].
t=h
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Bellman equations: finite horizon case

@ Define the value functions V[ : S — R as

H—1
Vi (s) = IE[ rn(st,ar) | m, sp = s},
t=h
@ Define the state-action value function Qf : S x A — R is defined as

H—1

Qh(s,a) = E[Z rh(st,ar) | 7,8n =S, an = a].
t=h

@ Bellman optimality equations: Define Q}(s, a) = sup,cn Q5 (S, a).
Suppose that Qy = 0. We have that Q, = Q5 for all h € [H] if and
only if for all h € [H],

Qn(s, a) = (s, a) + VEs~py(s.a) [;ﬁgﬁ Qni1(8, a’)] :

Furthermore, 7(s, h) = argmax,c 4 Q5 (S, &) is an optimal policy.
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RL and Agnostic Learning

@ We have a set of policies 1 (either finite or infinite).

@ [1 could be a parametric set.
e [1 could be greedy policys on a a set of parametric value functions
V={f:SxA—>R|§eRI. ~ — gg)r ot voﬁve fonduis

e 1 may not contain 7*. §> C/T

= 9 Nii)?’ & cheg

pe b e
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RL and Agnostic Learning

@ We have a set of policies 1 (either finite or infinite).

@ [1 could be a parametric set.

e [1 could be greedy policys on a a set of parametric value functions
V={f:SxA—R|OcR}.

e [1 may not contain 7.

@ in agnostic learning, we have the optimization problem:

V™ (s
meg V(%)

We want to (approx) solve this with a small number of sample
trajectories.
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RL and Agnostic Learning

@ We have a set of policies 1 (either finite or infinite).

@ [1 could be a parametric set.

e [1 could be greedy policys on a a set of parametric value functions
V={f:SxA—R|OcR}.

e [1 may not contain 7.

@ in agnostic learning, we have the optimization problem:

V™ (s
meg V(%)
We want to (approx) solve this with a small number of sample
trajectories.
@ analogous to agnostic learning in SL
e binary classification: |A| = 2, +~—==20, r(-) being the labeling reward.
o relevant dependencies for RL: |4+ 77
Complexity(M), |S|, | AN . F1
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Episodic Model

o,

@ Assume sampling access to the MDP in a u-reset model:

e start at a state sy ~
@ we can rollout a policy 7 of our choosing
@ we can terminate the trajectory at will.

(weaker model than generative model)
How can we “reuse” data to do agnostic learning?
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Importance Sampling

@ Let Unif 4 be the uniformly random policy.

@ Using Unif 4 in the eplsodlc model can provide an unbiased estimate
of any other policy . w@&f | m /@n zceo 9%/%/0(/%

(Unbiased estimation of VJ(Sp)) For any deterministic policy ,
Vo (So) =

A By ~unif, [1 (W(So) = ap, ... = aH) Z r(st, ar)

(note that the expectation is with respect to trajectory generated by
following the actions under Unif ).
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4.
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4.
@ Denote the n-th sample by (sg, ag, r{,s!,...,S5_1)-
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4.
@ Denote the n-th sample by (sg, ag, r{,s!,...,S5_1)-
@ Consider the following empirical estimator of any

Ry

\/7 ‘-A|H & n n n n n An
V7™(so) = TZ1<7T(SO)2307---77(SH—1):aH—1> r(se,ar)-

n=1 t

I
o
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An Occams Razor Bound for RL

@ Collect N trajectories with Unif 4. o
@ Denote the n-th sample by (sg, ag, r{,s!,...,S5_1)- §

=
@ Consider the following empirical estimator of any o
5 AR $ =
V7(s0) = "1 D1 (m(s6) = &, m(sfyq) = @A) D r(sf. &),
n=1 t=0

Proposition
(Generalization in RL) Suppose 11 is finite. L7: arg maX e V”(so).

With probability at least1 — §:

2 2N
V7 (sg) > arg max V™ (sp) — H|A|H\/N log %
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Can we do better?

@ What we want, for an agnostic sample complexity:
@ no dependence on |S| (or logarithmic)
e poly H dependence
e to depend reasonably on a complexity measure of H
e.g. poly log |[H| dependence
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@ What we want, for an agnostic sample complexity:

@ no dependence on |S| (or logarithmic)

e poly H dependence

e to depend reasonably on a complexity measure of H
e.g. poly log |[H| dependence

@ Is this possible?
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Can we do better?

@ What we want, for an agnostic sample complexity:
@ no dependence on |S| (or logarithmic)
e poly H dependence
e to depend reasonably on a complexity measure of H
e.g. poly log |[H| dependence

@ Is this possible?
No (
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Can we do better?

@ What we want, for an agnostic sample complexity:
@ no dependence on |S| (or logarithmic)
e poly H dependence
e to depend reasonably on a complexity measure of H
e.g. poly log |[H| dependence
@ Is this possible?
No (

@ This is (one reason) why RL is challenging.
(both in theory and in practice)

S. M. Kakade Generalization




An “Easy” Lower Bound

(Lower Bound) Suppose A has access to a generative model. There
exists a policy class N, with |N| = | A|" such that if A returns a policy «
where

Vo (1) = arg max Vg'(u) — 0.5.

with probability greater than 1/2, then A use a number of samples:

N > c|A" %(T)

(where c is an absolute constant). = % | A |

v
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An “Easy” Lower Bound

Proposition

(Lower Bound) Suppose A has access to a generative model. There
exists a policy class N, with |N| = |.A|" such that if A returns a policy =

where

Vi () > arg max Vg Vo (re) — 0.5.
c

with probability greater than 1/2, then A use a number of samp/es

N 2 C|A|H \C
. f\ Z z@[ 7L
(where c is an absolute constant). ’

)% QQq% 0 0 ﬁ/
Proof: Consider a full |.A|-ary tree of depth H, whlch deflnest e MDP.

Suppose there is only one rewarding leaf node. There are |.A|"
deterministic policies. And we require Q(|.4|") queries to discover the

rewarding leaf node. K(‘T\ S
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© Linear Realizability
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