Statistical Limits of Generalization
Part Il: Linear Realizability
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Part-2: Linear Realizability

What if we impose linearity assumptions?
L et’s look at the most natural assumptions.
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RL with Linearly Realizable Q*-Function Approximation
(Does there exist a sample efficient algo?)

» Suppose we have a feature map: ¢ (s, a) € R¢
o (A1: Linearly Realizable Q*): Assume for all s, a, h € [H], there exists
wk, .. wh € Rs.t

Oy (s,a) = wy - ¢(s,a)

o (A2: Large Suboptimality Gap): for all a # 7*(s),
VJ:(S) — Q;T(S, a) > constant



Linearly Realizability is Not Sufficient for RL



Linearly Realizability is Not Sufficient for RL

Theorem:



Linearly Realizability is Not Sufficient for RL

Theorem:
e [Weisz, Amortila, Szepesvari ‘21]:

There exists an MDP and a ¢ satisfying A1 s.t any online RL algorithm (with
knowledge of ¢) requires Q(min(29.2"")) samples to output the value V*(sy)

up to constant additive error (with prob. > 0.9).



Linearly Realizability is Not Sufficient for RL

Theorem:
e [Weisz, Amortila, Szepesvari ‘21]:

There exists an MDP and a ¢ satisfying A1 s.t any online RL algorithm (with
knowledge of ¢) requires Q(min(29.2"")) samples to output the value V*(sy)

up to constant additive error (with prob. > 0.9).

 [Wang, Wang, K. ‘21]:
Let’s make the problem even easier, where we also assume AZ (large gap)
The lower bound holds even with both A1 and AZ.



Linearly Realizability is Not Sufficient for RL

Theorem:
e [Weisz, Amortila, Szepesvari ‘21]:

There exists an MDP and a ¢ satisfying A1 s.t any online RL algorithm (with
knowledge of ¢) requires Q(min(29.2"")) samples to output the value V*(sy)

up to constant additive error (with prob. > 0.9).

 [Wang, Wang, K. ‘21]:
Let’s make the problem even easier, where we also assume AZ (large gap)
The lower bound holds even with both A1 and AZ.

Comments: An exponential separation between online RL vs simulation access.
[Du, K., Wang, Yang ’20]: A1+A2+simulator access (input: any s, a; output: s ~ P( - |s,a), r(s,a))
— there is sample efficient approach to find an €-opt policy.
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Construction Sketch: a Hard MDP Family
(A "leaking complete graph’")
. m is an integer (we will set m ~ 29

. the state space: {1, ---, m,f}
» call the special state f a “terminal state”.
- at state i, the feasible actions set is [m]\ {i}

Mo e/ L at f, the feasible action setis [m — 1].
‘\ ‘\ i.e. there are m — 1 feasible actions at each state.
;] o—>0—>e e each MDP in this family is specified by an index

h=1 2 3 H a* € [m]| and denoted by A .

l.e. there are m MDPs in this family.

_emma: For any y > 0, there exist m = Lexp(%yzd)J unit vectors {vy, *=*, vV}
nRYst. Vi,je[mlandi#j, | (v.v)| <.

We will set y = 1/4.
(proof: Johnson-Lindenstrauss)
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e Transitions: s, ~ Uniform([m]).
Pr(f|a;,a*] =1,

a, : <v(a1), v(a2)> + 2y
Pr[ ) |Cl_1, Clz] —

. fi1= (M@ v@)) -2

e Piflf-1=1

(ay # a*,ay # ay)
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The construction, continued

e Transitions: s, ~ Uniform([m]).
Pr(f|a;,a*] =1,

a, : <v(a1), v(a2)> + 2y

f:1-— <v(a1),v(a2)> — 2y

Pr[ - |a}, a;] = ,(a, # a*,a, # a)

Pr(f1f,- 1= 1.

After taking action a,, the next state is either @, or f.
This MDP looks like a |leaking complete graph"
» |t is possible to visit any other state (except for a™);

nowever, there is at least 1 — 3y = 1/4 probability of

going to the terminal state 7.
* The transition probabillities are indeed valid, because

O0<y< <v(a1),v(a2)> + 2y <3y < 1.
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® « Features: of dimension d defined as:
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The construction, continued

® « Features: of dimension d defined as:

o V@ a)= (<V(Cl1), v(a2)> + 2}/) -v(ay), Ya, #a,

¢(f,-):=0
e Note: the feature map does not depend of a*.
\ e Rewards:
=%  forl <h<H,
=12 H Ry a®) = (vap, v(@) ) + 27,
Rh(a_la a2):= o 2}/ [<V(al)9 V(a2)> T 2}/ , Uy # Cl*, % # y
forh = H,

ry(s, a) i= (@P(s,a), v(a*))
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Lemma: For all (s, a), we have Qj*(s, a) = (¢(s, a), v(a*)) and the “gap” is > y/4.

Proof: throughout a, # a*

e First, let’s verify Q”(s, a) = {(¢p(s, a), v(a*)) is the value of the policy 7(77) = a ™.
By induction, we can show:

(a1 @) = (<V(a1)"’(az)> + 27) ' <v(a2),v(a*)>,
Of(@, a*) = (v(a), v(a) ) +2y

 Proving optimality: for a, # a*, a,
Q}]l[(a_la Clz) S 3}/29 Q;f(a_p Cl*) — <V(Cl1), V(Cl*)> + 2}/ Z }/ > 3}/2

—> 7 Is optimal
» Proving the large gap: for a, # a*

1
Vi(@) — Q@ ap) = Qy(ay,a*) — Q(ay, ap) > 7 - 3y? >

4"
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The information theoretic proof:
Proof: When is info revealed about .Z ., indexed by a*?
» Features: The construction of ¢ does not depend on a™*.
« Transitions: if we take a™, only then does the dynamics
leak info about a* (but there O(29) actions)
. Rewards: two cases which leak info about a™
(1) if we take a™ at any A, then reward leaks info about a*
(but there m = O(2¢) actions)
(2) also, if we terminate at s;; # f, then the reward ry;
leaks info about on a*
 But there is always at least 1/4 chance of moving to f
. So need at least O((4/3)") trajectories to hit Sy #f
— need Q(min(24,21)) samples to discover -

Caveats: Haven’t handled the state a™ cafefully.
Open Problem: Can we prove a lower bound with A = 2 actions?




Part-3: Discussion

RL is different from SL.
+ we have seen negative results.
How do we obtain positive results?
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* We have seen that:
e agnostic learning Is not possible in RL

(unless we pay an exponential in 1 dependence)
* simple linear realizability assumptions are also not sufficient

o Structural Assumptions: Need even stronger assumptions. We will
start this study with the stronger Bellman completeness. More
examples of this in “Part 2”.

e Distribution Dependent Results: We will see examples of this
approach when we consider approximate dynamic programming. And
more refined bounds when we consider policy gradient methods.

o |mitation learning and behavior cloning: models where the agent has
input from, effectively, a teacher.



