Statistical Limits of Generalization
Part lI: Linear Realizability
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Part-2: Linear Realizability

What if we impose linearity assumptions?
Let’s look at the most natural assumptions.
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RL with Linearly Realizable Q*-Function Approximation
(Does there exist a sample efficient algo?)

- Suppose we have a feature map: ¢ (s,a) € RY.
o (A1: Linearly Realizable Q*): Assume for all s, a, h € [H], there exists
wk, .. wh € RYst.

Oy (s,a) = wy - (s, a)

e (A2: Large Suboptimality Gap): for all a # n*(s),
VX(s) — Q7 (s, a) > constant
A
X
Q7 (ss) )
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Linearly Realizability is Not Sufficient for RL

Theorem:

» [Weisz, Amortila, Szepesvari ‘21]:
There exists an MDP and a ¢ satisfying A1 s.t any online RL algorithm (with
knowledge of ¢) requires Q(min(29,2'")) samples to output the value V*(sp)

up to constant additive error (with prob. > 0.9).

* [Wang, Wang, K. ‘21]:
Let’s make the problem even easier, where we also assume A2 (large gap)
The lower bound holds even with both A1 and AZ.

Comments: An exponential separation between online RL vs simulation access.
[Du, K., Wang, Yang '20]: A1+A2+simulator access (input: any s, a; output: s' ~ P( - |s,a), r(s,a))
— there is sample efficient approach to find an ¢-opt policy.
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Construction Sketch: a Hard MDP Family
(A “leaking complete graph’')
e mis an integer (we will set m =~ 2d)
. the state space: {1, ---, m, f}
« call the special state f'a “terminal state”.
. at state i, the feasible actions set is [m]\ {i}
° at f, the feasible action set is [m — 1].

\ i.e. there are m — 1 feasible actions at each state.
—>® « each MDP in this family is specified by an index
h=1 2 3 H a* € [m] and denoted by A .

i.e. there are m MDPs in this family.

Lemma: For any y > 0, there exist m = [exp(%ﬁd)] unit vectors {vy, *++, v, }
inRYs.t. Vi,j € [m]andi#j, | (v. vy | <.

We will set y = 1/4.
(proof: Johnson-Lindenstrauss)
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-
© « Transitions: s, ~ Uniform([m]). |4
Pr[f|a;,a*] = 1,

o v(7) , V(7)
a, : <v(a1), v(a2)> + 2y
Pr[ - @}, a,] = (ay # a*,a, # ay)
. Fil- <v(a1),v(a2)> _2y
l*. Pr(f|f,-1=1.
h=1 2 3 H
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The construction, continued

Transitions: sy ~ Uniform([m]).
Pr(f|a;,a*] =1,

a, : <v(a1), v(a2)> + 2y
Fil- <v(a1),v(a2)> _2y

Pr[ : |Cl_1, 612] = ’ (az # a*a a ;é a])

Pr(flf,-1=1
After taking action a,, the next state is either @, or f.
This MDP looks like a “leaking complete graph"
It is possible to visit any other state (except for a_*);
however, there is at least 1 — 3y = 1/4 probability of
going to the terminal state f.

The transition probabilities are indeed valid, because
0<y< <v(a1), v(a2)> +y <3<l
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® « Features: of dimension d defined as:

o @)= ((V(al), V(a2)> + 2y> way), VYa, # a,
d(f,-)=0

e Note: the feature map does not depend of a*.
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The construction, continued

® « Features: of dimension d defined as:

o @)= ((V(al), V(a2)> + 2y> way), VYa, # a,
d(f,-)=0

note: the feature map doisﬁnot depend of a*.

* Rewards: . < — >
>0 forl <h<H, YV\ L“(qffo\ )-3%
HoRy@a) = (W@, va) + 2
Ry(@;, a)):= — 2y [(v(al), v(a2>) +2y

R(f,-) :=0.
for i = H,
rH(S’ (l) = <¢(Sa Cl),V(Cl*)>

, Ay F a*,ay F a
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Verifying the Assumptions: Realizability and the Large Gap

Lemma: For all (s, a), we have Qjf(s, a) = (¢(s, a), v(a*)) and the “gap” is > y/4.

Proof: throughout a, # a*

« First, let’s verify Q”(s, a) = {(¢p(s, a), v(a*)) is the value of the policy 7(7) = a ™.
By induction, we can show:

07, a,) = ((v(al), Way) + 2y> (V@) v@),
OF@, a%) = (v(a). v} + 27

« Proving optimality: for a, # a*, a,
0@ a) <37% Q@) = (Wap. @) +27 2y > 37
—> ris optimal

« Proving the large gap: for a, # a*

1
V(@) — 0@y, ap) = QF(@r, a*) — QF@r, ap) > y — 3> >

4"
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The information theoretic proof:
Proof: When is info revealed about ./ ,+, indexed by a™*?
« Features: The construction of ¢» does not depend on a™*.
o * Transitions: if we take a*, only then does the dynamics
leak info about a* (but there O(27) actions)
« Rewards: two cases which leak info about a*
5} (1) if we take a* at any h, then reward leaks info about a*
\ (but there m = O(2%) actions)
(2) also, if we terminate at s;; # f, then the reward ry
leaks info about on a*
« But there is always at least 1/4 chance of moving to f
« So need at least O((4/3)") trajectories to hit Sy Ff
— need Q(min(2%,21)) samples to discover M .
Caveats: Haven’t handled the state a* cafefully.
Open Problem: Can we prove a lower bound with A = 2 actions?




Part-3: Discussion

RL is different from SL.
+ we have seen negative results.
How do we obtain positive results?
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* We have seen that:
» agnostic learning is not possible in RL

(unless we pay an exponential in H dependence)

» simple linear realizability assumptions are also not sufficient

 What next?

» Structural Assumptions: Need even stronger assumptions. We will
start this study with the stronger Bellman completeness. More
examples of this in “Part 2”.

» Distribution Dependent Results: We will see examples of this
approach when we consider approximate dynamic programming. And
more refined bounds when we consider policy gradient methods.

e Imitation learning and behavior cloning: models where the agent has
input from, effectively, a teacher.



