
Statistical Limits of Generalization 
Part II: Linear Realizability 

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning

 



Part-2: Linear Realizability 
What if we impose linearity assumptions?  

Let’s look at the most natural assumptions.
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• (A2: Large Suboptimality Gap): for all , 
	 	 	

a ≠ π⋆(s)
V⋆

h (s) − Q⋆
h (s, a) ≥ constant

M
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Theorem:
• [Weisz, Amortila, Szepesvári ‘21]:  

There exists an MDP and a  satisfying A1 s.t any online RL algorithm (with 
knowledge of ) requires  samples to output the value  
up to constant additive error (with prob. ).

ϕ
ϕ Ω(min(2d,2H)) V⋆(s0)

≥ 0.9
• [Wang, Wang, K. ‘21]:  

Let’s make the problem even easier, where we also assume A2 (large gap)  
The lower bound holds even with both A1 and A2. 

Comments: An exponential separation between online RL vs simulation access. 
[Du, K., Wang, Yang ’20]: A1+A2+simulator access (input: any ; output:  )

 there is sample efficient approach to find an -opt policy.
s, a s′ ∼ P( ⋅ |s, a), r(s, a)

⟹ ϵ
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• each MDP in this family is specified by an index 

 and denoted by .  
i.e. there are  MDPs in this family.
a* ∈ [m] ℳa*

m

...

...

...

Lemma: For any , there exist  unit vectors  
in  s.t.  and , . 
We will set . 
(proof: Johnson-Lindenstrauss)

γ > 0 m = ⌊exp( 1
8 γ2d)⌋ {v1, ⋯, vm}

Rd ∀i, j ∈ [m] i ≠ j |⟨vi, vj⟩ | ≤ γ
γ = 1/4
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The construction, continued
• Transitions: . s0 ∼ Uniform([m])

Pr[ f |a1, a*] = 1,

Pr[ ⋅ |a1, a2] =
a2 : ⟨v(a1), v(a2)⟩ + 2γ

f : 1 − ⟨v(a1), v(a2)⟩ − 2γ
, (a2 ≠ a*, a2 ≠ a1)

Pr[ f | f, ⋅ ] = 1.

...

...
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• After taking action , the next state is either  or .  

This MDP looks like a ``leaking complete graph'' 
a2 a2 f

• It is possible to visit any other state (except for ); 
however, there is at least  probability of 
going to the terminal state . 

a*
1 − 3γ = 1/4

f
• The transition probabilities are indeed valid, because  

0 < γ ≤ ⟨v(a1), v(a2)⟩ + 2γ ≤ 3γ < 1.
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The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

d
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The construction, continued
• Features: of dimension  defined as: 

 

note: the feature map does not depend of .

d
ϕ(a1, a2):= (⟨v(a1), v(a2)⟩ + 2γ) ⋅ v(a2), ∀a1 ≠ a2

ϕ( f, ⋅ ):= 0
a*

• Rewards:  
for , 

 

    

for , 
 

1 ≤ h < H
Rh(a1, a*) := ⟨v(a1), v(a*)⟩ + 2γ,

Rh(a1, a2):= − 2γ [⟨v(a1), v(a2)⟩ + 2γ], a2 ≠ a*, a2 ≠ a1

Rh( f, ⋅ ) := 0.
h = H

rH(s, a) := ⟨ϕ(s, a), v(a*)⟩

...

...

...
RnCat a 7 32

Rn E 222
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   is optimal
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h (a1, a2) ≤ 3γ2, Qπ
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• Proving the large gap: for  a2 ≠ a*

V*h (a1) − Q*h (a1, a2) = Qπ
h (a1, a*) − Qπ

h (a1, a2) > γ − 3γ2 ≥ 1
4 γ .
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Open Problem: Can we prove a lower bound with  actions?A = 2



Part-3: Discussion 
RL is different from SL.  

+ we have seen negative results. 
How do we obtain positive results?
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• We have seen that:
• agnostic learning is not possible in RL  

(unless we pay an exponential in  dependence)H
• simple linear realizability assumptions are also not sufficient 

• What next?
• Structural Assumptions: Need even stronger assumptions.  We will 

start this study with the stronger Bellman completeness. More 
examples of this in “Part 2”. 

• Distribution Dependent Results: We will see examples of this 
approach when we consider approximate dynamic programming. And 
more refined bounds when we consider policy gradient methods.

• Imitation learning and behavior cloning: models where the agent has 
input from, effectively, a teacher.


