Statistical Limits of Generalization Part II: Linear Realizability

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

Part-2: Linear Realizability What if we impose linearity assumptions? Let's look at the most natural assumptions.

• Suppose we have a feature map: $\overrightarrow{\phi}(s, a) \in \mathbb{R}^d$.

- Suppose we have a feature map: $\phi(s, a) \in \mathbb{R}^d$.
- (A1: Linearly Realizable Q*): Assume for all $s, a, h \in [H]$, there exists $w_1^*, \dots w_H^* \in \mathbb{R}^d$ s.t.

 $Q_h^{\star}(s,a) = w_h^{\star} \cdot \phi(s,a)$

- Suppose we have a feature map: $\vec{\phi}(s, a) \in \mathbb{R}^d$.
- (A1: Linearly Realizable Q*): Assume for all $s, a, h \in [H]$, there exists $w_1^{\star}, \dots w_H^{\star} \in \mathbb{R}^d$ s.t.

$$Q_h^\star(s,a) = w_h^\star \cdot \phi(s,a)$$

• (A2: Large Suboptimality Gap): for all $a \neq \pi^*(s)$,

$$V_{h}^{\star}(s) - Q_{h}^{\star}(s, a) \ge \text{constant}$$

$$\mathbb{Q}_{h}^{\star}\left(\varsigma, \pi(\varsigma)\right)$$

Theorem:

Theorem:

• [Weisz, Amortila, Szepesvári '21]:

There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^*(s_0)$ up to constant additive error (with prob. ≥ 0.9).

Theorem:

• [Weisz, Amortila, Szepesvári '21]:

There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^{\star}(s_0)$ up to constant additive error (with prob. ≥ 0.9). holds any setting

holds with 1 gen mode (

• [Wang, Wang, K. '21]:

Let's make the problem even easier, where we also assume A2 (large gap) The lower bound holds even with **both** A1 and A2.

Theorem:

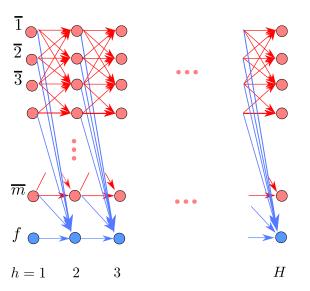
• [Weisz, Amortila, Szepesvári '21]:

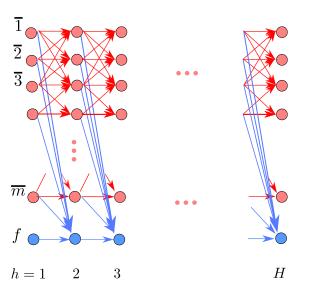
There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^*(s_0)$ up to constant additive error (with prob. ≥ 0.9).

• [Wang, Wang, K. '21]:

Let's make the problem even easier, where we also assume A2 (large gap) The lower bound holds even with **both** A1 and A2.

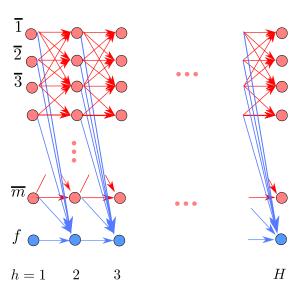
Comments: An exponential separation between online RL vs simulation access. [Du, K., Wang, Yang '20]: A1+A2+simulator access (input: any *s*, *a*; output: $s' \sim P(\cdot | s, a), r(s, a)$) \implies there is sample efficient approach to find an ϵ -opt policy.





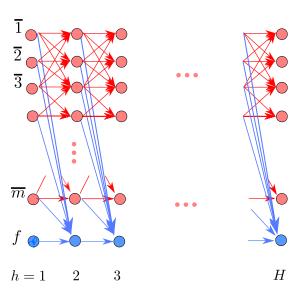
Construction Sketch: a Hard MDP Family

(A ``leaking complete graph'') *m* is an integer (we will set $m \approx 2^d$) •



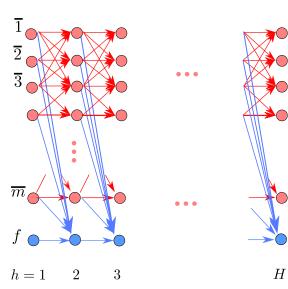
Construction Sketch: a Hard MDP Family

- (A ``leaking complete graph'') *m* is an integer (we will set $m \approx 2^d$)
- the state space: $\{\overline{1}, \dots, \overline{m}, f\}$

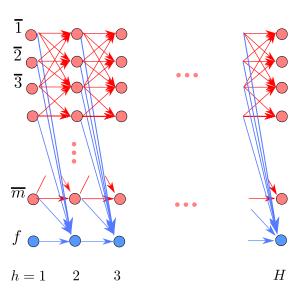


Construction Sketch: a Hard MDP Family

- (A ``leaking complete graph'') *m* is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1}, \dots, \bar{m}, f\}$
- call the special state *f* a "terminal state".



- *m* is an integer (we will set $m \approx 2^d$)
- the state space: $\{\overline{1}, \cdots, \overline{m}, f\}$
- call the special state f a "terminal state".
- at state *i*, the feasible actions set is [*m*]\{*i*} at *f*, the feasible action set is [*m* − 1].
 i.e. there are *m* − 1 feasible actions at each state.



- *m* is an integer (we will set $m \approx 2^d$)
- the state space: $\{\overline{1}, \dots, \overline{m}, f\}$
- call the special state f a "terminal state".
- at state \overline{i} , the feasible actions set is $[m] \setminus \{i\}$ at f, the feasible action set is [m 1].

i.e. there are m-1 feasible actions at each state.

- each MDP in this family is specified by an index
- $a^* \in [m]$ and denoted by \mathcal{M}_{a^*} .

i.e. there are m MDPs in this family.



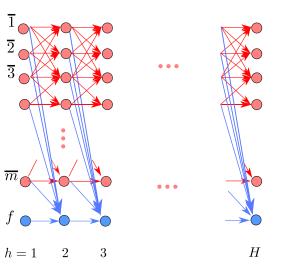
- (A ``leaking complete graph'') • *m* is an integer (we will set $m \approx 2^d$)
- the state space: $\{\overline{1}, \dots, \overline{m}, f\}$
- call the special state f a "terminal state".
- at state *i*, the feasible actions set is [*m*]\{*i*} at *f*, the feasible action set is [*m* − 1].
 i.e. there are *m* − 1 feasible actions at each state.
- each MDP in this family is specified by an index

$$a^* \in [m]$$
 and denoted by \mathcal{M}_{a^*} .

i.e. there are m MDPs in this family.

Lemma: For any $\gamma > 0$, there exist $m = \lfloor \exp(\frac{1}{8}\gamma^2 d) \rfloor$ unit vectors $\{v_1, \dots, v_m\}$ in R^d s.t. $\forall i, j \in [m]$ and $i \neq j$, $|\langle v_i, v_j \rangle| \leq \gamma$.

We will set $\gamma = 1/4$. (proof: Johnson-Lindenstrauss)



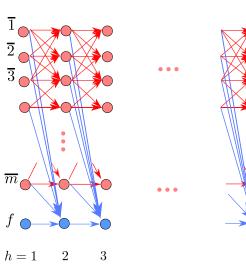
The construction, continued Transitions: $s_0 \sim \text{Uniform}([m])$. $\Pr[f|\overline{a_1}, a^*] = 1$, $\Pr[f|\overline{a_1}, a^*] = 1$, $\Pr[\cdot |\overline{a_1}, a_2] = \begin{cases} \overline{a_2} : \langle v(a_1), v(a_2) \rangle + 2\gamma \\ f: 1 - \langle v(a_1), v(a_2) \rangle - 2\gamma \end{cases}$, $(a_2 \neq a^*, a_2 \neq a_1)$ $\Pr[f|f, \cdot] = 1$.

h = 1 2 3

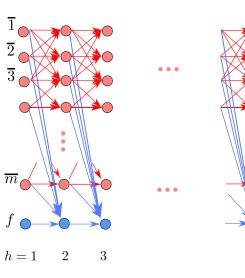
 $\overline{2}$

H

 $\gamma \leq q_{r}(\cdot) = q_{2}) \leq 3\gamma$

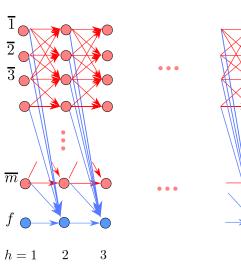


- Pr[$f | \overline{a_1}, a^* = 1$, Pr[$f | \overline{a_1}, a^* = 1$, Pr[$\cdot | \overline{a_1}, a_2 = \begin{cases} \overline{a_2} : \langle v(a_1), v(a_2) \rangle + 2\gamma \\ f : 1 - \langle v(a_1), v(a_2) \rangle - 2\gamma \end{cases}$, $(a_2 \neq a^*, a_2 \neq a_1)$ Pr[$f | f, \cdot] = 1$.
- After taking action a_2 , the next state is either $\overline{a_2}$ or f. This MDP looks like a "leaking complete graph"



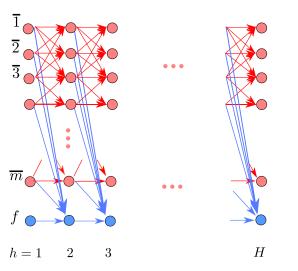
H

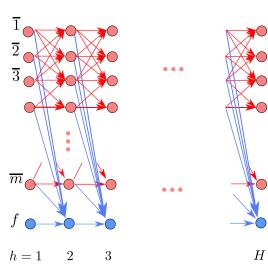
- Transitions: $s_0 \sim \text{Uniform}([m])$. $\Pr[f|\overline{a_1}, a^*] = 1$, $\Pr[\cdot |\overline{a_1}, a_2] = \begin{cases} \overline{a_2} : \langle v(a_1), v(a_2) \rangle + 2\gamma \\ f : 1 - \langle v(a_1), v(a_2) \rangle - 2\gamma \end{cases}$, $(a_2 \neq a^*, a_2 \neq a_1)$
- Pr[*f* | *f*, ·] = 1.
 After taking action *a*₂, the next state is either *a*₂ or *f*. This MDP looks like a ``leaking complete graph''
- It is possible to visit any other state (except for $\overline{a^*}$); however, there is at least $1 - 3\gamma = 1/4$ probability of going to the terminal state *f*.



H

- Transitions: $s_0 \sim \text{Uniform}([m])$. $\Pr[f|\overline{a_1}, a^*] = 1$, $\Pr[\cdot |\overline{a_1}, a_2] = \begin{cases} \overline{a_2} : \langle v(a_1), v(a_2) \rangle + 2\gamma \\ f : 1 - \langle v(a_1), v(a_2) \rangle - 2\gamma \end{cases}$, $(a_2 \neq a^*, a_2 \neq a_1)$
 - $\Pr[f|f, \cdot] = 1.$
- After taking action a₂, the next state is either a₂ or f.
 This MDP looks like a "leaking complete graph"
- It is possible to visit any other state (except for $\overline{a^*}$); however, there is at least $1 - 3\gamma = 1/4$ probability of going to the terminal state *f*.
- The transition probabilities are indeed valid, because $0 < \gamma \le \langle v(a_1), v(a_2) \rangle + 2\gamma \le 3\gamma < 1.$

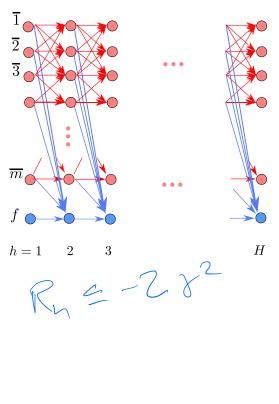




• Features: of dimension *d* defined as:

$$\phi(\overline{a_1}, a_2) := \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot v(a_2), \quad \forall a_1 \neq a_2$$
$$\phi(f, \cdot) := \mathbf{0}$$

note: the feature map does not depend of a^* .



• Features: of dimension *d* defined as:

$$\phi(\overline{a_1}, a_2) := \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot v(a_2), \quad \forall a_1 \neq a_2$$

$$\phi(f, \cdot) := \mathbf{0}$$

note: the feature map does not depend of a^* .
Rewards:
for $1 \le h < H$,

$$\gamma \le \mathcal{N}_h \left(\overline{a_1}, a^*\right) \le \overline{2}$$

$$R_h(\overline{a_1}, a^*) := \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma,$$

 $R_h(\overline{a_1}, a_2) := -2\gamma \left[\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right], \ a_2 \neq a^*, a_2 \neq a_1$

$$\begin{split} R_h(f, \cdot) &:= 0.\\ \text{for } h = H,\\ r_H(s, a) &:= \left< \phi(s, a), v(a^*) \right> \end{split}$$

Verifying the Assumptions: Realizability and the Large Gap Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$.

Verifying the Assumptions: Realizability and the Large Gap Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s, a) = \langle \phi(s, a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

$$\begin{aligned} Q_h^{\pi}(\overline{a_1}, a_2) &= \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot \left\langle v(a_2), v(a^*) \right\rangle, \\ Q_h^{\pi}(\overline{a_1}, a^*) &= \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \end{aligned}$$

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s, a) = \langle \phi(s, a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

$$\begin{aligned} Q_h^{\pi}(\overline{a_1}, a_2) &= \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot \left\langle v(a_2), v(a^*) \right\rangle, \\ Q_h^{\pi}(\overline{a_1}, a^*) &= \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \end{aligned}$$

• Proving optimality: for $a_2 \neq a^*, a_1$ $Q_h^{\pi}(\overline{a_1}, a_2) \leq 3\gamma^2, \quad Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \geq \gamma > 3\gamma^2$

 $\implies \pi$ is optimal

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s, a) = \langle \phi(s, a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

1

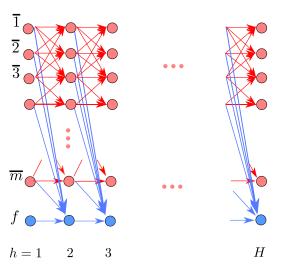
$$\begin{aligned} Q_h^{\pi}(\overline{a_1}, a_2) &= \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot \left\langle v(a_2), v(a^*) \right\rangle, \\ Q_h^{\pi}(\overline{a_1}, a^*) &= \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \end{aligned}$$

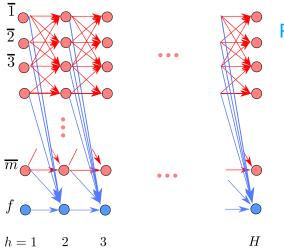
• Proving optimality: for $a_2 \neq a^*, a_1$ $Q_h^{\pi}(\overline{a_1}, a_2) \leq 3\gamma^2, \quad Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \geq \gamma > 3\gamma^2$

 $\implies \pi$ is optimal

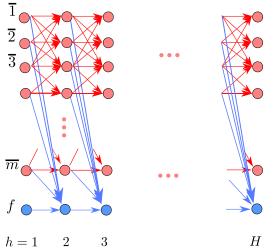
• Proving the large gap: for $a_2 \neq a^*$

$$V_h^*(\overline{a_1}) - Q_h^*(\overline{a_1}, a_2) = Q_h^{\pi}(\overline{a_1}, a^*) - Q_h^{\pi}(\overline{a_1}, a_2) > \gamma - 3\gamma^2 \ge \frac{1}{4}\gamma.$$



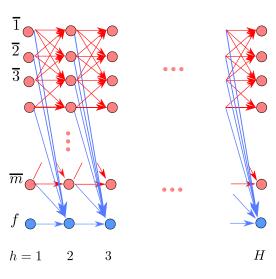


Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?



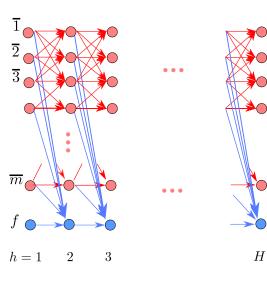
Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

• Features: The construction of ϕ does not depend on a^{\star} .



Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)



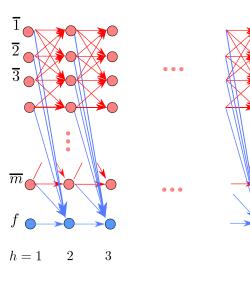
The information theoretic proof:

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
 - Rewards: two cases which leak info about a*
 (1) if we take a* at any h, then reward leaks info about a*
 (but there m = O(2^d) actions)

(2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*

- But there is always at least 1/4 chance of moving to f
- So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$



H

The information theoretic proof:

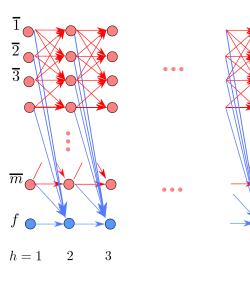
Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
 - Rewards: two cases which leak info about a*
 (1) if we take a* at any h, then reward leaks info about a*
 (but there m = O(2^d) actions)

(2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*

- But there is always at least 1/4 chance of moving to f
- So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

 \implies need $\Omega(\min(2^d, 2^H))$ samples to discover \mathcal{M}_{a^*} .



H

The information theoretic proof:

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

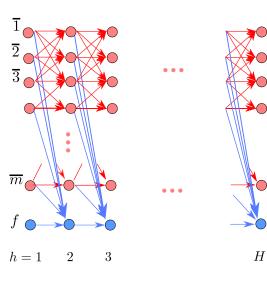
- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
 - Rewards: two cases which leak info about a*
 (1) if we take a* at any h, then reward leaks info about a*
 (but there m = O(2^d) actions)

(2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*

- But there is always at least 1/4 chance of moving to f
- So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

 \implies need $\Omega(\min(2^d, 2^H))$ samples to discover \mathcal{M}_{a^*} .

Caveats: Haven't handled the state \overline{a}^* cafefully.



The information theoretic proof:

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
 - Rewards: two cases which leak info about a*
 (1) if we take a* at any h, then reward leaks info about a*
 (but there m = O(2^d) actions)

(2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*

- But there is always at least 1/4 chance of moving to f
- So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

 \implies need $\Omega(\min(2^d, 2^H))$ samples to discover \mathcal{M}_{a^*} .

Caveats: Haven't handled the state \overline{a}^* cafefully.

Open Problem: Can we prove a lower bound with A = 2 actions?

Part-3: Discussion RL is different from SL. + we have seen negative results. How do we obtain positive results?

• We have seen that:

- We have seen that:
 - agnostic learning is not possible in RL

(unless we pay an exponential in H dependence)

- We have seen that:
 - agnostic learning is not possible in RL

(unless we pay an exponential in H dependence)

• simple linear realizability assumptions are also not sufficient

- We have seen that:
 - agnostic learning is not possible in RL
 - (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?

- We have seen that:
 - agnostic learning is not possible in RL

(unless we pay an exponential in H dependence)

- simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We will start this study with the stronger Bellman completeness. More examples of this in "Part 2".

- We have seen that:
 - agnostic learning is not possible in RL
 - (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We will start this study with the stronger Bellman completeness. More examples of this in "Part 2".
 - Distribution Dependent Results: We will see examples of this approach when we consider approximate dynamic programming. And more refined bounds when we consider policy gradient methods.

- We have seen that:
 - agnostic learning is not possible in RL
 - (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We will start this study with the stronger Bellman completeness. More examples of this in "Part 2".
 - Distribution Dependent Results: We will see examples of this approach when we consider approximate dynamic programming. And more refined bounds when we consider policy gradient methods.
 - Imitation learning and behavior cloning: models where the agent has input from, effectively, a teacher.