Statistical Limits of Generalization Part II: Linear Realizability

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Announcements

- HW1 will be posted tonight
 - Tentatively: due Sept 28 (check ED posting)
- Chapters 1-5 substantially updated.
 - Feedback/questions/finding typos appreciated!

Today:

Today:

- Recap: lower bounds for generalization
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - Linear realizability of Q^{\star} is still statistically hard

Today:

- Recap: lower bounds for generalization
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - Linear realizability of Q^{\star} is still statistically hard
- Today:
 - Finish up lower bound when we know Q^* is linearly realizable.
 - New: linear Bellman completeness.

Part-2: Linear Realizability

What if we impose linearity assumptions?

Let's look at the most natural assumptions.

• Suppose we have a feature map: $\overrightarrow{\phi}(s, a) \in \mathbb{R}^d$.

- Suppose we have a feature map: $\overrightarrow{\phi}(s, a) \in \mathbb{R}^d$.
- (A1: Linearly Realizable Q*): Assume for all $s, a, h \in [H]$, there exists $w_1^{\star}, ... w_H^{\star} \in \mathbb{R}^d$ s.t.

$$Q_h^{\star}(s,a) = w_h^{\star} \cdot \phi(s,a)$$

- Suppose we have a feature map: $\overrightarrow{\phi}(s, a) \in \mathbb{R}^d$.
- (A1: Linearly Realizable Q*): Assume for all $s, a, h \in [H]$, there exists $w_1^{\star}, \dots w_H^{\star} \in R^d$ s.t.

$$Q_h^{\star}(s,a) = w_h^{\star} \cdot \phi(s,a)$$

• (A2: Large Suboptimality Gap): for all $a \neq \pi^*(s)$, $V_h^*(s) - Q_h^*(s, a) \geq \text{constant}$

Theorem:

Theorem:

• [Weisz, Amortila, Szepesvári '21]:

There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^*(s_0)$ up to constant additive error (with prob. ≥ 0.9).

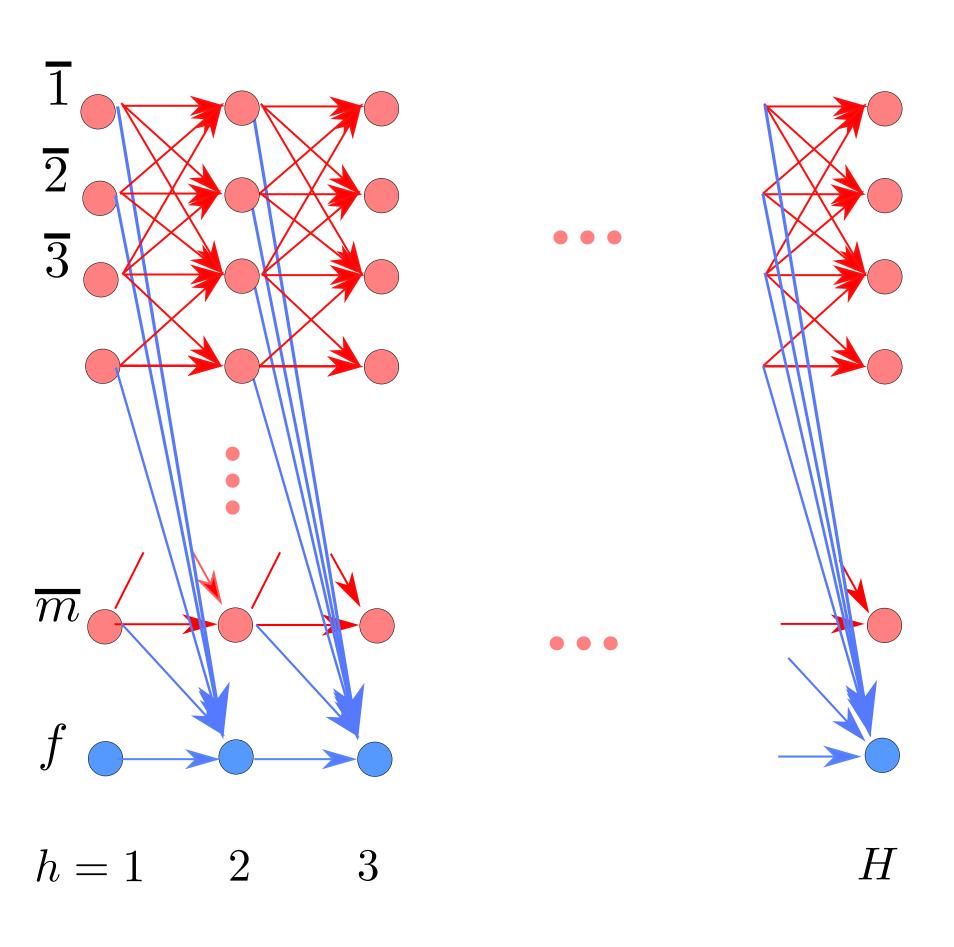
Theorem:

- [Weisz, Amortila, Szepesvári '21]: There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^*(s_0)$ up to constant additive error (with prob. ≥ 0.9).
- [Wang, Wang, K. '21]:
 Let's make the problem even easier, where we also assume A2 (large gap)
 The lower bound holds even with both A1 and A2.

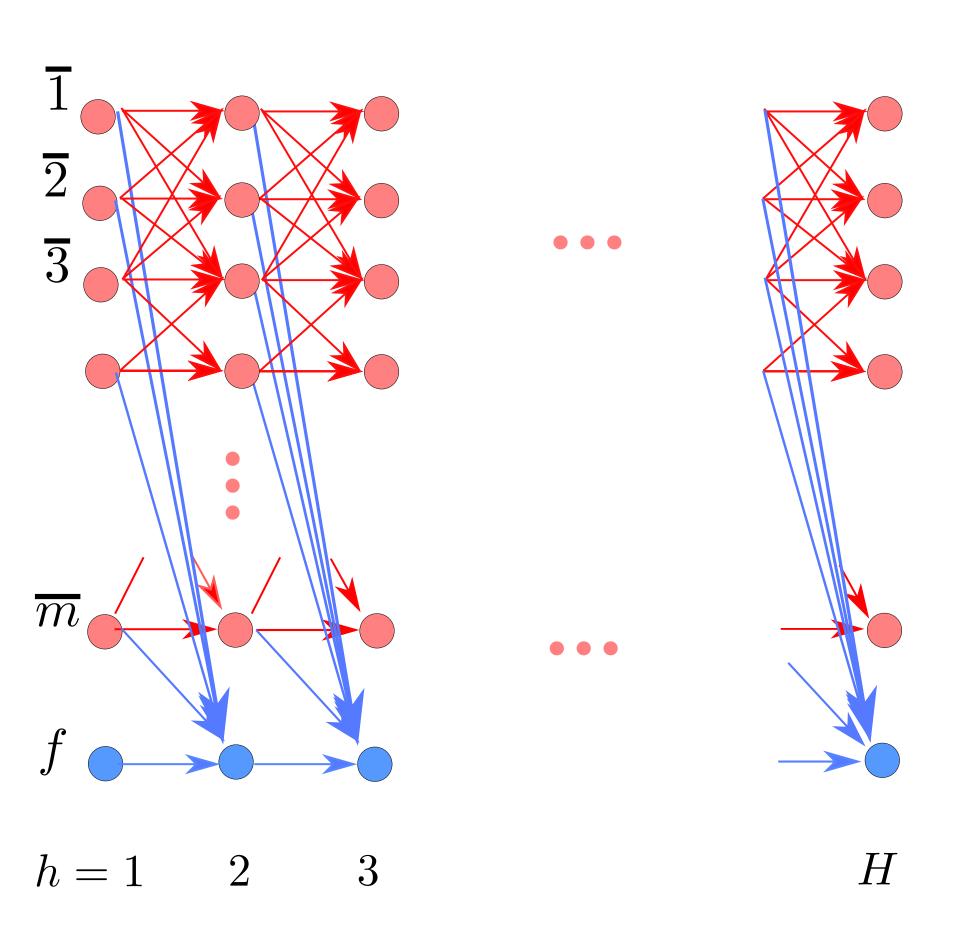
Theorem:

- [Weisz, Amortila, Szepesvári '21]: There exists an MDP and a ϕ satisfying A1 s.t any online RL algorithm (with knowledge of ϕ) requires $\Omega(\min(2^d, 2^H))$ samples to output the value $V^*(s_0)$
 - up to constant additive error (with prob. ≥ 0.9).
- [Wang, Wang, K. '21]:
 Let's make the problem even easier, where we also assume A2 (large gap)
 The lower bound holds even with both A1 and A2.

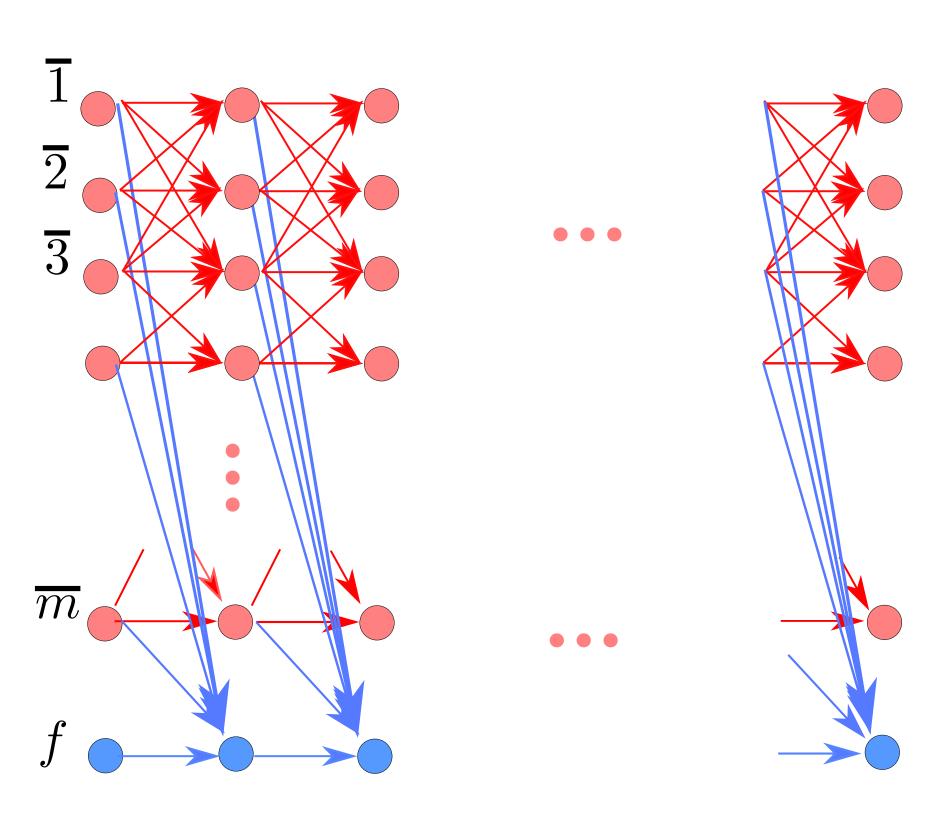
Comments: An exponential separation between online RL vs simulation access. [Du, K., Wang, Yang '20]: A1+A2+simulator access (input: any s, a; output: $s' \sim P(\cdot | s, a), r(s, a)$) \Longrightarrow there is sample efficient approach to find an ϵ -opt policy.



(A "leaking complete graph")



(A `leaking complete graph'') • m is an integer (we will set $m \approx 2^d$)

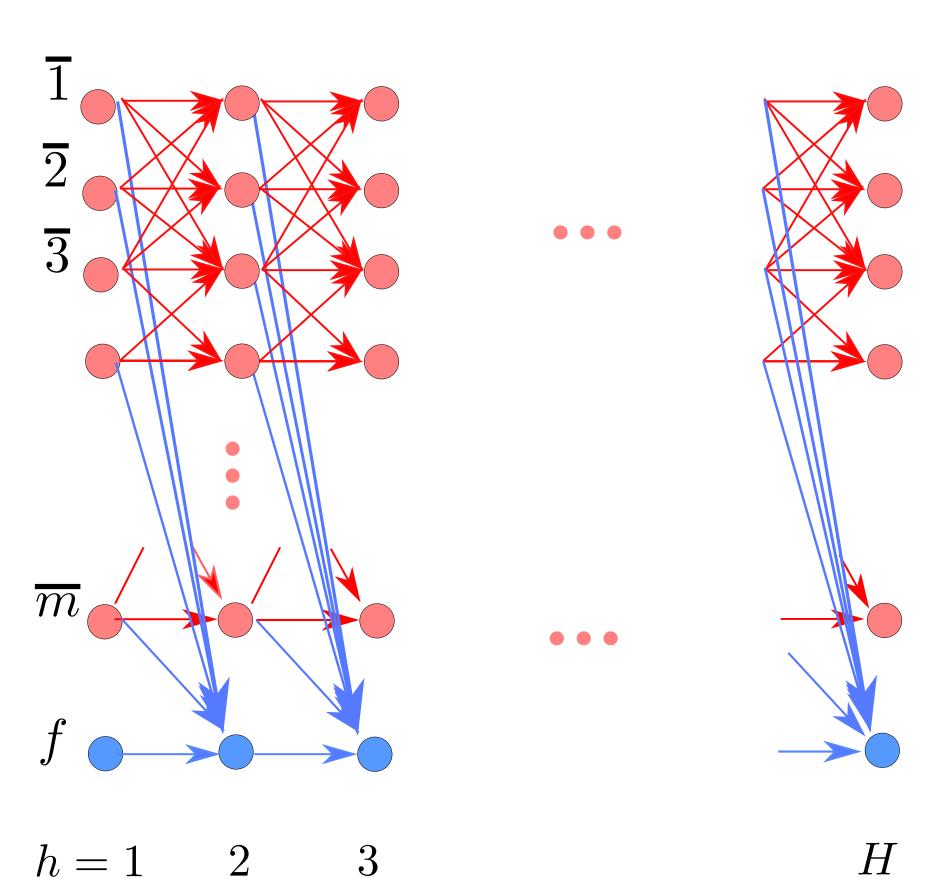


h = 1

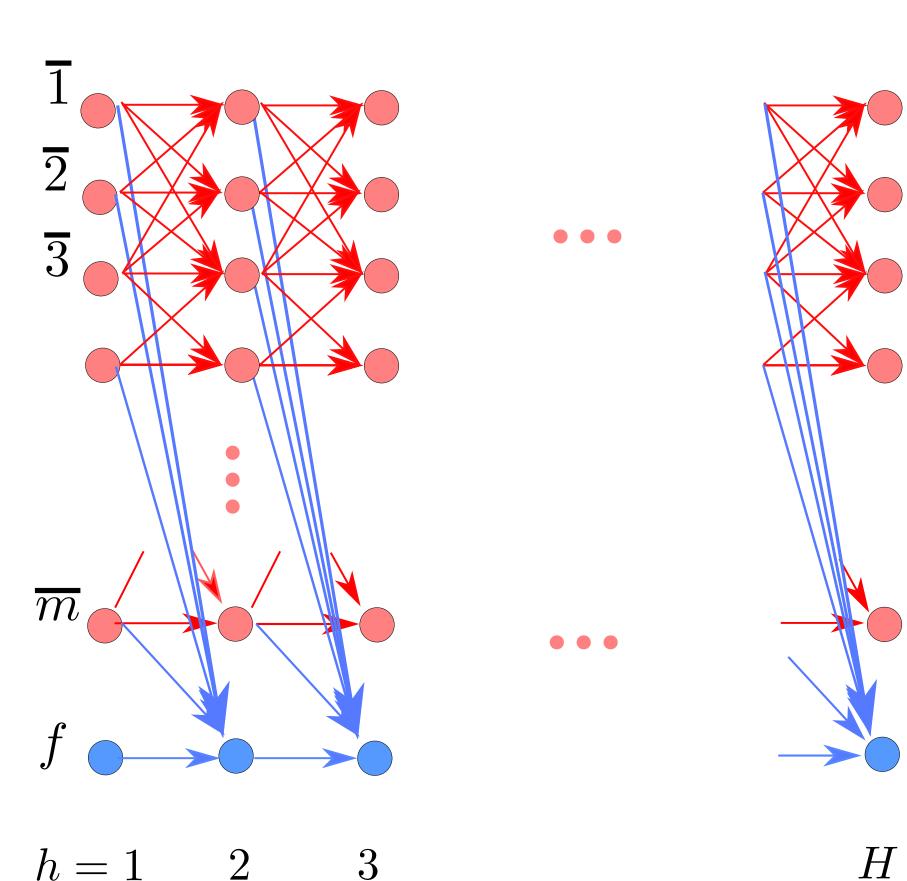
H

Construction Sketch: a Hard MDP Family

- (A `leaking complete graph'') m is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1},\cdots,\bar{m},f\}$

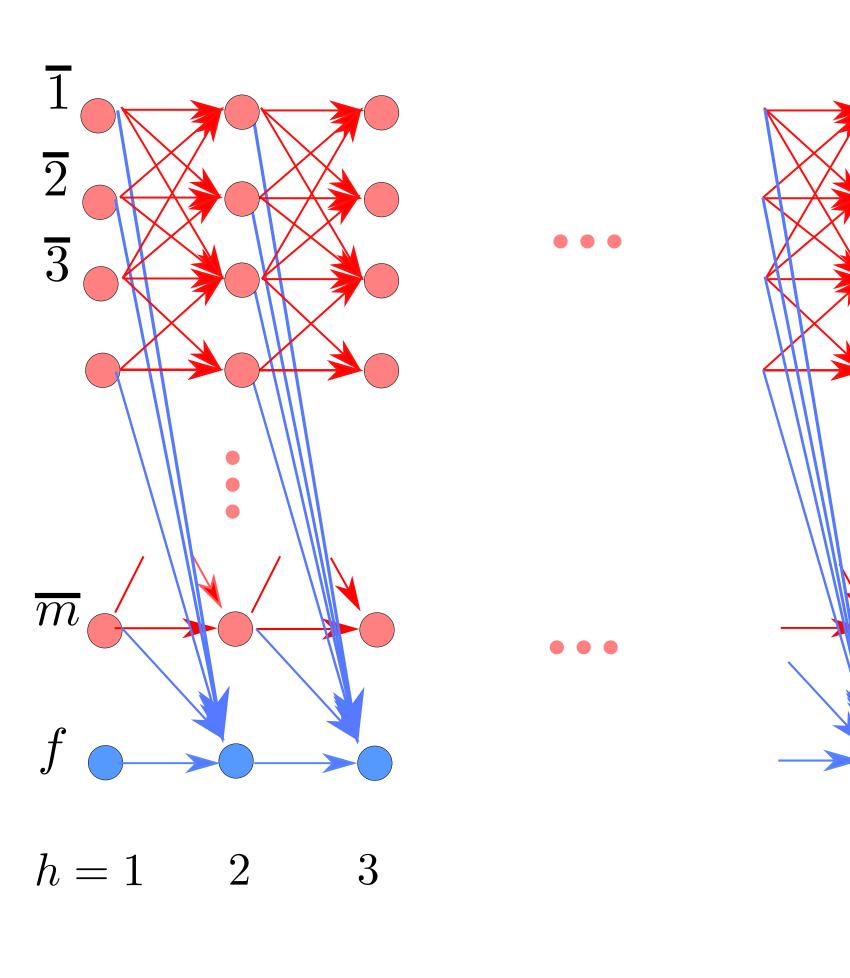


- (A `leaking complete graph'') m is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1}, \dots, \bar{m}, f\}$
- call the special state f a "terminal state".



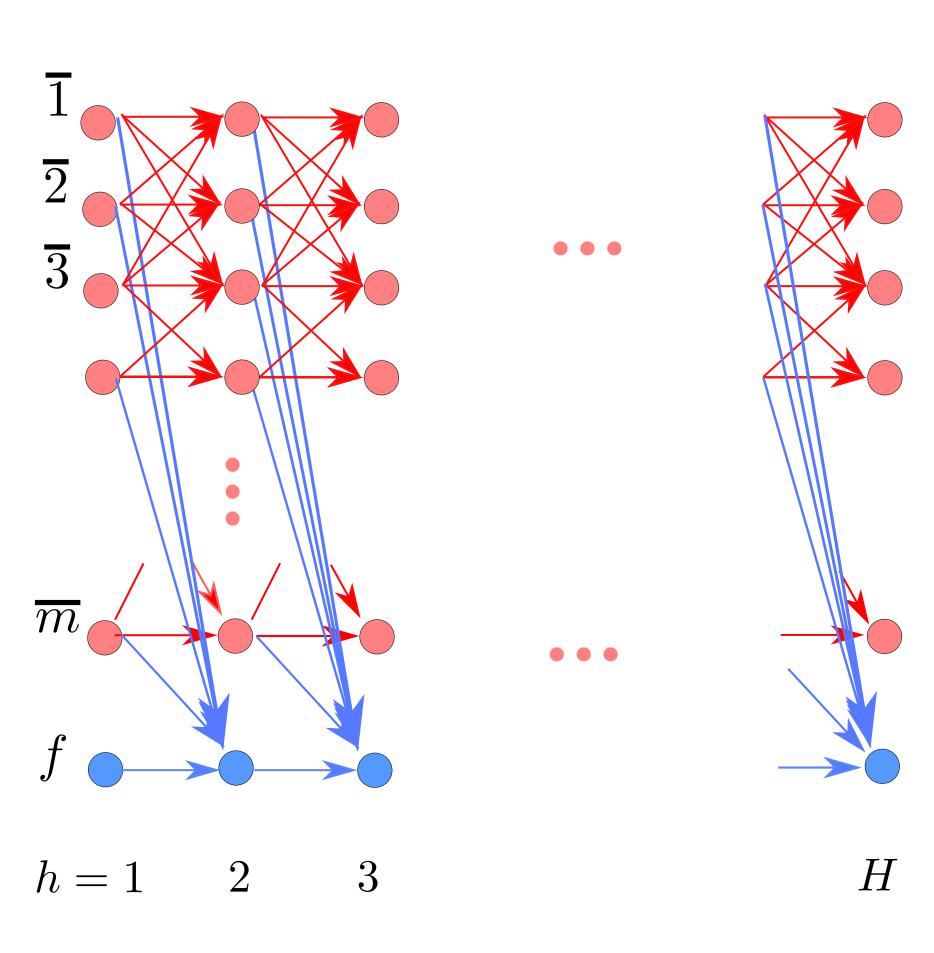
(A "leaking complete graph")

- m is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1},\cdots,\bar{m},f\}$
- call the special state f a "terminal state".
- at state \bar{i} , the feasible actions set is $[m] \setminus \{i\}$ at f, the feasible action set is [m-1]. i.e. there are m-1 feasible actions at each state.



(A "leaking complete graph")

- m is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1}, \dots, \bar{m}, f\}$
- call the special state f a "terminal state".
- at state \bar{i} , the feasible actions set is $[m] \setminus \{i\}$ at f, the feasible action set is [m-1]. i.e. there are m-1 feasible actions at each state.
- each MDP in this family is specified by an index $a^* \in [m]$ and denoted by \mathcal{M}_{a^*} .
 i.e. there are m MDPs in this family.



(A "leaking complete graph")

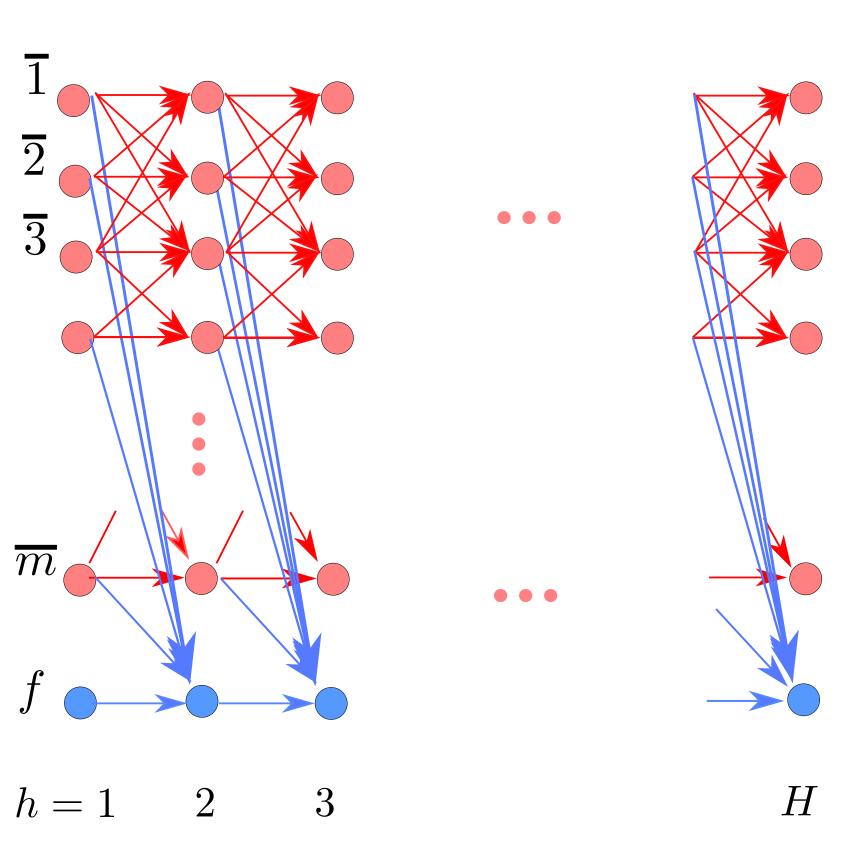
- m is an integer (we will set $m \approx 2^d$)
- the state space: $\{\bar{1}, \dots, \bar{m}, f\}$
- call the special state f a "terminal state".
- at state \bar{i} , the feasible actions set is $[m] \setminus \{i\}$ at f, the feasible action set is [m-1]. i.e. there are m-1 feasible actions at each state.
- each MDP in this family is specified by an index $a^* \in [m]$ and denoted by \mathcal{M}_{a^*} .

i.e. there are m MDPs in this family.

Lemma: For any $\gamma > 0$, there exist $m = \lfloor \exp(\frac{1}{8}\gamma^2 d) \rfloor$ unit vectors $\{v_1, \dots, v_m\}$ in R^d s.t. $\forall i, j \in [m]$ and $i \neq j, |\langle v_i, v_j \rangle| \leq \gamma$.

We will set $\gamma = 1/4$.

(proof: Johnson-Lindenstrauss)



H

$$=1$$
 2 3

The construction, continued

Transitions: $s_0 \sim \text{Uniform}([m])$.

$$\Pr[f|\overline{a_1}, a^*] = 1$$

$$\Pr[\cdot | \overline{a_1}, a_1] = \begin{cases} \overline{a_2} : \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \\ f : 1 - \left\langle v(a_1), v(a_2) \right\rangle - 2\gamma \end{cases}, (a_2 \neq a^*, a_2 \neq a_1)$$

$$\Pr[f|f,\,\cdot\,]=1.$$

$\frac{1}{2}$

The construction, continued

• Transitions: $s_0 \sim \text{Uniform}([m])$.

$$\Pr[f|\overline{a_1}, a^*] = 1$$

$$\Pr[\cdot | \overline{a_1}, a_1] = \begin{cases} \overline{a_2} : \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \\ f : 1 - \left\langle v(a_1), v(a_2) \right\rangle - 2\gamma \end{cases}, (a_2 \neq a^*, a_2 \neq a_1)$$

$$\Pr[f|f,\,\cdot\,]=1.$$

• After taking action a_2 , the next state is either $\overline{a_2}$ or f. This MDP looks like a "leaking complete graph"

• Transitions: $s_0 \sim \text{Uniform}([m])$.

$$\Pr[f|\overline{a_1}, a^*] = 1$$

$$\Pr[\cdot \mid \overline{a_1}, a_2] = \begin{cases} \overline{a_2} : \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \\ f : 1 - \left\langle v(a_1), v(a_2) \right\rangle - 2\gamma \end{cases}, (a_2 \neq a^*, a_2 \neq a_1)$$

$$\Pr[f|f,\cdot]=1.$$

- After taking action a_2 , the next state is either $\overline{a_2}$ or f. This MDP looks like a "leaking complete graph"
- It is possible to visit any other state (except for a^*); however, there is at least $1 3\gamma = 1/4$ probability of going to the terminal state f.

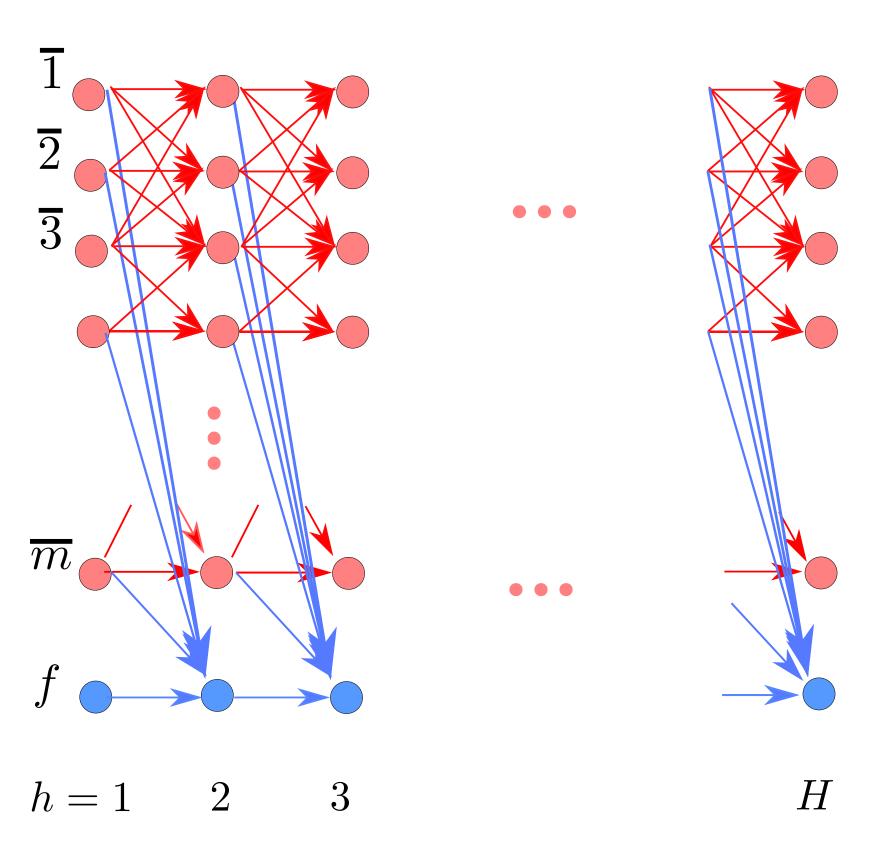
• Transitions: $s_0 \sim \text{Uniform}([m])$.

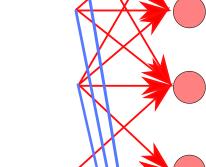
$$\Pr[f|\overline{a_1}, a^*] = 1$$

$$\Pr[\cdot | \overline{a_1}, a_2] = \begin{cases} \overline{a_2} : \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \\ f : 1 - \left\langle v(a_1), v(a_2) \right\rangle - 2\gamma \end{cases}, (a_2 \neq a^*, a_2 \neq a_1)$$

$$\Pr[f|f,\cdot]=1.$$

- After taking action a_2 , the next state is either $\overline{a_2}$ or f. This MDP looks like a "leaking complete graph"
- It is possible to visit any other state (except for a^*); however, there is at least $1-3\gamma=1/4$ probability of going to the terminal state f.
- The transition probabilities are indeed valid, because $0 < \gamma \le \langle v(a_1), v(a_2) \rangle + 2\gamma \le 3\gamma < 1$.



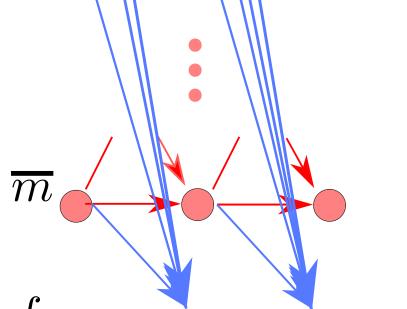


• Features: of dimension d defined as:

$$\phi(\overline{a_1}, a_2) := \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot v(a_2), \quad \forall a_1 \neq a_2$$

$$\phi(f, \cdot) := \mathbf{0}$$

note: the feature map does not depend of a^* .



$$h = 1$$
 2 3

H

$\overline{\overline{3}}$

h = 1 2

The construction, continued

• Features: of dimension d defined as:

$$\phi(\overline{a_1}, a_2) := \left(\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right) \cdot v(a_2), \quad \forall a_1 \neq a_2$$

$$\phi(f, \cdot) := \mathbf{0}$$

note: the feature map does not depend of a^* .

Rewards:

for
$$1 \leq h < H$$
,

$$R_h(\overline{a_1}, a^*) := \langle v(a_1), v(a^*) \rangle + 2\gamma,$$

$$R_h(\overline{a_1}, a_2) := -2\gamma \left[\left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right], \ a_2 \neq a^*, a_2 \neq a_1$$

$$R_h(f, \cdot) := 0.$$

for
$$h = H$$
,

$$r_H(s,a) := \langle \phi(s,a), v(a^*) \rangle$$

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$.

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$.

Proof: throughout $a_2 \neq a^*$

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s,a) = \langle \phi(s,a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

$$Q_h^{\pi}(\overline{a_1}, a_2) = \left\langle \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right\rangle \cdot \left\langle v(a_2), v(a^*) \right\rangle,$$

$$Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma$$

Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s,a) = \langle \phi(s,a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

$$Q_h^{\pi}(\overline{a_1}, a_2) = \left\langle \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right\rangle \cdot \left\langle v(a_2), v(a^*) \right\rangle,$$

$$Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma$$

• Proving optimality: for $a_2 \neq a^*$, a_1 $Q_h^{\pi}(\overline{a_1}, a_2) \leq 3\gamma^2, \quad Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \geq \gamma > 3\gamma^2$

 $\implies \pi$ is optimal

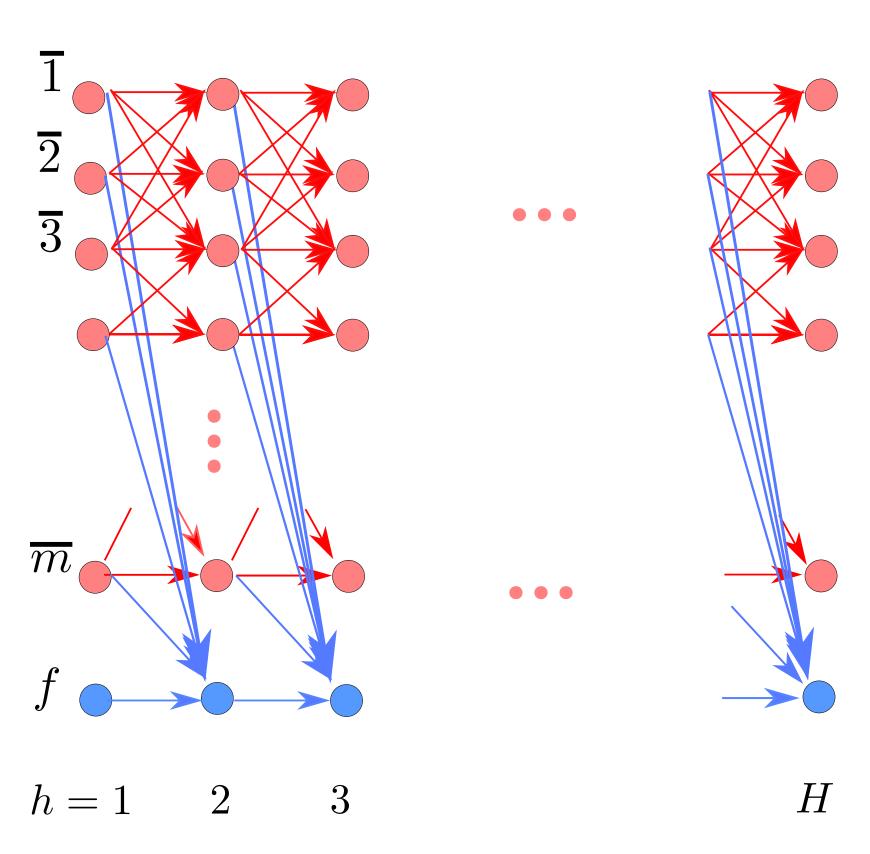
Lemma: For all (s, a), we have $Q_h^*(s, a) = \langle \phi(s, a), v(a^*) \rangle$ and the "gap" is $\geq \gamma/4$. Proof: throughout $a_2 \neq a^*$

• First, let's verify $Q^{\pi}(s,a) = \langle \phi(s,a), v(a^*) \rangle$ is the value of the policy $\pi(\overline{a}) = a^*$. By induction, we can show:

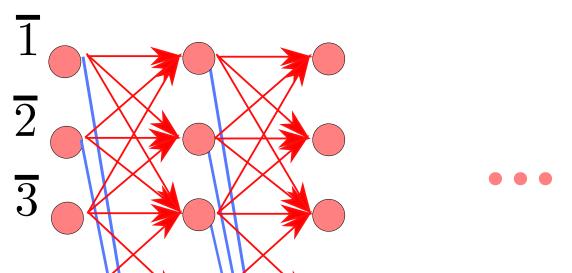
$$Q_h^{\pi}(\overline{a_1}, a_2) = \left\langle \left\langle v(a_1), v(a_2) \right\rangle + 2\gamma \right\rangle \cdot \left\langle v(a_2), v(a^*) \right\rangle,$$

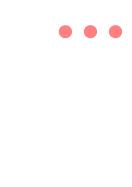
$$Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma$$

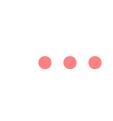
- Proving optimality: for $a_2 \neq a^*$, a_1 $Q_h^{\pi}(\overline{a_1}, a_2) \leq 3\gamma^2, \quad Q_h^{\pi}(\overline{a_1}, a^*) = \left\langle v(a_1), v(a^*) \right\rangle + 2\gamma \geq \gamma > 3\gamma^2$ $\implies \pi \text{ is optimal}$
- Proving the large gap: for $a_2 \neq a^*$ $V_h^*(\overline{a_1}) Q_h^*(\overline{a_1}, a_2) = Q_h^{\pi}(\overline{a_1}, a^*) Q_h^{\pi}(\overline{a_1}, a_2) > \gamma 3\gamma^2 \geq \frac{1}{4}\gamma.$



Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?





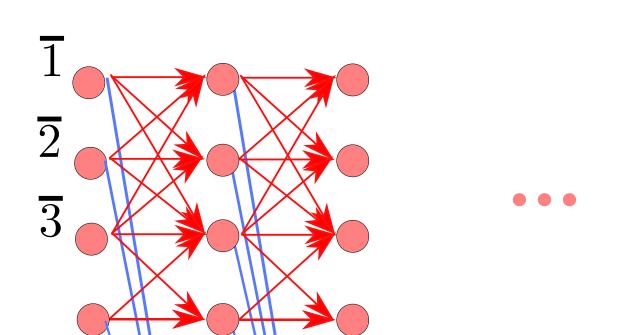


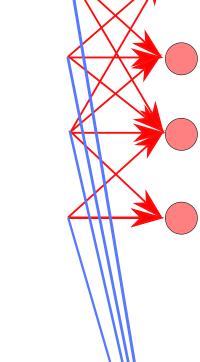
$$h = 1$$
 2

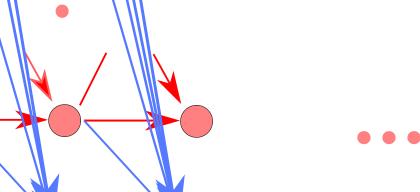
H

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

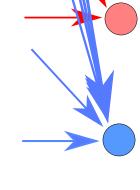
• Features: The construction of ϕ does not depend on a^{\star} .







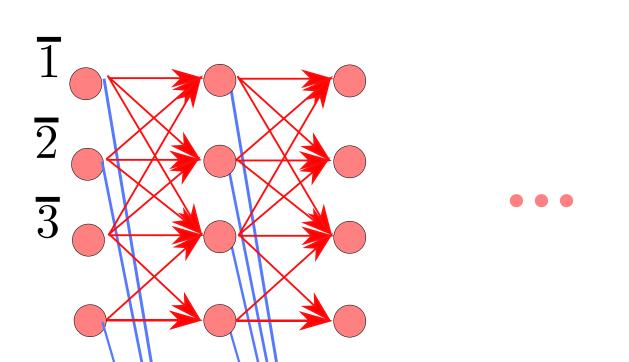
$$h = 1$$
 2 3

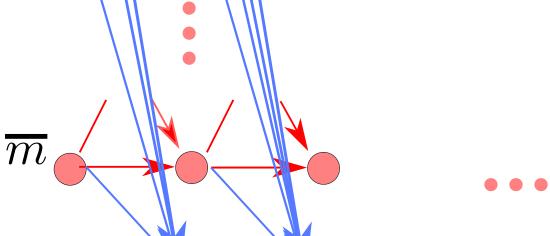


H

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)





$$h = 1$$
 2 3

H

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^* .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
- Rewards: two cases which leak info about a^* (1) if we take a^* at any h, then reward leaks info about a^* (but there $m = O(2^d)$ actions)
 - (2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*
 - But there is always at least 1/4 chance of moving to f
 - So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^* .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
- Rewards: two cases which leak info about a^* (1) if we take a^* at any h, then reward leaks info about a^* (but there $m = O(2^d)$ actions)
 - (2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*
 - But there is always at least 1/4 chance of moving to f
- So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$ \Longrightarrow need $\Omega(\min(2^d, 2^H))$ samples to discover \mathcal{M}_{a^*} .

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^* .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
- Rewards: two cases which leak info about a^* (1) if we take a^* at any h, then reward leaks info about a^* (but there $m = O(2^d)$ actions)
 - (2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*
 - But there is always at least 1/4 chance of moving to f
 - So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

 \implies need $\Omega(\min(2^d, 2^H))$ samples to discover \mathcal{M}_{a^*} .

Caveats: Haven't handled the state \overline{a}^* cafefully.

Proof: When is info revealed about \mathcal{M}_{a^*} , indexed by a^* ?

- Features: The construction of ϕ does not depend on a^{\star} .
- Transitions: if we take a^* , only then does the dynamics leak info about a^* (but there $O(2^d)$ actions)
- Rewards: two cases which leak info about a^* (1) if we take a^* at any h, then reward leaks info about a^* (but there $m = O(2^d)$ actions)
 - (2) also, if we terminate at $s_H \neq f$, then the reward r_H leaks info about on a^*
 - But there is always at least 1/4 chance of moving to f
 - So need at least $O((4/3)^H)$ trajectories to hit $s_H \neq f$

 \Longrightarrow need $\Omega(\min(2^d,2^H))$ samples to discover \mathcal{M}_{a^*} .

Caveats: Haven't handled the state \overline{a}^* cafefully.

Open Problem: Can we prove a lower bound with A=2 actions?

Part-3: Discussion

RL is different from SL.

+ we have seen negative results.

How do we obtain positive results?

We have seen that:

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We start this study (today) with the stronger linear Bellman completeness. More examples of this in "Part 2".

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We start this study (today) with the stronger linear Bellman completeness. More examples of this in "Part 2".
 - Distribution Dependent Results: We will see examples of this approach when we consider approximate dynamic programming. And more refined bounds when we consider policy gradient methods.

- We have seen that:
 - agnostic learning is not possible in RL (unless we pay an exponential in H dependence)
 - simple linear realizability assumptions are also not sufficient
- What next?
 - Structural Assumptions: Need even stronger assumptions. We start this study (today) with the stronger linear Bellman completeness. More examples of this in "Part 2".
 - Distribution Dependent Results: We will see examples of this approach when we consider approximate dynamic programming. And more refined bounds when we consider policy gradient methods.
 - Imitation learning and behavior cloning: models where the agent has input from, effectively, a teacher.