Imitation Learning:
Behavior Cloning, Distribution
Shift, & Distribution Matching

CS 6789: Foundations of Reinforcement Learning



Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching
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Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 9
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}
Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal policy >
We have a dataset I = (Sl-*, ai* ?il ~d”

Goal: learn a policy from & that is as good as the expert T*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy classIl = {7 : S — A(A)}

BC with Maximum Likelihood Estimation (MLE):

M
7 = arg max Z In 7(a’ | s7)

eIl
=i

(We can reduce it to other supervised learning oracles such as classification, regression)
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Analysis 5 rell &= (@7 157)
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Assumption: IT is discrete, and realizable, i.e., 7* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at least 1 — 0, we have:

N v In(|IT1|/0)
|2 1s) =7t (- ]9) | tvﬁ\/ >

This 1/4/ M rate should be expected:
no training and testing mismatch at this stage!

— g~d™*
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Theorem [BC Sample Complexity] With probability at least 1 — §, BC returns a policy 7:
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MLE error J

Note that 1/(1 — y)? quadratic dependency on effective horizon
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Theorem [BC Sample Complexity] With probability at least 1 — §, BC returns a policy 7:

L 0 \/m(m\/(s)
V-V <
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‘ MLE error J
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Theorem [BC Sample Complexity] With probability at least 1 — 8, BC returns a policy 7:
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What could go wrong?

[Pomerleau89,Daume(09]

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

16



Distribution Shift: Intuitive Explanation

Let’s just focus on finite horizon (H) and deterministic policies here:

i R(8) # 7%(5) < €, Vh
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An Autonomous Land Vehicle
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“If the network is not presented
with sufficient variability in its
training exemplars to cover the
conditions it is likely to
‘encounter...[it] will perform




A potential Fix

- v_".‘..lql- & v




A potential Fix

Let’s roll out our policy in the real
world, and compare our
trajectories to the expert’s
trajectories, and then refine our
learned model.
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Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP / = {S,A,v,r, P, p,n™*)

Ground truth reward r(s, a) € [0,1] is unknown; assume expert is the optimal policy 7*

*

We have a dataset Y = (Sl-*, al.* f.‘il ~ d”

This time, we have a known transition P (but we cannot plan because r is unknown)

Key Q: can we do better than offline IL Behavior Cloning
(statistically at least—assuming infinite computation power)?
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Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f : X — R}, and two distributions p; and p,

IPMg(py, py) = max |E,_, flx) —E,_, f(x)
fe&F

F={f: Il £ 1} = IPMx(p;, py) := llp; — pll,,

F = {f : fis 1-Lipschitz} = IPMg(p,, p,) := wasserstein dis(p;, p,)
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Algorithm: Distribution Matching TV distance

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step2: select useful discriminators: for all pair # & #’, with 7 £ 7’

fow = arg r]ge;( s amanf(8,a) — By x5, a)

Set refined discriminator class Z := ={frp & ell,n#r}

* *M

Step 3: Select a policy using expert dataset & = {s”,a™ }._,

| M
7 :=argmin [max |E , ;f(s,a) -~ Z fis*,a*

nell fex
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Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

. ( I \/111(\11\/5))
V" VR < O
I —y M

<\/1n(m\/5)
v M

[ _s,arvd”*r(s’ Cl) — _S,arvd’?r(S’ CZ)]

1. Key step is to prove: ” d” —d*

]
1 —y

2. For performance: VT — YT <

Theorem [Offline BC] With probability at least 1 — &, BC returns a policy 7:

N n ( 1 \/ln(\ll\/5)>
VP — VP =0
(1—7’)2 M
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d” : generator that generates state-action pairs

d™ : Ground truth state-action distribution (we have samples from it)

—

F : discriminators which distinguish red and blue

A Policy’s trajectory Expert’s trajectory
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Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the
quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the
algorithm is computationally inefficient

Take home message:
There Is a provable statistical benefit from the hybrid setting!
Ps: the distribution matching algorithm is very new (it was discovered when
| was writing the book chapter...)



