Imitation Learning:
Behavior Cloning, Distribution
Shift, & Distribution Matching

CS 6789: Foundations of Reinforcement Learning

Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching

An Autonomous Land Vehicle
INn A Neural Network rromerieau, nies “ss;

Road Intensity 45 Direction
Feedback Unit Output Units

...........................

....................................

.....

...........................

...........................

.........

...........

.............

..............................

........................
...

..

........

SO

\ 8x32 Range Finder
Input Retina

.......

.......
000000
......
.....

.....
.....
.....

.....

.....
.....

.....
.....

.....

30x32 Video
Input Retina

Figure 1: ALVINN Architecture

Imitation Learning

Imitation Learning

Imitation Learning

——

Imitation Learning

Expert
Demonstrations

Imitation Learning

Machine
Learning
Algorithm

Expert

Demonstrations

SVM
 (Gaussian Process
 Kernel Estimator
 Deep Networks

« Random Forests
« |LWR

Imitation Learning

Machine _
Expert Learning PO“Cy 7-‘-
Demonstrations Algorithm

SVM
 (Gaussian Process
. Kernel Estimator Maps states

» Deep Networks to actions

« Random Forests
« |LWR

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image

[Widrowé4,Pomerleaud9]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

[Widrowé4,Pomerleaud9]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

[Widrowé4,Pomerleaud9]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

M

Supervised Learning 9

[Widrowé4,Pomerleaud9]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 9

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}

Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal policy >

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}
Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal policy T*

We have a dataset I = (Sl-*, ai* ?il ~d”

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p, 7™}
Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal policy >
We have a dataset I = (Sl-*, ai* ?il ~d”

Goal: learn a policy from & that is as good as the expert T*

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy classIl = {7 : S — A(A)}

BC with Maximum Likelihood Estimation (MLE):

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy classIl = {7 : S — A(A)}

BC with Maximum Likelihood Estimation (MLE):

M
7 = arg max 2 In 7z(a’ | s7)

eIl
=i

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy classIl = {7 : S — A(A)}

BC with Maximum Likelihood Estimation (MLE):

M
7 = arg max Z In 7(a’ | s7)

eIl
=i

(We can reduce it to other supervised learning oracles such as classification, regression)

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@715
=

Assumption: IT is discrete, and realizable, i.e., #* € I1

M

. 7T = ar malenzz aX|s*

Analysis 5 rell &= (@715
=

Assumption: IT is discrete, and realizable, i.e., 7* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@7 157)
=

Assumption: IT is discrete, and realizable, i.e., #* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at least 1 — 0, we have:

N v In(|IT1|/0)
|2 1s) —a* (-]9 | tvﬁ\/ >

— g~d™*

M

. 7T = ar malenyz aX|s*

Analysis 5 rell &= (@7 157)
=

Assumption: IT is discrete, and realizable, i.e., 7* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at least 1 — 0, we have:

N v In(|IT1|/0)
|2 1s) =7t (-]9) | tvﬁ\/ >

This 1/4/ M rate should be expected:
no training and testing mismatch at this stage!

— g~d™*

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@715
=

Assumption: IT is discrete, and realizable, i.e., #* € I1

M

. 7T = ar malenyz aX|s*

Analysis 5 rell &= (@715
=

Assumption: IT is discrete, and realizable, i.e., 7* € I1

Step 2: Transfer supervised learning error to policy’s performance gap

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@7 157)
=

Assumption: IT is discrete, and realizable, i.e., #* € I1

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least 1 — §, BC returns a policy 7:

| A VA
(1 —1yp)° M

MLE error J

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@715
=

Assumption: IT is discrete, and realizable, i.e., #* € I1

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least 1 — §, BC returns a policy 7:

L 2 \/m(m\/(s)
Ve -V <
(1 — y)> M

MLE error J

Note that 1/(1 — y)? quadratic dependency on effective horizon

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell &= (@7 157)
=

Theorem [BC Sample Complexity] With probability at least 1 — §, BC returns a policy 7:

L 0 \/m(m\/(s)
V-V <
(1 — y)>2 M

‘ MLE error J

M
. 7 =argmax Y Innm(a*|s*

Analysis 5 - 21 (a7 157)

=
Theorem [BC Sample Complexity] With probability at least 1 — 8, BC returns a policy 7:
x ~ 2 In(|IT]/6)
Vi — V" <
(1—1yp)° M

\ MLE error J

(1 — 7’)<V* — Vﬁ) — Lo g™ 'aNﬂ*(.|S)A7?(Sa a)

Analysis

U

M
arg max Z In 7(a’ | s7)

I
<o

Theorem [BC Sample Complexity] With probability at least 1 — 8, BC returns a policy 7:

V]Z'* . Vfl'\ <

2

(I =yp)?

(1 — 7)<V* — Vﬁ) — Lo g™ 'aNﬂ*(.|S)A7?(Sa a)

s~d”

_a~7z'*(- |S)A " (S9 a) T

s~d”

_aN;;(.|S)Aﬂ (s,a)

\/ln(\H\/é)
M

MLE error J

Analysis

U

arg max

mell £

M
D Ina(a’|s?)
=1

Theorem [BC Sample Complexity] With probability at least 1 — 8, BC returns a policy 7:

| VA VR

2

(I =yp)?

(1 — 7)<V* — Vﬁ) — Lo g™ 'aNﬂ*(.|S)A;Z\(Sa CZ)

IA

s~d”

*

_ClNJZ'*(° |S)A " (S9 a) T

= g~dm™*

_aN;;(.|S)Aﬂ (s,a)

-SNdn*liy | 7*C 19— 2C-19) ||

\/m(T1|/5)
M

MLE error J

M

. 7T = ar malenﬂ aX|s*

Analysis 5 rell 4= (@715
=

Theorem [BC Sample Complexity] With probability at least 1 — 8, BC returns a policy 7:

. 2 \/m(\n\/é)
Ve — VT <
(1-1yp)° M

MLE error J

(1 — 7)<V* — Vﬁ) — Lo g™ 'aNﬂ*(.|S)Aﬁ(Sa a)

Y Lol _aNﬂ*(.Lg)Aﬂ (S, Cl) — L gr* _a~§t\(-|s)Aﬂ (S, Cl)

IA

-SNdn*liy | 7*C 19— 2C-19) ||

9 N ~
< _SNdn*Hﬂ' (-]s)—m(- ‘S)Htv
1 —y

What could go wrong?

[Pomerleau89,Daume(09]

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

16

Distribution Shift: Intuitive Explanation

Let’s just focus on finite horizon (H) and deterministic policies here:

i R(8) # 7%(5) < €, Vh

An Autonomous Land Vehicle
IN A Neural NetworkK romereau, nips sg)

An Autonomous Land Vehicle
IN A Neural NetworkK romereau, nips sg)

“If the network is not presented
with sufficient variability in its
training exemplars to cover the
conditions it is likely to
‘encounter...[it] will perform

A potential Fix

- v_".‘..lql- & v

A potential Fix

Let’s roll out our policy in the real
world, and compare our
trajectories to the expert’s
trajectories, and then refine our
learned model.

The Hybrid Imitation Learning Setting:

Recall BC: we only use offline expert data—no interaction with the environment

Hybrid setting: offline expert data + simulator (e.g., known transition P)

20

The Hybrid Imitation Learning Setting:

Recall BC: we only use offline expert data—no interaction with the environment

Hybrid setting: offline expert data + simulator (e.g., known transition P)

Learned Policy Expert’s trajectory

20

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP / = {S,A,v,r, P, p,n™*)
Ground truth reward r(s, a) € [0,1] is unknown; assume expert is the optimal policy 7*

We have a dataset I = (sl.*, al.* ?il ~d”

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP / = {S,A,v,r, P, p,n™*)
Ground truth reward r(s, a) € [0,1] is unknown; assume expert is the optimal policy 7*

We have a dataset Y = (Sl-*, ai* f.‘il ~d™

This time, we have a known transition P (but we cannot plan because r is unknown)

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP / = {S,A,v,r, P, p,n™*)

Ground truth reward r(s, a) € [0,1] is unknown; assume expert is the optimal policy 7*

*

We have a dataset Y = (Sl-*, al.* f.‘il ~ d”

This time, we have a known transition P (but we cannot plan because r is unknown)

Key Q: can we do better than offline IL Behavior Cloning
(statistically at least—assuming infinite computation power)?

Key ldea: distribution matching

Integral probability metric (IPM)

Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f : X — R}, and two distributions p; and p,

Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f : X — R}, and two distributions p; and p,

IPMg(py, py) = max |E,_, flx) —E,_, f(x)
fe&F

Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f : X — R}, and two distributions p; and p,

IPMg(py, py) = max |E,_, flx) —E,_, f(x)
fe&F

F={f: Il £ 1} = IPMx(p;, py) := llp; — pll,,

Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f : X — R}, and two distributions p; and p,

IPMg(py, py) = max |E,_, flx) —E,_, f(x)
fe&F

F={f: Il £ 1} = IPMx(p;, py) := llp; — pll,,

F = {f : fis 1-Lipschitz} = IPMg(p,, p,) := wasserstein dis(p;, p,)

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step 2: select useful discriminators: for all pair 7 & #’, with 7 £ 7’

fow = arg r]gag(s amanf (8, a) — By ux (s, a)

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step 2: select useful discriminators: for all pair 7 & #’, with 7 £ 7’

fow = arg r]gag(s amanf (8, a) — By ux (s, a)

Set refined discriminator class F := ={frp n&rnell,rn#r}

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step 2: select useful discriminators: for all pair 7 & #’, with 7 £ 7’

Jow=argmax (Eg - f(s,a) —E, . f(s,a) | | —
fex * - Q: what is the size of & ?

Set refined discriminator class F := ={frp n&rnell,rn#r}

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: # = {f: ||f|l, < 1} (IPM corresponds to TV distance)

Same assumption as we had in BC:
[T is discrete, and realizable, i.e., #* € I1

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step 2: select useful discriminators: for all pair 7 & #’, with 7 £ 7’

Jow=argmax (Eg - f(s,a) —E, . f(s,a) | | —
fex * - Q: what is the size of & ?

Set refined discriminator class F := ={frp n&rnell,rn#r}

Ve &' €11, ||d" —d"||,, = max E, , 4 f(s,a) — E, , . f(5,a)

fex

Algorithm: Distribution Matching TV distance

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step2: select useful discriminators: for all pair # & #’, with 7 £ 7’

fow = arg r]ge;(s amanf(8,a) — By x5, a)

—

Set refined discriminator class 7 = {f .z & 7' € ll,7n # 7'}

Algorithm: Distribution Matching TV distance

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step2: select useful discriminators: for all pair # & #’, with 7 £ 7’

fow = arg r]ge;(s amanf(8,a) — By x5, a)

Set refined discriminator class Z := ={frp & ell,n#r}

* *M

Step 3: Select a policy using expert dataset & = {s”,a™ }._,

Algorithm: Distribution Matching TV distance

Step 1: for each & € 11, compute d” € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step2: select useful discriminators: for all pair # & #’, with 7 £ 7’

fow = arg r]ge;(s amanf(8,a) — By x5, a)

Set refined discriminator class Z := ={frp & ell,n#r}

* *M

Step 3: Select a policy using expert dataset & = {s”,a™ }._,

| M
7 :=argmin [max |E , ;f(s,a) -~ Z fis*,a*

nell fex

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

. (I \/ln(\H\/5)>
V" VR < O
I —y M

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

. (I \/m(\m/a))
V7 —VE < O
I —y M

<\/1n(m\/5)
v — M

1. Key step is to prove: ” d” —d*

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

. (I \/ln(\H|/5)>
V7 —VE < O
I —y M

<\/1n(\n\/5)
v M

[_S,arvd”*r(s’ CZ) — _S,deﬁr(S’ CZ)]

1. Key step is to prove: ” d” —d*

]
1 —y

2. For performance: VT — VT <

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

. (I \/111(\11\/5))
V" VR < O
I —y M

<\/1n(m\/5)
v M

[_s,arvd”*r(s’ Cl) — _S,arvd’?r(S’ CZ)]

1. Key step is to prove: ” d” —d*

]
1 —y

2. For performance: VT — YT <

Theorem [Offline BC] With probability at least 1 — &, BC returns a policy 7:

N n (1 \/ln(\ll\/5)>
VP — VP =0
(1—7’)2 M

Expert’s trajectory

d” : generator that generates state-action pairs

Expert’s trajectory

d” : generator that generates state-action pairs

d™ : Ground truth state-action distribution (we have samples from it)

Expert’s trajectory

d” : generator that generates state-action pairs

d™ : Ground truth state-action distribution (we have samples from it)

—

F : discriminators which distinguish red and blue

A Policy’s trajectory Expert’s trajectory

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the
quadratic dependency on horizon could cause real problems

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the
quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the
algorithm is computationally inefficient

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the
quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the
algorithm is computationally inefficient

Take home message:
There Is a provable statistical benefit from the hybrid setting!
Ps: the distribution matching algorithm is very new (it was discovered when
| was writing the book chapter...)

