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Ground truth reward  is unknown; 

assume expert is a near optimal policy 

r(s, a) ∈ [0,1]
π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆
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Today: 

Interactive Imitation Learning Setting

Key assumption:  
we can query expert  at any time and any state during trainingπ⋆

(Recall that previously we only had an offline dataset )𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆



Recall the Main Problem from Behavior Cloning:

Expert’s trajectoryLearned Policy

No training data of 
“recovery’’ 
behavior



Intuitive solution: Interaction

6

Use interaction to collect 
data where learned policy 
goes



General Idea: Iterative Interactive 
Approach

Update Policy
Collect Data 

through 
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman



DAgger: Dataset Aggregation 
0th iteration
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Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]
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Execute π1 and Query Expert
New Data

Supervised Learning

New policy 
π2

All previous data

Aggregate 
Dataset
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Execute π2 and Query Expert
New Data

Supervised Learning

New policy 
π3

All previous data

Aggregate 
Dataset

Steering 
from 
expert

[Ross11a]



DAgger: Dataset Aggregation 
 nth iteration
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[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset
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Better

16

[Ross AISTATS 2011]

Average Falls/Lap
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Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving 
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that 

maps from data on cheap on-board 
sensors (raw-pixel imagine) to low-level 

control (steer and throttle)

Steering + throttle
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Their Setup: 

At Training, we have expensive sensors for accurate state estimation


and we have computation resources for MPC (i.e., high-frequency replanning)

The MPC is the expert in this case! 



Analysis of DAgger

First let’s do a quick introduction of online no-regret learning
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Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set 𝒳

Learner picks a decision x0

Adversary picks a loss ℓ0 : 𝒳 → ℝ

Learner picks a new decision x1

Adversary picks a loss ℓ1 : 𝒳 → ℝ

…

Regret =
T−1

∑
t=0

ℓt(xt) − min
x∈𝒳

T−1

∑
t=0

ℓt(x)
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A no-regret algorithm: Follow-the-Leader

At time step  learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

Theorem (FTL): if  is convex, and  is strongly convex for all , then for regret of FTL, we have: 
𝒳 ℓt t
1
T [

T−1

∑
t=0

ℓt(xt) − min
x∈𝒳

T−1

∑
t=0

ℓt(x)] = O ( log(T)
T )

FTL: xt = min
x∈𝒳

t−1

∑
i=0

ℓi(x)
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DAgger Revisit 

New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset

At iteration n:

Ln(⇡) =
nX

i=1

k⇡(x)� yk22

nX

t=1

Lt(⇡)argmin
⇡

nX

t=1

Lt(⇡)

Data Aggregation = Follow-the-Leader Online Learner
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Decision set  (restricted policy class,  may not be inside )Π := {π : S ↦ A} π⋆ Π
Finite horizon episodic MDP, assume discrete action space

(Here  could be any convex surrogate loss for classification, .e.g, hinge loss)ℓ

Online Learning loss at iteration : t ℓt(π) = 𝔼s∼dπt [ℓ(π(s), π⋆(s))]

DAgger is equivalent to FTL, i.e., πt+1 = arg min
π∈Π

t

∑
i=0

ℓi(π)

If the online learning procedure ensures no-regret, then
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ℓt(π)

ϵΠ

, such that: ∃ ̂t ∈ [0,…, T − 1] ℓ ̂t(π ̂t ) ≤ ϵavg−reg + ϵΠ

𝔼s∼dπ ̂t [π ̂t(s) ≠ π⋆(s)] ≤ 𝔼s∼dπ ̂t [ℓ(π ̂t(s), π⋆(s))] ≤ ϵavg−reg + ϵΠ

Under the assumption that surrogate loss upper bounds zero-one loss:
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Case study: 

1. Worst case:  (not 

recoverable from a mistake): quadratic 
dependence on horizon, i.e., no better than BC;

A⋆(s, a) ≈
1

1 − γ

2. Good case:  (easily 

recoverable from a one-step mistake): Better 
than BC;

A⋆(s, a) ≈ o ( 1
1 − γ )
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Summary of Imitation Learning

1. Behavior Cloning (Maximum Likelihood Estimation)

Performance-gap ≈
1

(1 − γ)2
(classification error)

2. Hybrid Distribution Matching (w/ IPM or MaxEnt-IRL):

Performance-gap ≈
1

(1 − γ)
(classification error)

3.DAgger w/ Interactive Experts:

Performance-gap ≈
sups,a |A⋆(s, a) |

(1 − γ)
(classification error)
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Basics of MDPs (and LQRs):
Planning: VI, PI, LP formulations, Fitted Q-iteration (under B-complete), Low bounds on linear Q⋆

Exploration in MDPs (bandit / tabular / linear mdp / Bellman rank):
Key intuition: optimism in the face of uncertainty

Policy Gradient methods (tabular, linear, and neural)

Global convergence of PG and NPG (if the reset distribution covers )d⋆

Imitation Learning
Distribution shift in offline IL and how we overcome it in the hybrid and interactive settings


