Optimal Control Theory and
Linear Quadratic Regulators

CS 6789: Foundations of Reinforcement Learning



Today

e Summarize:
« TRPO/PPO

e This week: LQRs
 The model + planning + SDP formulations
e convex parameterization and LQR w/ adversarial disturbances and
cost functions
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 Self-normalized step-size
(Learning rate is adaptive)

«Solve with CQG



PPO

» To find the next policy r,_ ;, use objective:
max Egnk, . q0015A"(S, a)
0

subjectto  sup 7o - |s) — (- ]s) < 0,
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This is like the CPI greedy policy chooser.
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» To find the next policy r,_ ;, use objective:
max Egnk, . q0015A"(S, a)
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subjectto  sup 7o |s) — (- ]s) < 0,
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This is like the CPI greedy policy chooser.

 We can do multiple gradient steps by rewriting the objective function using
importance weighting using a clip function:
7%a|s)

max Eg gE, ;.5 lclip 1 —e€,1+¢€ A%, a)
0 f r(a|s)

Clip: when the ratio is outside of [1 — €,1 + €], we get gradient zero



loday



Robotics and Controls

Dexterous Robotic Hand Manipulation
OpenAl, 2019




Optimal Control

 adynamical system is described as
Xep1 = J{ (X Uy, Wy)
where f, maps a state x, € R¢, a control (the action) u, € R*, and a disturbance w,,
to the next state x,, | & R, starting from an initial state X0-



Optimal Control

 adynamical system is described as
Xep1 = J{ (X Uy, Wy)
where f, maps a state x, € R¢, a control (the action) u, € R*, and a disturbance w,,
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 The objective is to find the control policy 7 which minimizes the long term cost,
H-1

minimize Eﬂ[ Z c(x;, u,)
t=0 _
such that X1 = ft(xt, U, W,)

where H is the time horizon (which can be finite or infinite) and where w; is either
statistical or constrained in some way.
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Linearization Approach

* |n practice, this is often solved by considering the linearized control (sub-)problem where
the dynamics are approximated by

X, 1 =Ax,+ Bu,+w,
with the matrices A, and B, are derivatives of the dynamics f (around some trajectory)
and where the costs are approximated by a quadratic function in x, and u..



Linearization Approach

* |n practice, this is often solved by considering the linearized control (sub-)problem where
the dynamics are approximated by

X, 1 =Ax,+ Bu,+w,
with the matrices A, and B, are derivatives of the dynamics f (around some trajectory)
and where the costs are approximated by a quadratic function in x, and u..

* This approach does not capture global information.
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The Linear Quadratic Regulator (LQR)

(finite horizon case)



The Linear Quadratic Regulator (LQR)

(finite horizon case)

* The finite horizon LQR problem is given by

minimize E | x;,0xy + Z(xtTth u,' Ru,)
=0

suchthat x,,=Ax +Bu +w,, x5~ D,w, ~N®0,I),

where initial state x, ~ D is randomly distributed according D;

the disturbance w, € R%is multi-variate normal, with covariance 021;

A € R4 and B, € R are referred to as system (or transition) matrices;
0 R and R € R are psd matrices that parameterize the quadratic costs.



The Linear Quadratic Regulator (LQR)

(finite horizon case)

* The finite horizon LQR problem is given by

minimize E | x;,0xy + Z(xtTth u,' Ru,)
=0

suchthat x,,=Ax +Bu +w,, x5~ D,w, ~N®0,I),

where initial state x, ~ D is randomly distributed according D;

the disturbance w, € R%is multi-variate normal, with covariance 021;

A € R4 and B, € R are referred to as system (or transition) matrices;
0 R and R € R are psd matrices that parameterize the quadratic costs.

. Note that this model is a finite horizon MDP, where the S = R% and A = R



The Linear Quadratic Regulator (LQR)

(infinite horizon case)



The Linear Quadratic Regulator (LQR)

(infinite horizon case)

* The infinite horizon LQR problem is given by

minimize  I1m —E [Z (xTQx + uTRut)]

H-oo0o H

suchthat x,_, =Ax,+Bu +w,, x5~ D, w,~ N(O0,6°I).

where A and B are time homogenous.
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(largely due to that time homogenous, globally linear models are rarely good
approximations)
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The Linear Quadratic Regulator (LQR)

(infinite horizon case)

* The infinite horizon LQR problem IS given by

s T T
minimize hl{l_I)IgOEE Z(x Ox, + u, Ru,)

such that x,. | = Ax, But +w,, xy~D, w ~ N®O,c°I).

where A and B are time homogenous.

e Studied often in theory, but less relevant in practice (?)
(largely due to that time homogenous, globally linear models are rarely good
approximations)

* Discounted case never studied.
(discounting doesn’t necessarily make costs finite)




Bellman Optimality:

Value lteration and the Ricatti Equations



Same defs (but for costs)

+ define the value function V7 : R — R as

H-1
Vix) =E [x;QxH + Z (x, Ox, + u'Ru)

I=h

7,%, = %],

+ and the state-action value Q7 : R X R* — R as:

- u,' Ru,)

H—1
Qr(x,u)=E [X;QXH -+ Z (xtT Ox, -
t=h

ﬂ,xh :x,uh — l/l],



Value lteration and the Ricatti Equations



Value lteration and the Ricatti Equations

(for the finite horizon case, with time homogenous A, = A, B, = B)
The optimal policy is specified by:
7*(x) = — K*x, where K* = (B'P,,,B+R)"'B'P, A
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Theorem: (for the finite horizon case, with time homogenous A, = A, B, = B)
The optimal policy is a linear controller specified by:

7*(x) = — K*x, where K* = (B'P,,,B+R)"'B'P, A
where P, can be computed iteratively, in a backwards manner, using the following

algebraic Ricatti equations, where fort € |H]|,
P=A'"P_A+Q-A'P_BB'P,_,B+R)"'B'P_ A

— ATPtHA +0 - (Kril)T(BTPtHB T R)Ktil
and where P, = 0.
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Value lteration and the Ricatti Equations

Theorem: (for the finite horizon case, with time homogenous A, = A, B, = B)
The optimal policy is a linear controller specified by:

7*(x) = — K*x, where K* = (B'P,,,B+R)"'B'P, A
where P, can be computed iteratively, in a backwards manner, using the following

algebraic Ricatti equations, where fort € |H]|,
P=A'"P_A+Q-A'P_BB'P,_,B+R)"'B'P_ A

— ATPtHA +0 - (Kril)T(BTPtHB T R)K:rl
and where P, = 0.

The above equation is simply the value iteration algorithm.
Furthermore, for t € |H |, we have that:

H
V¥(x) = x"Px + o* Z Trace(P,)

h=t+1



Proof: optimal controlat h = H — 1

 Bellman equations = there is an optimal policy which is deterministic + only a

function of x, and 1.
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» Define Vy(x) = x' Pyx, where Py, := Q



Proof: optimal controlat h = H — 1

 Bellman equations = there is an optimal policy which is deterministic + only a
function of x, and 1.

. Define V(x) = x' Pyx, where Py, := Q

* Due tothat xy; = Ax + Bu + wy_,, we have:
Qg_l(x, U) = E[(Ax + Bu + wH_l)TPH(Ax + Bu + WH_l)] +x"Ox+ u'Ru

= (Ax + Bu)' P, (Ax + Bu) + o*Trace(Py) + x'Ox + u'Ru



Proof: optimal controlat h = H — 1

Bellman equations = there is an optimal policy which is deterministic + only a
function of x, and 1.

Define Vi (x) = x ' Pyx, where P, := Q

Due to that x; = Ax + Bu + wy_,, we have:

Q;_l(x, u) = E[(Ax + Bu + wH_l)TPH(Ax + Bu + WH_l)] +x'Ox+u'Ru
= (Ax + Bu)TPH(Ax + Bu) + 02Trace(PH) +x"Ox + u'Ru

This is a quadratic function of u. Solving for the optimal control at x, gives:
ﬂg_l(x) = — (BTPHB + R)_lBTPHAx = — K;;_lx,
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Proof: optimal value at h = H — 1
e (shorthand Kg_l = K := (BTPHB + R)_lBTPHA). using the optimal control at:
Vi) = Qg (x, = K 1x)

=x'(A — BK)'P,(A — BK)x + x'Ox + x'K'RKx + 6*Trace(Py))



Proof: optimal value at h = H — 1
e (shorthand Kg_l = K := (BTPHB + R)_lBTPHA). using the optimal control at:
Vi) = 0f_,(x, — K_x)
=x'(A — BK)"P(A — BK)x + x"Ox + x 'K "RKx + 6°Trace(Py,)
* Continuing
VA (x) — o*Trace(Py,) = xT((A _ BK)TP,(A — BK)+ Q + KTRK)x

X7 (APHA +O0-2K'B"P,A+K"(BTP,B + R)K)x

X7 (APHA +Q—2K"(B"P,B+R)K +K"(BTP,B + R)K)x

=x' (APHA +0—-K'(B'"PyB + R)K)x
=x'Py_;x.

where the fourth step uses our expression for K = K};_;.
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Proof: wrapping up...

* This implies that:

Q,}*_z(x, i) = E[Vg_l(Ax + Bu 4+ wy_,)]| + x"Ox + u'Ru

= (Ax + Bu)' Py,_(Ax + Bu) + 02<Trace(PH_1) + Trace(Q)) +x'Ox+u'Ru.



Proof: wrapping up...

* This implies that:
Q7 _(x,u) = E[V[}(_l(Ax + Bu+wy_)] +x'Ox+u'Ru

= (Ax + Bu)'Py,_(Ax + Bu) + 02<Trace(PH_1) + Trace(Q)) +x'Ox+u'Ru.

* The remainder of the proof follows from a recursive argument, which can be verified along
identical lines to the t = H — 1 case.
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Infinite horizon case

Suppose that the optimal average cost is finite.

Let P be a solution to the following algebraic Riccati equation:
P=A"PA+Q—-A"PB(B'PB+R)"'B'PA.

(Note that P is a positive definite matrix).

We have that the optimal policy is:

*(x) = — K*x
where the optimal control gain is:
K*=—(B'PB+R)"'BTPA

We have that P is unique and that



Semidefinite Programs to find P



The Dual SDP:

* The dual optimization problem is;:

minimize Trace (Z- [Q O])
O R

subjectto X = (A B)X(A B)'+06*l, T >0
where the optimization variable is 2, a (d + k) X (d + k) matrix, with the block structure:

2 Exx qu
B D>

Ux Uuu
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This analogous to state-action visitation distributions (the dual variables in the MDP LP).



The Dual SDP:

* The dual optimization problem is;:

minimize Trace (Z- [Q O])
O R

subjectto = = (A B)X(A B +6%, >0
where the optimization variable is 2, a (d + k) X (d + k) matrix, with the block structure:

Z Zxx qu
B DY)

Ux Uuu

* The interpretation of X is that it is the covariance matrix of the stationary distribution.
This analogous to state-action visitation distributions (the dual variables in the MDP LP).

* This SDP has a unique solution, say >*. The optimal gain matrix is then given by:
K* = — Z;X(Z;X)_l



The Primal SDP:

(for the infinite horizon LQR)

* The primal optimization problem is given as:
maximize o”Trace(P)

T B T
subject to ATPA+Q—-FP A'FB >0, P>0

B'PA B'PB+R|
where the optimization variable is P.
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This SDP has a unique solution, P*, which implies:

 P* satisfies the Ricatti equations.

. The optimal average cost of the infinite horizon LQR is o~ Trace(P ™)

. The optimal policy use the gain matrix: K* = — (B’ PB + R)"'B' PA



The Primal SDP:

(for the infinite horizon LQR)

The primal optimization problem is given as:
maximize o”Trace(P)

T B T
subject to ATPA+Q—-FP A'FB >0, P>0

B'PA B'PB+R|
where the optimization variable is P.

This SDP has a unique solution, P*, which implies:

 P* satisfies the Ricatti equations.

. The optimal average cost of the infinite horizon LQR is o~ Trace(P ™)

. The optimal policy use the gain matrix: K* = — (B’ PB + R)"'B' PA

Proof idea: Following from the Ricatti equation,
we have the relaxation that for all matrices K, the matrix P must satisfy:

P>A"PA+ QO —-A"PB(B'PB+ R)"'BTPA



