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The need for Exploration in RL:

The Combination Lock Example (i.e., the sparse reward problem)

(1) We have reward zero everywhere except at the goal (the right end); 

(2) Every black node, one of the two actions will lead the agent to the dead state (red) 

s0 …

What is the probability of a random policy generating a trajectory that hits the goal?

Length: H

r = 1



Exploration!

We need to perform systematic exploration, 

i.e., remember where we visited, and purposely try to visit unexplored regions..



What we will do today:

Study Exploration in a very simple MDP:

ℳ = {s0, {a1, …, aK}, H = 1,R}

i.e., MDP with one state, one-step transition, and K actions

This is also called Multi-armed Bandits



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm (a bad algorithm)

3. Attempt 2: Explore and Commit

4. Attempt 3: Upper Confidence Bound (UCB) Algorithm
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Setting:

We have K many arms: a1, …, aK

Each arm has a unknown reward distribution, i.e., , 

w/ mean 

νi ∈ Δ([0,1])
μi = 𝔼r∼νi

[r]

Example:  has a Bernoulli distribution  w/ mean :ai νi μi := p

Every time we pull arm , we observe an i.i.d reward ai r = {1  w/ prob p
0 w/ prob 1 − p
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Intro to MAB
Applications on online advertisement:

Arms correspond to Ads
Each arm has click-through-rate 

(CTR): probability of getting clicked 
(unknown)

A learning system aims to 
maximize CTR in a long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked 
(see a zero-one reward)

3. Update: Decide what ad 
to recommend for next 

round
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Intro to MAB

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm It ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νIt
It

(# based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try
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Intro to MAB

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: no-regret, i.e., RegretT /T → 0, as T → ∞

μ⋆ = max
i∈[K]

μi
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Intro to MAB

Why the problem is hard?

Exploration and Exploitation Tradeoff:

Every round, we need to ask ourselves: 


Should we pull arms that are less frequently tried in the past (i.e., explore), 

Or should we commit to the current best arm (i.e., exploit)?



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm (a bad algorithm)

3. Attempt 2: Explore and Exploit

4. Attempt 3: Upper Confidence Bound (UCB) Algorithm
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Attempt 1: Greedy Algorithm

Alg: try each arm once, and then commit to the one that has 
the highest observed reward

Q: what could be wrong?

A bad arm (i.e., low ) may generate a high reward by chance!

(recall we have , i.i.d)

μi
r ∼ ν
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Attempt 1: Greedy Algorithm

More concretely, let’s say we have two arms :a1, a2

Reward dist for : w/ prob 60%, ; else  a1 r = 1 r = 0
Reward dist for : w/ prob 40%, ; else  a2 r = 1 r = 0

Clearly  is a better arm! a1

But try  once,  with probability 16%, we will observe reward pair  a1, a2 (0,1)

The greedy alg will pick —loosing expected reward 0.2 every time in the futurea2



Plan for today:

1. Introduction of MAB

2. Attempt 1: Greedy Algorithm 

(a bad algorithm: constant regret)

3. Attempt 2: Explore and Commit 

4. Attempt 3: Upper Confidence Bound (UCB) Algorithm
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What lessons we learned from the Greedy Alg:

Due to randomness in the reward distribution, trying each arm once is not enough, 

i.e., observed single reward may be far away from the mean 

Q: what’s the fix here?

Yes, let’s (1) try each arm multiple times, (2) compute the empirical mean of each 
arm, (3) commit to the one that has the highest empirical mean
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Alg: Explore and Commit:
Algorithm hyper parameter  (we assume  >> )N < T/K T K

For : k = 1 → K

Pull arm-  N times, observe  k {ri}N
i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk =
N

∑
i=1

ri/N

(# Exploration phase)

For : t = NK → T − 1 (# Exploitation phase)

Pull the best empirical arm, i.e., It = arg max
i∈[K]

̂μi

Q: how to set ?N
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Statistical Tools:
1. Hoeffding inequality (optional, no need to remember or understand it)

Given a distribution , and N i.i.d samples 
, w/ probability at least , we have: 


μ ∈ Δ([0,1])
{ri}N

i=1 ∼ μ 1 − δ
N

∑
i=1

ri/N − μ ≤ O ( ln(1/δ)
N )

i.e., this gives us a confidence interval: ̂μ

̂μ + ln(1/δ)/N

̂μ − ln(1/δ)/N

μ



Statistical Tools:



Statistical Tools:
Combine Hoeffding and Union Bound, we have:



Statistical Tools:
Combine Hoeffding and Union Bound, we have:

After the Exploration phase, with probability at least 1- , for all 
arm , we have: 


δ
k ∈ [K]

̂μk − μk ≤ O ( ln(K/δ)
N )



Statistical Tools:
Combine Hoeffding and Union Bound, we have:

After the Exploration phase, with probability at least 1- , for all 
arm , we have: 


δ
k ∈ [K]

̂μk − μk ≤ O ( ln(K/δ)
N )

̂μ2

̂μ2 + ln(K/δ)/N

̂μ2 − ln(K/δ)/N

μ2̂μ1

̂μ1 + ln(K/δ)/N

̂μ1 − ln(K/δ)/N

μ1

̂μ3

̂μ3 + ln(K/δ)/N

̂μ3 − ln(K/δ)/N

μ3
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Calculate the final regret:
Denote empirical best arm ,  and THE best arm ̂I = arg max

i∈[K]
̂μi I⋆ = arg max

i∈[K]
μi

1. What’s the worst possible regret in the exploration phase:

Regretexplore ≤ N(K − 1) ≤ NK

2. What’s the regret in the exploitation phase:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I)
Let’s now bound Regretexploit
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Calculate the regret in the exploitation phase
Denote empirical best arm ,  and THE best arm ̂I = arg max

i∈[K]
̂μi I⋆ = arg max

i∈[K]
μi

What’s the regret in the exploitation phase:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I)

μI⋆ − μ ̂I ≤ [ ̂μI⋆ + ln(K/δ)/N] − [ ̂μ ̂I − ln(K/δ)/N]
= ̂μI⋆ − ̂μ ̂I + 2 ln(K/δ)/N

≤ 2 ln(K/δ)/N
Q: why?

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I) ≤ 2T
ln(K/δ)

N
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Finally, combine two regret together:

Regretexploit ≤ (T − NK)(μI⋆ − μ ̂I) ≤ T
ln(K/δ)

N

Regretexplore ≤ N(K − 1) ≤ NK

RegretT = Regretexplore + Regretexploit ≤ NK + 2T
ln(K/δ)

N

Minimize the upper bound via optimizing N:

Set , we have:N = (
T ln(K/δ)

2K )
2/3

RegretT ≤ O (T2/3K1/3 ⋅ ln1/3(K/δ))



To conclude on Explore then Commit:

[Theorem] Fix set , with 

probability at least , Explore and Commit has the following 
regret: 


δ ∈ (0,1), N = (
T ln(K/δ)

2K )
2/3

1 − δ

RegretT ≤ O (T2/3K1/3 ⋅ ln1/3(K/δ))

Q: can we do better, particularly, can we get  regret bound? T
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Statistics that we maintain during learning:

At the beginning of iteration  for all , # of times we have tried arm ,t, i ∈ [K] i

i.e., Nt(i) =
t−1

∑
τ=0

1{Iτ = i}

We maintain the following statistics during the learning process:

i.e., ̂μt(i) =
t−1

∑
τ=0

1{Iτ = i}rτ /Nt(i)

and its empirical mean  so far;̂μt(i)
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Recall the Tool for Building Confidence Interval:

Thus, we can show that for all iteration , we have the for all , w/ prob , 
t k ∈ [K] 1 − δ

| ̂μk(i) − μk | ≤
ln(KT/δ)

Nt(k)

Proving this result actually requires reasoning Martinalges, as samples 
are not i.i.d, i.e., whether or not you pull arm k in this round depends on 

previous random outcomes (See Ch 6 for more details)
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UCB: Optimism in the face of Uncertainty
Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

̂μt(2)

̂μt(2) + ln(KT/δ)/Nt(2)
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μ2̂μt(1)

̂μt(1) + ln(KT/δ)/Nt(1)
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μ1

̂μt(3)

̂μt(3) + ln(KT/δ)/Nt(3)

̂μt(3) − ln(KT/δ)/Nt(3)

μ3

Set It = 2
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Put things together: UCB Algorithm:

For :t = 0 → T − 1

It = arg max
i∈[K]

̂μt(i) +
ln(KT/δ)

Nt(i)

(# Upper-conf-bound of arm )i

“Reward Bonus”: 
ln(KT/δ)

Nt(i)



UCB Regret:

[Theorem (informal)]  With high probability, UCB has the following regret:

RegretT = Õ ( KT)
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Case 1: it has large conf-interval, which means that it has not 
been tried many times yet (high uncertainty)
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̂μt(2) + ln(KT/δ)/Nt(2)

̂μt(2) − ln(KT/δ)/Nt(2)

μ2

̂μt(1)

̂μt(1) + ln(KT/δ)/Nt(1)

̂μt(1) − ln(KT/δ)/Nt(1)

μ1

̂μt(3)

̂μt(3) + ln(KT/δ)/Nt(3)

̂μt(3) − ln(KT/δ)/Nt(3)

μ3

Case 2: it has low uncertainty, then it is simply a good arm, i.e., it’s 
true mean is high!

Intuitive Explanation of UCB



Explore and Exploration Tradeoff

Case 1:  has large conf-interval, which means that it has not 
been tried many times yet (high uncertainty)
It

Thus, we do exploration in this case!



Explore and Exploration Tradeoff

Case 1:  has large conf-interval, which means that it has not 
been tried many times yet (high uncertainty)
It

Thus, we do exploration in this case!

Case 2:  has small conf-interval, then it is simply a good arm, i.e., 
it’s true mean is pretty high!

It

Thus, we do exploitation in this case!
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Let’s formalize the intuition
Denote the optimal arm ; recall I⋆ = arg max

i∈[K]
μi It = arg max

i∈[K]
̂μt(i) +

ln(KT/δ)
Nt(i)

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) +
ln(TK/δ)

Nt(It)
− μIt

≤ 2
ln(TK/δ)

Nt(It)

Case 1:  is small 

(i.e., uncertainty about  is large); 


We pay regret, BUT we explore here, 
as we just tried  at iter !

Nt(It)
It

It t

Q: why?



Let’s formalize the intuition

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) +
ln(TK/δ)

Nt(It)
− μIt

≤ 2
ln(TK/δ)

Nt(It)

Case 2:  is large, i.e., conf-interval of 
 is small, 


Then we exploit here, as  is pretty good 
(the gap between  &  is small)!

Nt(It)
It

It
μ⋆ μIt

Denote the optimal arm ; recall I⋆ = arg max
i∈[K]

μi It = arg max
i∈[K]

̂μt(i) +
ln(KT/δ)

Nt(i)



Let’s formalize the intuition
Finally, let’s add all per-iter regret together:

RegretT =
T−1
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(μ⋆ − μIt)
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∑
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Let’s formalize the intuition
Finally, let’s add all per-iter regret together:

RegretT =
T−1

∑
t=0

(μ⋆ − μIt)

≤ 2 ln(TK/δ) ⋅
T−1

∑
t=0

1
Nt(It)

Lemma: 
T−1

∑
t=0

1
Nt(It)

≤ O ( KT)≤
T−1

∑
t=0

2
ln(TK/δ)

Nt(It)



Summary

1. Setting of Multi-armed Bandit: MDP with one state, and K actions, H = 1

2. Need to carefully balance exploration and exploitation

3. The Principle of Optimism in the face of Uncertainty


