Policy Gradient: Optimality

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

Recap

Policy Optimization

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

[OpenAl Five, 18]

[OpenAl, 19]

Today: Policy Gradient Deriviation

 $\pi_{\theta}(a \mid s) = \pi(a \mid s; \theta)$

 $\theta_{t+1} = \theta_t +$

- e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:
 - (Williams 92, Kakade 02, Schulman et al 15, 17)

$$J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right]$$

$$\left. + \eta \nabla_{\theta} J(\pi_{\theta}) \right|_{\theta = \theta_{t}}$$

Main question for today's lecture: how to compute the gradient?

Derivation of unbiased Stochastic Policy Gradient

$$\nabla_{\theta} J(\theta) := \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^2}$$

Draw $h \propto \gamma^h$, roll-in

Roll-out π_{θ} from (s_h, a_h) : terminat

 $d^{\pi_{\theta}}\left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)\right]$

$$\begin{split} \pi_{\theta} \text{ to generate } s_h, a_h &\sim \mathbb{P}_h^{\pi_{\theta}} \\ \text{te with prob } 1 - \gamma, \ \widetilde{Q}^{\pi_{\theta}}(s_h, a_h) = \sum_{\tau=h}^{t \geq h} r_{\tau} \end{split}$$

Unbiased estimate: $\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \widetilde{Q}^{\pi_{\theta}}(s_h, a_h)$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for Tabular MDPs: $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

2. Softmax linear Policy (e.g., for linear MDPs):

3. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

 $\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$

Convergence to Stationary Point

 $J(\pi_{\theta})$ is non-convex (see example in the monograph)

- $$\begin{split} & \mathsf{Def of } \beta \mathsf{-smooth:} \\ & \| \nabla_{\theta} J(\theta) \nabla_{\theta} J(\theta_0) \|_2 \leq \beta \| \theta \theta_0 \|_2 \\ & \Big| J(\theta) J(\theta_0) \nabla_{\theta} J(\theta_0)^{\mathsf{T}} (\theta \theta_0) \Big| \leq \frac{\beta}{2} \| \theta \theta_0 \|_2^2, \forall \theta, \theta_0 \end{split}$$
- **[Theorem]** If $J(\theta)$ is β -smooth, and we run SGA: $\theta_{t+1} = \theta_t + \eta \widetilde{\nabla}_{\theta} J(\theta_t)$ where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J(\theta_t)\right] = \nabla_{\theta} J(\theta_t), \quad \mathbb{E}\left[\|\widetilde{\nabla}_{\theta} J(\theta_t)\|_2^2\right] \le \sigma^2$,

$$\mathbb{E}\left[\frac{1}{T}\sum_{t}\|\nabla_{\theta}J\right]$$

- then:
- $J(\theta_t) \|_2^2 \le O\left(\sqrt{\beta \sigma^2 / T}\right)$

Today (+future): When do PG methods converge to a global optima? (+ what about function approximation?)

Today:

• Let's consider using exact gradients.

- This allows us to ignore estimation issues
- Let's focus on "complete" parameterizations (e.g. the "tabular" case) lacksquare Π contains all stochastic policies (e.g. softmax)
- I: Landscape of the problem
 - As a general non-convex optimization problem: do small gradients imply good performance?
 - what about "exploration"?
- II: Global convergence results

PG as non-convex optimization

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

• Def of a β -smooth function F: $\|\nabla_{\theta} F(\theta) - \nabla_{\theta} F(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$ which implies:

 $\left| F(\theta) - F(\theta_0) - \nabla_{\theta} F(\theta_0)^{\mathsf{T}}(\theta - \theta_0) \right| \leq \frac{\beta}{2} \|\theta - \theta_0\|_2^2$

 $\|\beta_0\|_2 \le \frac{\beta}{2} \|\theta - \theta_0\|$

Convergence to Stationary Points of GD

 $J(\pi_{\theta})$ is non-convex (see example in the AJKS)

• Def of a β -smooth function F: $\|\nabla_{\theta} F(\theta) - \nabla_{\theta} F(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$ which implies: $\left| F(\theta) - F(\theta_0) - \nabla_{\theta} F(\theta_0)^{\mathsf{T}}(\theta - \theta_0) \right|$

• Proposition: (stationary point convergence) Assume $F(\theta)$ is β -smooth. $\min_{t \in T} \|\nabla_{\theta} F(\theta_t)\|_2^2 \leq \frac{2\beta \left(\max_{\theta} F(\theta) - F(\theta_0)\right)}{-}$

$$\left| \leq \frac{\beta}{2} \| \theta - \theta_0 \|_2^2$$

Suppose we run gradient ascent: $\theta_{t+1} = \theta_t + \eta \nabla_{\theta} F(\theta_t)$, with $\eta = 1/(2\beta)$. Then:

Convergence to Stationary Point

Proposition: (stationary point convergence) Assume $F(\theta)$ is β -smooth. Suppose we run gradient ascent: $\theta_{t+1} = \theta_t + \eta \nabla_{\theta} F(\theta_t)$, with $\eta = 1/(2\beta)$. Then: $\min_{t < T} \|\nabla_{\theta} F(\theta_t)\|_2^2 \le \frac{2\beta \left(F(\theta^{\star}) - F(\theta_0)\right)}{T}$ $t \leq T$

$$\begin{split} \left| F(\theta_{t+1}) - F(\theta_t) - \nabla_{\theta} F(\theta_t)^{\mathsf{T}}(\theta_{t+1} - \theta_t) \right| &\leq \frac{\beta}{2} \|\theta_{t+1} - \theta_t\|^2 \\ \Rightarrow \left| F(\theta_{t+1}) - F(\theta_t) - \eta \nabla_{\theta} F(\theta_t)^{\mathsf{T}} \nabla_{\theta} F(\theta_t) \right| &\leq \frac{\beta}{2} \eta^2 \|\nabla_{\theta} F(\theta_t)\|^2 \\ \Rightarrow \eta \|\nabla_{\theta} F(\theta_t)\|^2 &\leq F(\theta_{t+1}) - F(\theta_t) + \frac{\beta}{2} \eta^2 \|\nabla_{\theta} F(\theta_t)\|_2^2 \\ \Rightarrow \frac{1}{2\beta} \|\nabla_{\theta} F(\theta_t)\|^2 &\leq F(\theta_{t+1}) - F(\theta_t) \qquad \text{using } \eta \leq \frac{1}{\beta} \\ \Rightarrow \min_{t \leq T} \|\nabla_{\theta} F(\theta_t)\|^2 &\leq \frac{1}{T} \sum_{t} \|\nabla_{\theta} F(\theta_t)\|^2 \leq \sum_{t} \left(F(\theta_{t+1}) - F(\theta_t) \right) \leq \frac{2\beta(F(\theta^*) - F(\theta_0))}{T} \end{split}$$

A "landscape" result (and "exploration")

Vanishing Gradients and Saddle Points

Vanishing Gradients and Saddle Points

Set $\gamma = H/(H + 1)$. Policy param: (this a "direct" param, which is valid inside the simplex)

for $a = a_1, a_2, a_3, \ \pi_{\theta}(a \mid s) = \theta_{s,a}, \ \text{and} \ \pi_{\theta}(a_4 \mid s) = 1 - \theta_{s,a_1} - \theta_{s,a_2} - \theta_{s,a_3}$

Vanishing Gradients and Saddle Points

Set $\gamma = H/(H + 1)$. Policy param: for $a = a_1, a_2, a_3$, $\pi_{\theta}(a \mid s) = \theta_{s,a}$, and $\pi_{\theta}(a_4 \mid s) = 1 - \theta_{s,a_1} - \theta_{s,a_2} - \theta_{s,a_3}$ (this a "direct" param, which is valid inside the simplex)

Theorem: For $0 < \theta < 1$ (componentwise) and $\theta_{s,a_1} < 1/4$ (for all states *s*). For all $k \leq O(H/\log(H))$, we have that $\|\nabla_{\theta}^k V^{\pi_{\theta}}(s_0)\| \leq (1/3)^{H/4}$ (where $\|\nabla_{\theta}^k V^{\pi_{\theta}}(s_0)\|$ is the operator norm of the tensor $\nabla_{\theta}^k V^{\pi_{\theta}}(s_0)$.

"Vanilla" PG for the Softmax

Let's consider having a ataring state distribution with "coverage"

Let's consider having a ataring state distribution with "coverage"

• Given our a starting distribution ρ over states, recall our objective is: $\max V^{\pi_{\theta}}(\rho)$. $\theta \in \Theta$ where $\{\pi_{\theta} | \theta \in \Theta \subset \mathbb{R}^d\}$ is some class of parametric policies.

Let's consider having a ataring state distribution with "coverage"

- Given our a starting distribution ρ over states, recall our objective is: $\max V^{\pi_{\theta}}(\rho)$. $\theta \in \Theta$ where $\{\pi_{\theta} | \theta \in \Theta \subset \mathbb{R}^d\}$ is some class of parametric policies.
- While we are interested in good performance under ρ , it is helpful to optimize under a different measure μ . Specifically, consider optimizing: $V^{\pi_{\theta}}(\mu)$, i.e. $\max V^{\pi_{\theta}}(\mu)$, $\theta \in \Theta$

even though our ultimate goal is performance under $V^{\pi_{\theta}}(\rho)$.

Today: we will use $d_{s_0}^{\pi}$ for a state distribution measure. (it should be clear from context how we use it).

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s \,|\, s_0,$$

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s, a_h)$$

Advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

notation (+ overloading)

 π) $V^{\pi}(\mu) = E_{s \sim \mu}[V^{\pi}(s)]$ $d^{\pi}_{\mu}(s) = E_{s_0 \sim \mu}[d^{\pi}_{s_0}(s)]$

 $a_h = a \,|\, s_0, \pi)$

• $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})},$ (where the number of parameters is SA).

• $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})},$ (where the number of parameters is SA).

We have that: $\frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta_{s',a'}} = \mathbf{1} \Big[s \Big]$ where $\mathbf{1}[\cdot]$ is the indicator function.

$$(\frac{a}{\partial_{s,a'}})$$

$$= s' \Big] \Big(\mathbf{1} \Big[a = a' \Big] - \pi_{\theta}(a' \mid s) \Big)$$

• $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a})}$ (where the number of parameters is SA).

We have that: $\frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta_{s',a'}} = \mathbf{1} \Big[s \Big]$

 $\frac{\partial V^{\pi_{\theta}}(\mu)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)$

$$(a)$$

 $(\overline{\partial_{s,a'}})$

$$= s' \Big] \Big(\mathbf{1} \Big[a = a' \Big] - \pi_{\theta}(a' | s) \Big)$$

- where $\mathbf{1}[\cdot]$ is the indicator function.
- Lemma: For the softmax policy class, we have:

$$\begin{aligned} & \frac{\partial V^{\pi_{\theta}}(\mu)}{\partial \theta_{s,a}} = E_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \ln \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) \right] \\ &= E_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}[s_{i} = s] \Big(\mathbf{1}[a_{i} = a] A^{\pi_{\theta}}(s, a) - \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s_{i}, a_{i}) \Big) \right] \\ &= E_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{1}[(s_{t}, a_{i}) = (s, a)] A^{\pi_{\theta}}(s, a) \right] + \pi_{\theta}(a \mid s) \sum_{t=0}^{\infty} \gamma^{t} E_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \Big[\mathbf{1}[s_{i} = s] A^{\pi_{\theta}}(s_{i}, a) \\ &= \frac{1}{1 - \gamma} E_{(s', a') \sim d^{\pi_{\theta}}} \Big[\mathbf{1}[(s', a') = (s, a)] A^{\pi_{\theta}}(s, a) \Big] + 0 \\ &= \frac{1}{1 - \gamma} d^{\pi_{\theta}}(s, a) A^{\pi_{\theta}}(s, a) , \end{aligned}$$

Remember: The Performance Difference Lemma For all π, π', s_0 :

 $d_{s_0}^{\pi}(s) = (1 - \gamma) \sum \gamma^h \mathbb{P}(s_h = s | s_0, \pi)$ h=0

 $V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[A^{\pi'}(s, a) \right]$

• The update rule for gradient ascent is: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$

- The update rule for gradient ascent is: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$
- Concerns: lacksquare
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$

 $(\pi_t \text{ becoming any deterministic policy implies } \theta_t \text{ approaches a stationary point})$

- The update rule for gradient ascent is: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$
- Concerns:
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$ (π_t becoming any deterministic policy implies θ_t approaches a stationary point)
- Theorem: Assume the μ is strictly positive i.e. $\mu(s) > 0$ for all states s. For $\eta \le (1 \gamma)^3/8$, then we have that for all states $s, V^{(t)}(s) \to V^{\star}(s)$, as $t \to \infty$.

- The update rule for gradient ascent is: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$
- Concerns:
 - Non-convex
 - Flat gradients if $\theta_t \to \infty$ (π_t becoming any deterministic policy implies θ_t approaches a stationary point)
- Theorem: Assume the μ is strictly positive i.e. $\mu(s) > 0$ for all states s. For $\eta \le (1 \gamma)^3/8$, then we have that for all states $s, V^{(t)}(s) \to V^{\star}(s)$, as $t \to \infty$.
- Comments:
 - rate could be exponentially slow in S, H.
 - need $\mu > 0$ is necessary.

PG+Log Barrier Regularization (for the softmax)

• Relative-entropy for distributions p,q is: $KL(p,q) := E_{x \sim p}[-\log q(x)/p(x)]$.

- Consider the log barrier λ -regularized objective: $L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) - \lambda E_{s \sim \text{Unif}_{S}}[\text{KL}(\text{Unif}_{A}, \pi_{\theta}(\cdot \mid s))]$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(\mu)$$

• Relative-entropy for distributions p,q is: $KL(p,q) := E_{x \sim p}[-\log q(x)/p(x)]$.

 $(a \mid s) + \lambda \log A$

- Consider the log barrier λ -regularized objective: $L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) - \lambda E_{s \sim \text{Unif}_{s}}[\text{KL}(\text{Unif}_{A}, \pi_{\theta}(\cdot \mid s))]$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(\mu)$$

Gradient Ascent: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} L_{\lambda}(\theta^{(t)})$

• Relative-entropy for distributions p,q is: $KL(p,q) := E_{x \sim p}[-\log q(x)/p(x)]$.

 $(a \mid s) + \lambda \log A$

- Consider the log barrier λ -regularized objective: $L_{\lambda}(\theta) := V^{\pi_{\theta}}(\mu) - \lambda E_{s \sim \text{Unif}_{s}}[\text{KL}(\text{Unif}_{A}, \pi_{\theta}(\cdot \mid s))]$

$$= V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(\mu)$$

- Gradient Ascent: $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} L_{\lambda}(\theta^{(t)})$
- Do small gradients imply a globally optimal policy?

• Relative-entropy for distributions p,q is: $KL(p,q) := E_{x \sim p}[-\log q(x)/p(x)]$.

 $(a \mid s) + \lambda \log A$

Stationarity and Optimality

• Log barrier regularized objective:

$$L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid x)$$

Stationarity and Optimality

 $s) + \lambda \log A$

Log barrier regularized objective:

$$L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid x)$$

• Theorem: (Log barrier regularization) Suppose θ is such that: $\|\nabla_{\theta} L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt} \text{ and } \epsilon_{opt} \leq \lambda/(2SA)$ then we have for all starting state distributions ρ : $\lambda \pi^{\star}$

$$V^{\pi_{\theta}}(\rho) \ge V^{\star}(\rho) - \frac{2\lambda}{1-\gamma} \left\| \frac{a_{\rho}}{\mu} \right\|_{\infty}$$

Stationarity and Optimality

 $s) + \lambda \log A$

Log barrier regularized objective:

$$L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid x)$$

Theorem: (Log barrier regularization) Suppose θ is such that: ullet $\|\nabla_{\theta} L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt} \text{ and } \epsilon_{opt} \leq \lambda/(2SA)$ then we have for all starting state distributions ρ :

$$V^{\pi_{\theta}}(\rho) \ge V^{\star}(\rho) - \frac{2\lambda}{1-\gamma} \left\| \frac{d_{\rho}^{\pi}}{\mu} \right\|_{\infty}$$

where the "distribution mismatch coefficient" is $\left\|\frac{d_{\rho}^{\pi^{\star}}}{\mu}\right\|_{\infty} = \max_{s} \left(\frac{d_{\rho}^{\pi^{\star}}(s)}{\mu(s)}\right) \quad \text{(componentwise division notation)}$

Stationarity and Optimality

 $(s) + \lambda \log A$

Global Convergence with the Log Barrier

Global Convergence with the Log Barrier

• The smoothness of $L_{\lambda}(\theta)$ is $\beta_{\lambda} := \frac{1}{(1-1)^{-1}}$

$$\frac{8\gamma}{(-\gamma)^3} + \frac{2\lambda}{S}$$

Global Convergence with the Log Barrier

The smoothness of $L_{\lambda}(\theta)$ is $\beta_{\lambda} := \frac{1}{(1)}$

• Corollary: (Iteration complexity with log barrier regularization) Set $\lambda = \frac{\epsilon(1 - \gamma)}{2 \left\| \frac{d_{\rho}^{\pi^{\star}}}{d_{\rho}} \right\|}$ and $\eta = 1/\beta_{\lambda}$. Starting from any initial $\theta^{(0)}$,

then for all starting state distributions

 $\min_{t < T} \left\{ V^{\star}(\rho) - V^{(t)}(\rho) \right\} \le \epsilon \quad \text{when}$ (for constant c).

$$\frac{8\gamma}{(-\gamma)^3} + \frac{2\lambda}{S}$$

For we have
never
$$T \ge c \frac{S^2 A^2}{(1-\gamma)^6 \epsilon^2} \left\| \frac{d_{\rho}^{\pi^*}}{\mu} \right\|_{\infty}^2$$

Remember: The Performance Difference Lemma For all π, π', s_0 :

 $d_{s_0}^{\pi}(s) = (1 - \gamma) \sum \gamma^h \mathbb{P}(s_h = s | s_0, \pi)$ h=0

 $V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[A^{\pi'}(s, a) \right]$

• The proof consists of showing that: $\max A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all states s. a

- $V^{\star}(\rho) V^{\pi_{\theta}}(\rho) = \frac{1}{1 \gamma} \sum d_{\rho}^{\pi^{\star}}(s) \pi^{\star}(a \mid s) A^{\pi_{\theta}}(s, a)$ $\leq \frac{1}{1-\gamma} \sum_{\substack{ \alpha \in A}} d_{\rho}^{\pi^{\star}}(s) \max_{\alpha \in A} A^{\pi_{\theta}}(s, \alpha)$ $\leq \frac{1}{1-\gamma} \sum 2d_{\rho}^{\pi^{\star}}(s)\lambda/(\mu(s)S)$ $\leq \frac{2\lambda}{1-\gamma} \max_{s} \left(\frac{d_{\rho}^{\pi^{\star}(s)}}{\mu(s)} \right)$ which would then complete the proof.

• The proof consists of showing that: $\max A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all states s.

• To see that this is sufficient, observe that by the performance difference lemma:

• need to show $A^{\pi_{\theta}}(s,a) \leq 2\lambda/(\mu(s)S)$ for all (s,a). consider (s,a) where that $A^{\pi_{\theta}}(s,a) \geq 0$ (else claim is true).

• Recall $\frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s,a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s)\right)$

• need to show $A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all (s, a). consider (s, a) where that $A^{\pi_{\theta}}(s, a) \geq 0$ (else claim is true).

• Recall $\frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s,a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s)\right)$

$$A^{\pi_{\theta}}(s,a) = \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \left(1 - \frac{1}{2S}\right) \right)$$
$$\leq \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S}\right)$$
$$\leq \frac{1}{\mu(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S}\right)$$

• need to show $A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all (s, a). consider (s, a) where that $A^{\pi_{\theta}}(s, a) \geq 0$ (else claim is true). • Solving for $A^{\pi_{\theta}}(s, a)$ in the first step and using $\|\nabla_{\theta} L_{\lambda}(\theta)\|_{2} \leq \epsilon_{opt} \leq \lambda/(2SA)$, $\frac{1}{\pi_{\theta}(a \mid s)A})$

using that $d_{\mu}^{n_{\theta}}(s) \ge (1 - \gamma)\mu(s)$

- need to show $A^{\pi_{\theta}}(s, a) \leq 2\lambda/(\mu(s)S)$ for all (s, a)• Recall $\frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) + \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(s, a) + \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(s) \pi_{\theta}(s, a) + \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(s) \pi_{$ • Solving for $A^{\pi_{\theta}}(s, a)$ in the first step and using || $A^{\pi_{\theta}}(s,a) = \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \left(1 - \frac{1}{\pi_{\theta}(a \mid s)A} \right) \right)$ $\leq \frac{1-\gamma}{d_{\mu}^{\pi_{\theta}}(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)$ $\leq \frac{1}{\mu(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)$ • Suppose we could show that $\pi_{\theta}(a \mid s) \geq 1/(2A)$, when $A^{\pi_{\theta}}(s, a) \geq 0$, then

a). consider
$$(s, a)$$
 where that $A^{\pi_{\theta}}(s, a) \ge 0$ (else claim is the $\frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right)$
 $\nabla_{\theta} L_{\lambda}(\theta) \|_{2} \le \epsilon_{opt} \le \lambda/(2SA),$
 $\frac{1}{\pi (a \mid s) \Lambda})$

using that
$$d^{\pi_{\theta}}_{\mu}(s) \ge (1 - \gamma)\mu(s)$$

 $\frac{1}{\mu(s)} \left(\frac{1}{\pi_{\theta}(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) \leq \frac{1}{\mu(s)} \left(2A \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) = \frac{2\lambda}{\mu(s)S} \quad \text{and the proof is done!}$

• for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.

- for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.
- The gradient norm assumption $\|\nabla_{\theta} L$ $\epsilon_{opt} \ge \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s)$ $\ge 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s)\right)$

$$\begin{aligned} L_{\lambda}(\theta) \|_{2} &\leq \epsilon_{opt} \text{ implies that:} \\ s &A^{\pi_{\theta}}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a \mid s) \right) \\ using A^{\pi_{\theta}}(s, a) &\geq 0 \end{aligned}$$

- for (s, a) such that $A^{\pi_{\theta}}(s, a) \ge 0$, we want show $\pi_{\theta}(a \mid s) \ge 1/(2A)$.
- The gradient norm assumption $\|\nabla_{\theta}I$ $\epsilon_{opt} \geq \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{\alpha}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_{\theta}}(s) \pi_{\theta}(a \mid s)$ $\geq 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_{\theta}(a) \right)$
- Rearranging and using our assumption $\epsilon_{opt} \leq \lambda/(2SA)$, $\pi_{\theta}(a \mid s) \geq \frac{1}{A} - \frac{\epsilon_{opt}S}{\lambda} \geq \frac{1}{2A}.$