Policy Gradient: Optimality

CS 6789: Foundations of Reinforcement Learning
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Today: Policy Gradient Deriviation

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

ryals) = n(als;0) J(my) = = lZ yhrh]
h=0

01 = 0, +nVyJ(my) ‘gzgt

Main question for today’s lecture:
how to compute the gradient?

1
Vol (0) := ——E, 4y | Voln my(a| $)Q(s, a))




Derivation of unbiased Stochastic Policy Gradient

1
V,J(0) = T Fraan | Voln my(a | s)Q™(s, a)|

Draw /1 o 7", roll-in 7y to generate s, a; ~ IPZQ

1>h
Roll-out 7, from (s, a;) : terminate with prob 1 —y, Q%(s;,a;) = Z r,
T=h

Unbiased estimate: V ln 7y(a, | Sh)aﬂe(Sh, a,)



Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for
Tabular MDPs:

0., €ER,Vs,ae §XA
exp(é’saa)

my(a | 5) =

Z q’ CXP (es,a’)

2. Softmax linear Policy
(e.g., for linear MDPs):

3. Neural Policy:

Neural network

Feature vector (s, a) € R?, and
parameter 8 € R?

exp(@' g (s, a)) exp(fy(s, @)

my(a | 5) =

ﬂg(d ‘ S) —

Za/ exp(0' (s, a")) Za, exp(fo(s,a’))



Convergence to Stationary Point

J(my) is non-convex (see example in the monograph)

Def of /-smooth:
VoI (0) = Vo J(O)ll, < PO — 6l

p
[ (0) = J(0y) ~ V(000 = 6p) | <110~ 6113, V0. 04

[Theorem] If J(0) is -smooth, and we run SGA: 0,, { = 0, + 7779](6’;)

where E [791(6;)] ~V,J(0), E [W@J(et)ug] < o2,

then:

1
_ [? Z m](@)ﬂ%] <0 (\/ po T)




Today (+future):

When do PG methods converge to a global optima?
(+ what about function approximation?)



Today:

* |et’s consider using exact gradients.
* This allows us to ignore estimation issues
 Let’s focus on “complete” parameterizations (e.g. the “tabular” case)

I1 contains all stochastic policies (e.g. softmax)

* |: Landscape of the problem
* As a general non-convex optimization problem:

do small gradients imply good performance?
 what about “exploration”?
* ||: Global convergence results



PG as non-convex optimization



Convergence to Stationary Points of GD

J(my) is non-convex (see example in the AJKS)



Convergence to Stationary Points of GD

J(my) is non-convex (see example in the AJKS)

 Def of a f-smooth function F:
VoI (0) = VoF(Op)ll, < FIIO — 6l

which implies:

F(6) — F(6,) — VyF(6y)' (0 — 6, | < ﬁ

"2

16 — 6,13



Convergence to Stationary Points of GD

J(my) is non-convex (see example in the AJKS)

 Def of a f-smooth function F:
[VoF(0) = Vo F (Ol < PO — 6l

which implies:

F(6) — F(6,) — VyF(6y)' (0 — 6, | < ﬁ

~2

16 — 6,13

 Proposition: (stationary point convergence) Assume F(60) is -smooth.
Suppose we run gradient ascent: 0, | = 0, + n V,F(0,), withn = 1/(2p). Then:

23 max, F(0) — F(6,)
min HVQF(@)Hz ( ’ ’ )

t<T T




Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(60) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), withn = 1/(2/). Then:

26(F(0*) — F(6,)
min ||V, F(6,)3 < ( = 0)

p

< =160, =0l
2 +1 [

p
< Eﬂz\\VQF(@)HZ

| F(O1) = F(6) = VoF(6)" (0,41 — 6)

=> | F(0,) = F(0) =V F(0)TVF(6)

= nlVoFO)I* < F(6,,)) — F(0) + Eﬂz\\VgF(é’t)H%
1

|
= —||V.F(O)|* < F(O — F(0 ' < —
ZﬁH 0 (t)H = (t+1) (0, US'”QH_IB

. 1 2B(F(0*) — F(0))
= min |V, F(0)|” < — Z IVoF(6)1* < Z (F(0,4)) — F(6)) < >

I

t<T



A “landscape” result
(and “exploration”)



Vanishing Gradients and Saddle Points

4 a4




Vanishing Gradients and Saddle Points

a4 4
as
a2
o« o < SH
a1 a1

Set y = H/(H + 1). Policy param:
for a = al, 612, ag, 7[6)(61 ‘ S) — HS,CZ’ and 7[6)(614 ‘ S) — 1 — QS
(this a “direct” param, which is valid inside the simplex)

0

a1 S,y 8,03



Vanishing Gradients and Sadglle Points

a4 4
as
a9
o« o o < SH
ai aq

Set y = H/(H + 1). Policy param:
for a = al, az, ag, 7[6)(61 ‘ S) — HS,CZ’ and 7[6)(614 ‘ S) — 1 — Qs,al — HS,CZZ — HS,CZ3
(this a “direct” param, which is valid inside the simplex)

Theorem: For 0 < @ < 1 (componentwise) and QS’al < 1/4 (for all states s).
For all k < O(H/log(H)), we have that

(Where HV’;V’T@(SO)H is the operator norm of the tensor V](;V’Tﬁ(so).



“Vanilla” PG for the Softmax



Let’s consider having a ataring state
distribution with “coverage”



Let’s consider having a ataring state
distribution with “coverage”

» Given our a starting distribution p over states, recall our objective is:

max V*(p) .
0c®

where {7y|0 € © C R“} is some class of parametric policies.



Let’s consider having a ataring state
distribution with “coverage”

» Given our a starting distribution p over states, recall our objective is:

max V*(p) .
0c®

where {7y|0 € © C R“} is some class of parametric policies.

* While we are interested in good performance under p, it is helpful to optimize
under a different measure /.. Specifically, consider optimizing:V"(11), i.e.

max V" (u),
UG,

even though our ultimate goal is performance under V*(p).



notation (+ overloading)

Today: we will use d;f) for a state distribution measure.
(it should be clear from context how we use it).

di(s) = (1=7) ) V"P(s, = 5|50, 1) V(i) = E,,[VX(s)]
= A (5) = K lds (5)]

ds’f)(s, a) = (1 — y)z Y (s, =s,a, = alsy, )
h=0

Advantage function: A”(s, a) = Q”"(s,a) — V*(s)



The Softmax Policy Class



The Softmax Policy Class

exp(&’saa)
Zaf eXp((gs,a’) |

(where the number of parameters is SA).

. 779(51‘3) —



The Softmax Policy Class

exp(&’saa)
Zaf eXp((gs,a’) |

(where the number of parameters is SA).

. 779(51‘3) —

e We have that:

aloigg(d\s) _ 1[5 — S'] (lla = a’] - ”H(Cl,ls))

s’.a’
where 1] - | is the indicator function.



The Softmax Policy Class

exp(é’saa)
Zaf €Xp(‘9s,a’) |

(where the number of parameters is SA).

. myals) =

e We have that:

aloigg(d\s) _ 1[5 — S'] (lla = a’] - ”H(Cl,ls))

S,,Cl,

where 1] - | is the indicator function.

 |emma: For the softmax policy class, we have:

aVﬂe(//t) _ dﬂ'@(s)ﬂ_ (a ‘ S)A”Q(S Cl)
a0 ., 1 —y * ’ ’




Proof

oV -~
Y: ) — ETNPI.ZH l Z y'VIn zy(a | s)A™(s, a)]
[

S.d
— o 71'9
T Prﬂ [
A

= E, 1y [2 11G51.0) = (5. A" “)] 1) 3 Ew g 105, = 547G, 0)
=0 t=0

|
-

M3

y'1[s, = s] (l[at = alA”™(s,a) — my(a|s)A™(s,, a,) )]

s 1

1
T - ]/E(S’,a’)Ndﬂe 1[(s", @) = (s, )]JA™(s,a)| + 0

d™(s,a)A™(s,a),
1 —y



Remember: The Performance Difference Lemma

For all &, 7', s

, 1 ,
V0 = V0 = 7 g Fanatry 14705, )

dr(s) = (1=7) ) y"P(s, = 5|50, )
h=0



Global Convergence



Global Convergence

 The update rule for gradient ascent is:

ou+h) — 9 4 nvev(t)(lu)



Global Convergence

The update rule for gradient ascent is:
ou+h) — 9 4 nvev(t)(lu)

Concerns:
e Non-convex

» Flat gradients if 0, = oo

(, becoming any deterministic policy implies &, approaches a stationary point)



Global Convergence

 The update rule for gradient ascent is:
ou+h) — 9 4 n VQV(I)(,M)

e (Concerns:
e Non-convex

» Flat gradients if 0, = oo

(, becoming any deterministic policy implies &, approaches a stationary point)

. Theorem: Assume the 1/ is strictly positive i.e. 1(s) > O for all states s. Forn < (1 — y)°/8,
then we have that for all states s,V'”(s) — V*(s), ast — oo.



Global Convergence

The update rule for gradient ascent is:
ou+h) — 9 4 anV(’)(ﬂ)

Concerns:
e Non-convex

» Flat gradients if 0, = oo
(, becoming any deterministic policy implies &, approaches a stationary point)

Theorem: Assume the 4 is strictly positive i.e. u(s) > 0 for all states 5. For n < (1 — y)°/8,
then we have that for all states s,V'”(s) — V*(s), ast — oo.

Comments:
* rate could be exponentially slow in S, H.

e need u > 0 is necessary.



PG+Log Barrier Regularization
(fc)r the softmax)



Log Barrier Regularization



Log Barrier Regularization

. Relative-entropy for distributions p,q is: KL(p, q) := Epr[—log qg(x)/p(x)].



Log Barrier Regularization

. Relative-entropy for distributions p,q is: KL(p, q) := Epr[—log qg(x)/p(x)].

» Consider the log barrier A-regularized objective:
Ly(O):= V() = X Eynif,|KL(Unifa, 75( - | 5))]

= V"(u) + — Z log ry(a|s) + AlogA



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].

Consider the log barrier A-regularized objective:
L)(0):= V™(u) — A E,_nif. |[KL(Unifs, m( - | 5))|

= V"(u) + — Z log ry(a|s) + AlogA

Gradient Ascent:
Ot =90 + 5y Vv,L,0")



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].

Consider the log barrier A-regularized objective:
L)(0):= V™(u) — A E,_nif. |[KL(Unifs, m( - | 5))|

= V"(u) + — Z log ry(a|s) + AlogA

Gradient Ascent:
Ot =90 + 5y Vv,L,0")

Do small gradients imply a globally optimal policy?



Stationarity and Optimality



Stationarity and Optimality

* |Log barrier regularlzed objective:

Ly(0) = V™) + Z log m,(a|s) + Alog A



Stationarity and Optimality

* |Log barrier regularlzed objective:

Ly(0) = V™) + Z log my(a|s) + Alog A

 [heorem: (Log barrier regularlzatlon) Suppose @ is such that:
VoL (Ol < €,,, and €,,, < A/(25A)

then we have for all startmg state distributions p:

*
T
dp

V%(p) > V*(p) —
1=yl p Nl




Stationarity and Optimality

* |Log barrier regularlzed objective:

Ly(0) = V™) + Z log my(a|s) + Alog A

 [heorem: (Log barrier regularlzatlon) Suppose @ is such that:
VoL (Ol < €,,, and €,,, < A/(25A)

then we have for all startmg state distributions p:

*
T
dp

] — y' U oo
e where the “distribution mismatch coefficient” is

dr (d;f (s)

— Max
p oo s p(s)

VZi(p) 2 V*(p) —

) (componentwise division notation)




Global Convergence with the Log Barrier



Global Convergence with the Log Barrier

. % 24
. The smoothness of L,(0) is /, := =7 4 ~
—7




Global Convergence with the Log Barrier

. % 24
The smoothness of L,(0) is f, := a < + ?
—7

 Corollary: (Iteration complexity with log barrier regularization)

and n = 1/f,. Starting from any initial )

H 0
then for all starting state distributions p, we have

S2A2 |17 |3
min { V*(p) = V® <e€e whenever T >c
nin {V*(p) = V() } Tl

(for constant c).




Remember: The Performance Difference Lemma

For all &, 7', s

, 1 ,
V0 = V0 = 7 g Fanatry 14705, )

dr(s) = (1=7) ) y"P(s, = 5|50, )
h=0



Proof, part 1



Proof, part 1

. The proof consists of showing that: max A”(s,a) < 2A/(u(s)S) for all states s.

d



Proof, part 1

. The proof consists of showing that: max A”(s,a) < 2A/(u(s)S) for all states s.

d

* Jo see that this is sufficient, observe that by the performance difference lemma:

1 .
V() = Vip) = 1 ), 4 (9n*(al 9A™s. )

aceA

1 x _
< 1_}/;% (s) max A”™(s, a)

IN

1 .
— Z 2d™" ()M (u(s)S)

d” (s)
2 12—/17ms21X< ;(s; )

which would then complete the proof.



Proof, part 2



Proof, part 2

» need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).



Proof, part 2

» need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

L) _ d™(s)m,(a | $)A™( >+i(1 (al >>
%0, —l_yﬂSﬂ'@aS S, a s\ 2 Tpla) s

, Recall



Proof, part 2

» need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

Recall OL©O) = d(s)ry(a|s)A™(s, a) + i ( : 7.(al s))
' 00, 1—y" 77 s \a
» Solving for A*(s, a) in the first step and using ||V, L,(0)]|, < €,,, < 4/(2SA),
AP(s, a) = 1 —vy < | oL,(0) : A (1 | ))
d,(s) \my(als) 06;, S my(a|s)A
< 1 —vy ( 1 A : A )
— d,(s) \my(als) 2SA S
< : ( : / | / ) using that d’%(s) > (1 — y)u(s)
—u(s) \my(als) 2SA S S



Proof, part 2

need to show A”™(s,a) < 2A/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

Recall OL©O) = d(s)ry(a|s)A™(s, a) + i ( : 7.(al s))
00, 1—y" 77 s \a
Solving for A™(s, a) in the first step and using ||V, L,(0)]|, < €,,, < 4/(25A),
AP(s, a) = 1 —vy ( 1 JL,(0) : A (1 | ))
d,(s) \my(als) 06;, S my(a|s)A

< 1 —vy ( 1 A : A )

— d,(s) \my(als) 2SA S

< : ( : / / ) using that d’%(s) > (1 — y)u(s)

—u(s) \my(als) 2SA S S

Suppose we could show that 7zy(a | s) > 1/(2A), when A™(s,a) > 0, then

| | A A | A A 24 |
( | ) < (ZA | ) = and the proof is done!
u(s) \my(als) 2SA S u(s) 2SA S u(s)S




Proof, part 3



Proof, part 3

» for (s, a) such that A™(s,a) > 0, we want show zy(a|s) > 1/(2A).



Proof, part 3

e for (s,a) such that A"(s,a) > 0, we want show zy(a|s) = 1/(2A).

+ The gradient norm assumption ||V ,L,(0)||, < €,,, implies that:

oL,(0) | B A1
= d,’(s)mya | $)A™(s, a) + S <X — my(a| S))

€ > =
P! a0, , | —vy

A1
> 0+ S (— — 1y(a| S)) using A™(s,a) > 0

A



Proof, part 3

e for (s,a) such that A"(s,a) > 0, we want show zy(a|s) = 1/(2A).

+ The gradient norm assumption ||V ,L,(0)||, < €,,, implies that:

oL,(6 |
€ > iO) = d/f@(s)itg(a | $)A™(s, a) + i (l — my(a| S))

P00 11—y

S.a

S \A

A (1
> 0+ S (X — 1y(a| s)) using A™(s,a) > 0

» Rearranging and using our assumption €, < 4/(25A),
€ 1 1
Tals) =2 — — Z >
fals) 23 ——— 25




