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Policy Optimization
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Today: Policy Gradient Deriviation

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO: 
(Williams 92, Kakade 02, Schulman et al 15, 17)

J(πθ) = 𝔼πθ [
∞

∑
h=0

γhrh]
θt+1 = θt + η∇θJ(πθ) |θ=θt

πθ(a |s) = π(a |s; θ)

Main question for today’s lecture: 

how to compute the gradient?

∇θJ(θ) :=
1

1 − γ
𝔼s,a∼dπθ [∇θln πθ(a |s)Qπθ(s, a)]



Derivation of unbiased Stochastic Policy Gradient

∇θJ(θ) :=
1

1 − γ
𝔼s,a∼dπθ [∇θln πθ(a |s)Qπθ(s, a)]

Draw , roll-in  to generate h ∝ γh πθ sh, ah ∼ ℙπθ
h

Roll-out  from  terminate with prob ,  πθ (sh, ah) : 1 − γ Q̃ πθ(sh, ah) =
t≥h

∑
τ=h

rτ

Unbiased estimate: ∇θln πθ(ah |sh) Q̃ πθ(sh, ah)



Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for 
Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A

πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

2. Softmax linear Policy 
(e.g., for linear MDPs):

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

3. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))



Convergence to Stationary Point

 is non-convex (see example in the monograph)J(πθ)

where  𝔼 [ ∇̃ θJ(θt)] = ∇θJ(θt), 𝔼 [∥∇̃ θJ(θt)∥2
2] ≤ σ2,

[Theorem] If  is -smooth, and we run SGA: J(θ) β θt+1 = θt + η ∇̃ θJ(θt)

then: 

𝔼 [ 1
T ∑

t

∥∇θJ(θt)∥2
2] ≤ O ( βσ2/T)

Def of -smooth:β

J(θ) − J(θ0) − ∇θJ(θ0)⊤(θ − θ0) ≤
β
2

∥θ − θ0∥2
2, ∀θ, θ0

∥∇θJ(θ) − ∇θJ(θ0)∥2 ≤ β∥θ − θ0∥2



Today (+future):

When do PG methods converge to a global optima? 

(+ what about function approximation?)



Today:

• Let’s consider using exact gradients.

• This allows us to ignore estimation issues

• Let’s focus on “complete” parameterizations (e.g. the “tabular” case) 

 contains all stochastic policies (e.g. softmax) 

• I: Landscape of the problem

• As a general non-convex optimization problem: 

do small gradients imply good performance?

• what about “exploration”?


• II: Global convergence results

Π



PG as non-convex optimization



Convergence to Stationary Points of GD

 is non-convex (see example in the AJKS)J(πθ)
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• Def of a -smooth function F: 
 

which implies: 

 

 

β
∥∇θF(θ) − ∇θF(θ0)∥2 ≤ β∥θ − θ0∥2

F(θ) − F(θ0) − ∇θF(θ0)⊤(θ − θ0) ≤
β
2

∥θ − θ0∥2
2



Convergence to Stationary Points of GD

 is non-convex (see example in the AJKS)J(πθ)

• Def of a -smooth function F: 
 

which implies: 

 

 

β
∥∇θF(θ) − ∇θF(θ0)∥2 ≤ β∥θ − θ0∥2

F(θ) − F(θ0) − ∇θF(θ0)⊤(θ − θ0) ≤
β
2

∥θ − θ0∥2
2

• Proposition: (stationary point convergence) Assume  is -smooth.  
Suppose we run gradient ascent: , with . Then: 

F(θ) β
θt+1 = θt + η∇θF(θt) η = 1/(2β)

min
t≤T

∥∇θF(θt)∥2
2 ≤

2β( maxθ F(θ) − F(θ0))
T



Convergence to Stationary Point

Proposition: (stationary point convergence) Assume  is -smooth.  
Suppose we run gradient ascent: , with . Then: 

F(θ) β
θt+1 = θt + η∇θF(θt) η = 1/(2β)

min
t≤T

∥∇θF(θt)∥2
2 ≤

2β(F(θ⋆) − F(θ0))
T

F(θt+1) − F(θt) − ∇θF(θt)⊤(θt+1 − θt) ≤
β
2

∥θt+1 − θt∥2

⇒ F(θt+1) − F(θt) − η∇θF(θt)⊤ ∇θF(θt) ≤
β
2

η2∥∇θF(θt)∥2

⇒ η∥∇θF(θt)∥2 ≤ F(θt+1) − F(θt) +
β
2

η2∥∇θF(θt)∥2
2

⇒
1

2β
∥∇θF(θt)∥2 ≤ F(θt+1) − F(θt) using η ≤

1
β

⇒ min
t≤T

∥∇θF(θt)∥2 ≤
1
T ∑

t

∥∇θF(θt)∥2 ≤ ∑
t

(F(θt+1) − F(θt)) ≤
2β(F(θ⋆) − F(θ0)

T



A “landscape” result 
(and “exploration”)



Vanishing Gradients and Saddle Points
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Figure 0.1: (Vanishing gradient example) A deterministic, chain MDP of length H + 2. We consider a policy where
⇡(a|si) = ✓si,a for i = 1, 2, . . . , H . Rewards are 0 everywhere other than r(sH+1, a1) = 1. See Proposition 9.1.

9.1 Vanishing Gradients and Saddle Points

To understand the necessity of optimizing under a distribution µ that is different from ⇢, let us first give an informal
argument that some condition on the state distribution of ⇡, or equivalently µ, is necessary for stationarity to imply
optimality. For example, in a sparse-reward MDP (where the agent is only rewarded upon visiting some small set of
states), a policy that does not visit any rewarding states will have zero gradient, even though it is arbitrarily suboptimal
in terms of values. Below, we give a more quantitative version of this intuition, which demonstrates that even if ⇡
chooses all actions with reasonable probabilities (and hence the agent will visit all states if the MDP is connected),
then there is an MDP where a large fraction of the policies ⇡ have vanishingly small gradients, and yet these policies
are highly suboptimal in terms of their value.

Concretely, consider the chain MDP of length H + 2 shown in Figure 0.1. The starting state of interest is state s0 and
the discount factor � = H/(H + 1). Suppose we work with the direct parameterization, where ⇡✓(a|s) = ✓s,a for
a = a1, a2, a3 and ⇡✓(a4|s) = 1� ✓s,a1 � ✓s,a2 � ✓s,a3 . Note we do not over-parameterize the policy. For this MDP
and policy structure, if we were to initialize the probabilities over actions, say deterministically, then there is an MDP
(obtained by permuting the actions) where all the probabilities for a1 will be less than 1/4.

The following result not only shows that the gradient is exponentially small in H , it also shows that many higher order
derivatives, up to O(H/ logH), are also exponentially small in H .

Proposition 9.1 (Vanishing gradients at suboptimal parameters). Consider the chain MDP of Figure 0.1, with H + 2
states, � = H/(H + 1), and with the direct policy parameterization (with 3|S| parameters, as described in the text
above). Suppose ✓ is such that 0 < ✓ < 1 (componentwise) and ✓s,a1 < 1/4 (for all states s). For all k 

H

40 log(2H)�1,
we have

��rk

✓
V ⇡✓ (s0)

��  (1/3)H/4, where r
k

✓
V ⇡✓ (s0) is a tensor of the kth order derivatives of V ⇡✓ (s0) and the

norm is the operator norm of the tensor.1 Furthermore, V ?(s0)� V ⇡✓ (s0) � (H + 1)/8� (H + 1)2/3H .

We do not prove this lemma here (see Section 9.5). The lemma illustrates that lack of good exploration can indeed be
detrimental in policy gradient algorithms, since the gradient can be small either due to ⇡ being near-optimal, or, simply
because ⇡ does not visit advantageous states often enough. Furthermore, this lemma also suggests that varied results
in the non-convex optimization literature, on escaping from saddle points, do not directly imply global convergence
due to that the higher order derivatives are small.

While the chain MDP of Figure 0.1, is a common example where sample based estimates of gradients will be 0 under
random exploration strategies; there is an exponentially small in H chance of hitting the goal state under a random
exploration strategy. Note that this lemma is with regards to exact gradients. This suggests that even with exact
computations (along with using exact higher order derivatives) we might expect numerical instabilities.

1The operator norm of a kth-order tensor J 2 Rd⌦k
is defined as supu1,...,uk2Rd : kuik2=1hJ, u1 ⌦ . . .⌦ udi.

80



Vanishing Gradients and Saddle Points

Set . Policy param:
 

(this a “direct” param, which is valid inside the simplex)  

γ = H/(H + 1)
for a = a1, a2, a3, πθ(a |s) = θs,a,  and  πθ(a4 |s) = 1 − θs,a1

− θs,a2
− θs,a3

s0 s1 · · · sH sH+1

a1

a1 a1
a1

a2 a2

a3

a4
a3

a4

Figure 0.1: (Vanishing gradient example) A deterministic, chain MDP of length H + 2. We consider a policy where
⇡(a|si) = ✓si,a for i = 1, 2, . . . , H . Rewards are 0 everywhere other than r(sH+1, a1) = 1. See Proposition 9.1.

9.1 Vanishing Gradients and Saddle Points

To understand the necessity of optimizing under a distribution µ that is different from ⇢, let us first give an informal
argument that some condition on the state distribution of ⇡, or equivalently µ, is necessary for stationarity to imply
optimality. For example, in a sparse-reward MDP (where the agent is only rewarded upon visiting some small set of
states), a policy that does not visit any rewarding states will have zero gradient, even though it is arbitrarily suboptimal
in terms of values. Below, we give a more quantitative version of this intuition, which demonstrates that even if ⇡
chooses all actions with reasonable probabilities (and hence the agent will visit all states if the MDP is connected),
then there is an MDP where a large fraction of the policies ⇡ have vanishingly small gradients, and yet these policies
are highly suboptimal in terms of their value.

Concretely, consider the chain MDP of length H + 2 shown in Figure 0.1. The starting state of interest is state s0 and
the discount factor � = H/(H + 1). Suppose we work with the direct parameterization, where ⇡✓(a|s) = ✓s,a for
a = a1, a2, a3 and ⇡✓(a4|s) = 1� ✓s,a1 � ✓s,a2 � ✓s,a3 . Note we do not over-parameterize the policy. For this MDP
and policy structure, if we were to initialize the probabilities over actions, say deterministically, then there is an MDP
(obtained by permuting the actions) where all the probabilities for a1 will be less than 1/4.

The following result not only shows that the gradient is exponentially small in H , it also shows that many higher order
derivatives, up to O(H/ logH), are also exponentially small in H .

Proposition 9.1 (Vanishing gradients at suboptimal parameters). Consider the chain MDP of Figure 0.1, with H + 2
states, � = H/(H + 1), and with the direct policy parameterization (with 3|S| parameters, as described in the text
above). Suppose ✓ is such that 0 < ✓ < 1 (componentwise) and ✓s,a1 < 1/4 (for all states s). For all k 

H

40 log(2H)�1,
we have

��rk

✓
V ⇡✓ (s0)

��  (1/3)H/4, where r
k

✓
V ⇡✓ (s0) is a tensor of the kth order derivatives of V ⇡✓ (s0) and the

norm is the operator norm of the tensor.1 Furthermore, V ?(s0)� V ⇡✓ (s0) � (H + 1)/8� (H + 1)2/3H .

We do not prove this lemma here (see Section 9.5). The lemma illustrates that lack of good exploration can indeed be
detrimental in policy gradient algorithms, since the gradient can be small either due to ⇡ being near-optimal, or, simply
because ⇡ does not visit advantageous states often enough. Furthermore, this lemma also suggests that varied results
in the non-convex optimization literature, on escaping from saddle points, do not directly imply global convergence
due to that the higher order derivatives are small.

While the chain MDP of Figure 0.1, is a common example where sample based estimates of gradients will be 0 under
random exploration strategies; there is an exponentially small in H chance of hitting the goal state under a random
exploration strategy. Note that this lemma is with regards to exact gradients. This suggests that even with exact
computations (along with using exact higher order derivatives) we might expect numerical instabilities.

1The operator norm of a kth-order tensor J 2 Rd⌦k
is defined as supu1,...,uk2Rd : kuik2=1hJ, u1 ⌦ . . .⌦ udi.

80



Vanishing Gradients and Saddle Points

Set . Policy param:
 

(this a “direct” param, which is valid inside the simplex)  

γ = H/(H + 1)
for a = a1, a2, a3, πθ(a |s) = θs,a,  and  πθ(a4 |s) = 1 − θs,a1

− θs,a2
− θs,a3

Theorem: For  (componentwise) and  (for all states ).  
For all , we have that

0 < θ < 1 θs,a1
< 1/4 s

k ≤ O(H/log(H))
 ∥∇k

θVπθ(s0)∥ ≤ (1/3)H/4

(where  is the operator norm of the tensor .∥∇k
θVπθ(s0)∥ ∇k

θVπθ(s0)
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“Vanilla” PG for the Softmax



Let’s consider having a ataring state 
distribution with “coverage”



Let’s consider having a ataring state 
distribution with “coverage”

• Given our a starting distribution  over states, recall our objective is: 
 

where  is some class of parametric policies. 

ρ
max
θ∈Θ

Vπθ(ρ) .

{πθ |θ ∈ Θ ⊂ ℝd}



Let’s consider having a ataring state 
distribution with “coverage”

• Given our a starting distribution  over states, recall our objective is: 
 

where  is some class of parametric policies. 

ρ
max
θ∈Θ

Vπθ(ρ) .

{πθ |θ ∈ Θ ⊂ ℝd}

• While we are interested in good performance under , it is helpful to optimize 
under a different measure . Specifically, consider optimizing: , i.e. 

 

even though our ultimate goal is performance under .

ρ
μ Vπθ(μ)

max
θ∈Θ

Vπθ(μ) ,

Vπθ(ρ)



notation (+ overloading)

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙ(sh = s, ah = a |s0, π)

dπ
s0

(s) = (1 − γ)
∞

∑
h=0

γhℙ(sh = s |s0, π)

Today: we will use  for a state distribution measure.  
(it should be clear from context how we use it).

dπ
s0

Advantage function: Aπ(s, a) = Qπ(s, a) − Vπ(s)

Vπ(μ) = Es∼μ[Vπ(s)]
dπ

μ(s) = Es0∼μ[dπ
s0

(s)]



The Softmax Policy Class



The Softmax Policy Class

•  

(where the number of parameters is SA). 

πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
,



The Softmax Policy Class

•  

(where the number of parameters is SA). 

πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
,

• We have that: 

 

where  is the indicator function. 

∂ log πθ(a |s)
∂θs′￼,a′￼

= 1[s = s′￼](1[a = a′￼] − πθ(a′￼|s))
1[ ⋅ ]



The Softmax Policy Class

•  

(where the number of parameters is SA). 

πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
,

• We have that: 

 

where  is the indicator function. 

∂ log πθ(a |s)
∂θs′￼,a′￼

= 1[s = s′￼](1[a = a′￼] − πθ(a′￼|s))
1[ ⋅ ]

• Lemma: For the softmax policy class, we have: 
∂Vπθ(μ)

∂θs,a
=

1
1 − γ

dπθ
μ (s)πθ(a |s)Aπθ(s, a)






∂Vπθ(μ)
∂θs,a

= Eτ∼Prπθ
μ [

∞

∑
t=0

γt ∇θln πθ(a |s)Aπθ(s, a)]
= Eτ∼Prπθ

μ [
∞

∑
t=0

γt1[st = s](1[at = a]Aπθ(s, a) − πθ(a |s)Aπθ(st, at))]
= Eτ∼Prπθ

μ [
∞

∑
t=0

γt1[(st, at) = (s, a)]Aπθ(s, a)] + πθ(a |s)
∞

∑
t=0

γtEτ∼Prπθ
μ [1[st = s]Aπθ(st, at)]

=
1

1 − γ
E(s′￼,a′￼)∼dπθ [1[(s′￼, a′￼) = (s, a)]Aπθ(s, a)] + 0

=
1

1 − γ
dπθ(s, a)Aπθ(s, a) ,

Proof



Remember: The Performance Difference Lemma
For all :
π, π′￼, s0

Vπ(s0) − Vπ′￼(s0) =
1

1 − γ
𝔼s∼dπ

s0
𝔼a∼π(⋅|s) [Aπ′￼(s, a)]

dπ
s0

(s) = (1 − γ)
∞

∑
h=0

γhℙ(sh = s |s0, π)



Global Convergence
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• Non-convex

• Flat gradients if   

(  becoming any deterministic policy implies  approaches a stationary point) 
θt → ∞

πt θt
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• Concerns:

• Non-convex

• Flat gradients if   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θt → ∞

πt θt

• Theorem: Assume the  is strictly positive i.e.  for all states . For , 
then we have that for all states , . 

μ μ(s) > 0 s η ≤ (1 − γ)3/8
s V(t)(s) → V⋆(s),  as t → ∞



Global Convergence
• The update rule for gradient ascent is: 

 θ(t+1) = θ(t) + η∇θV(t)(μ)

• Concerns:

• Non-convex

• Flat gradients if   

(  becoming any deterministic policy implies  approaches a stationary point) 
θt → ∞

πt θt

• Theorem: Assume the  is strictly positive i.e.  for all states . For , 
then we have that for all states , . 

μ μ(s) > 0 s η ≤ (1 − γ)3/8
s V(t)(s) → V⋆(s),  as t → ∞

• Comments:

• rate could be exponentially slow in S, H.

• need  is necessary.μ > 0



PG+Log Barrier Regularization 
(for the softmax)
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• Relative-entropy for distributions p,q is:  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• Consider the log barrier -regularized objective: 

 

λ
Lλ(θ):= Vπθ(μ) − λ Es∼UnifS[KL(UnifA, πθ( ⋅ |s))]

= Vπθ(μ) +
λ

SA ∑
s,a

log πθ(a |s) + λ log A
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• Gradient Ascent:  
 θ(t+1) = θ(t) + η∇θLλ(θ(t))



Log Barrier Regularization

• Relative-entropy for distributions p,q is:  KL(p, q) := Ex∼p[−log q(x)/p(x)] .

• Consider the log barrier -regularized objective: 

 

λ
Lλ(θ):= Vπθ(μ) − λ Es∼UnifS[KL(UnifA, πθ( ⋅ |s))]

= Vπθ(μ) +
λ

SA ∑
s,a

log πθ(a |s) + λ log A

• Gradient Ascent:  
 θ(t+1) = θ(t) + η∇θLλ(θ(t))

• Do small gradients imply a globally optimal policy?
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• Log barrier regularized objective: 

Lλ(θ) = Vπθ(μ) +
λ
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log πθ(a |s) + λ log A



Stationarity and Optimality

• Log barrier regularized objective: 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Stationarity and Optimality

• Log barrier regularized objective: 

Lλ(θ) = Vπθ(μ) +
λ

SA ∑
s,a

log πθ(a |s) + λ log A

•  Theorem: (Log barrier regularization) Suppose  is such that: 
  and  

then we have for all starting state distributions : 

θ
∥∇θLλ(θ)∥2 ≤ ϵopt ϵopt ≤ λ/(2SA)

ρ

Vπθ(ρ) ≥ V⋆(ρ) −
2λ

1 − γ
dπ⋆

ρ

μ ∞
• where the “distribution mismatch coefficient” is 

    (componentwise division notation)
dπ⋆

ρ

μ ∞
= max

s (
dπ⋆

ρ (s)
μ(s) )
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Global Convergence with the Log Barrier

• The smoothness of  is  Lλ(θ) βλ :=
8γ

(1 − γ)3
+

2λ
S

• Corollary: (Iteration complexity with log barrier regularization) 

Set . Starting from any initial ,  

then for all starting state distributions , we have

 

(for constant c).

λ =
ϵ(1 − γ)

2
dπ⋆

ρ

μ ∞

 and  η = 1/βλ θ(0)

ρ

min
t<T

{V⋆(ρ) − V(t)(ρ)} ≤ ϵ whenever T ≥ c
S2A2

(1 − γ)6 ϵ2

dπ⋆

ρ

μ

2

∞



Remember: The Performance Difference Lemma
For all :
π, π′￼, s0

Vπ(s0) − Vπ′￼(s0) =
1

1 − γ
𝔼s∼dπ

s0
𝔼a∼π(⋅|s) [Aπ′￼(s, a)]

dπ
s0

(s) = (1 − γ)
∞

∑
h=0

γhℙ(sh = s |s0, π)
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Proof, part 1
• The proof consists of showing that:  for all states s.  max

a
Aπθ(s, a) ≤ 2λ/(μ(s)S)

• To see that this is sufficient, observe that by the performance difference lemma: 

 

which would then complete the proof.

V⋆(ρ) − Vπθ(ρ) =
1

1 − γ ∑
s,a

dπ⋆

ρ (s)π⋆(a |s)Aπθ(s, a)

≤
1

1 − γ ∑
s

dπ⋆

ρ (s) max
a∈A

Aπθ(s, a)

≤
1

1 − γ ∑
s

2dπ⋆

ρ (s)λ/(μ(s)S)

≤
2λ

1 − γ
max

s (
dπ⋆

ρ (s)
μ(s) ) .
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• need to show  for all .  consider  where that  (else claim is true).Aπθ(s, a) ≤ 2λ/(μ(s)S) (s, a) (s, a) Aπθ(s, a) ≥ 0

• Recall 
∂Lλ(θ)
∂θs,a

=
1

1 − γ
dπθ

μ (s)πθ(a |s)Aπθ(s, a) +
λ
S ( 1

A
− πθ(a |s))

• Solving for  in the first step and using , Aπθ(s, a) ∥∇θLλ(θ)∥2 ≤ ϵopt ≤ λ/(2SA)

Aπθ(s, a) =
1 − γ
dπθ

μ (s) ( 1
πθ(a |s)

∂Lλ(θ)
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+
λ
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1
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≤
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Proof, part 2
• need to show  for all .  consider  where that  (else claim is true).Aπθ(s, a) ≤ 2λ/(μ(s)S) (s, a) (s, a) Aπθ(s, a) ≥ 0

• Recall 
∂Lλ(θ)
∂θs,a

=
1

1 − γ
dπθ

μ (s)πθ(a |s)Aπθ(s, a) +
λ
S ( 1

A
− πθ(a |s))

• Solving for  in the first step and using , Aπθ(s, a) ∥∇θLλ(θ)∥2 ≤ ϵopt ≤ λ/(2SA)

Aπθ(s, a) =
1 − γ
dπθ

μ (s) ( 1
πθ(a |s)

∂Lλ(θ)
∂θs,a

+
λ
S (1 −

1
πθ(a |s)A ))

≤
1 − γ
dπθ

μ (s) ( 1
πθ(a |s)

λ
2SA

+
λ
S )

≤
1

μ(s) ( 1
πθ(a |s)

λ
2SA

+
λ
S ) using that dπθ

μ (s) ≥ (1 − γ)μ(s)

• Suppose we could show that , when , then

   and the proof is done!

πθ(a |s) ≥ 1/(2A) Aπθ(s, a) ≥ 0
1

μ(s) ( 1
πθ(a |s)

λ
2SA

+
λ
S ) ≤

1
μ(s) (2A

λ
2SA

+
λ
S ) =

2λ
μ(s)S
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Proof, part 3

• for  such that , we want show . (s, a) Aπθ(s, a) ≥ 0 πθ(a |s) ≥ 1/(2A)

• The gradient norm assumption  implies that: 

 

∥∇θLλ(θ)∥2 ≤ ϵopt

ϵopt ≥
∂Lλ(θ)
∂θs,a

=
1

1 − γ
dπθ

μ (s)πθ(a |s)Aπθ(s, a) +
λ
S ( 1

A
− πθ(a |s))

≥ 0 +
λ
S ( 1

A
− πθ(a |s)) using  Aπθ(s, a) ≥ 0

• Rearranging and using our assumption , ϵopt ≤ λ/(2SA)

πθ(a |s) ≥
1
A

−
ϵoptS

λ
≥

1
2A

.


