Policy Gradient: Optimality

CS 6789: Foundations of Reinforcement Learning



Recap



Policy Optimization

At last — a computer program that
can beat a champion Go player PAGE4g4

ALL SYSTEMS GO

[AlphaZero, Silver et.al, 17] [OpenAl Five, 18] } [OpenAl, 19]




Today: Policy Gradient Deriviation

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

myals) = n(als;0)  J(my) =E, [2 yhrh]
h=0

0t+1 - Ht +7 VGJ(EH) |9=9t

Main question for today’s lecture:
how to compute the gradient?

1
VoJ(6) = I—[Es,aNdﬂ(, | Voln zy(a|5)Q™(s, a)|



Derivation of unbiased Stochastic Policy Gradient
1
V,J(0) := I—_yEs,Mﬂ,, | Voln my(a | 5)Q%(s, a)

Draw h o ¥, roll-in 7, to generate s, a;, ~ IPZG

1>h
Roll-out 7, from (s;,, a;,) : terminate with prob 1 —y, Q™(s;, a,) = Z r,
=h

Unbiased estimate: Vyln zy(a, | s,) Q™(s;, a;,)



Policy Gradient: Examples of Policy Parameterization (discrete actions)

] 2. Softmax linear Policy 3. Neural Policy:
1. Softmax Policy for (e.g., for linear MDPs):
Tabular MDPs:
Feature vector ¢(s,a) € R? and Neural network
Ora € R Vs, a €5XA parameter § € R? Jo: SXA-R
exp(6; )
myals) = -
DIPOS () @ls) exp(0' ¢ (s, a)) (als) exp(fy(s, @))
¢ ’ T = , oals) = ;
’ Y exp(@T(s, a") Y exp(fils, @)



Convergence to Stationary Point

J(7y) is non-convex (see example in the monograph)

Def of -smooth:
IVoJ(0) — Vo J(Op)ll, < BIIO — Gl

[90) = 560 = V10070 - 69| < Z110 - a1, e,

[Theorem] If J(0) is f-smooth, and we run SGA: 0,, | = 0, + ;fv},J(e,)

where [E [VHJ(QZ)] =V,J@,), E [llVQJ(H,)H%] < o?,

q £ then:
TZ:JI (@@X < [%Zt: ||v0J(9,)||§] <0 <\//;(;T/T>



Today (+future):

When do PG methods converge to a global optima?
(+ what about function approximation?)



Today:

» Let’s consider using exact gradients.
* This allows us to ignore estimation issues
* Let’s focus on “complete” parameterizations (e.g. the “tabular” case)

IT contains all stochastic policies (e.g. softmax)

* |: Landscape of the problem
* As a general non-convex optimization problem:
do small gradients imply good performance?
* what about “exploration”?
 |I: Global convergence results



PG as non-convex optimization



Convergence to Stationary Points of GD

J(7y) is non-convex (see example in the AJKS)



Convergence to Stationary Points of GD

J(7y) is non-convex (see example in the AJKS)

* Def of a f~smooth function F:
IVoF(0) = VoF(0p)ll, < A0 = 6l
which implies:

FO) ~ F@) - VoF 00 - 09| <2

EIIQ—%II%



Convergence to Stationary Points of GD

J(7y) is non-convex (see example in the AJKS)

* Def of a f~smooth function F:
IVoF(0) = VoF(0p)ll, < A0 = 6l
which implies:

FO) - FO) - V,F @) 0~ )| <E 10— a3

 Proposition: (stationary point convergence) Assume F(6) is f-smooth.
Suppose we run gradient ascent: 8, | = 0, + n V,F(0,), withnp = 1/(2f). Then:
2/3( max, F(0) — F(6,))

T

min || VHF(H,)H% <
1<T



Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(6) is f-smooth.
Suppose we run gradient ascent: 0, = 6, + n V,F(6,), with n = 1/(2f). Then:

28(F(0™) - F(6)))
T

min ||V,F(0)||3 <
t<T

p
< 5||9t+1 - et”z

p
< 5772|IV9F(9t)I|2

| FO) = F(0) = Vo F0)T (01~ 0)

=> ‘F(0t+1) — F(0) —nV,F(O)TV,F@)

p
= nlIVeFO)II> < F(0,.) — F(6) + 5’72||V9F(91)||%

! 1
= —||VoFO)II* < F6,.) —F©®,) usingn<—
25 oL'\U; +1 t 5

. 1
= min||VoFO)I < - Z IV, F@O)* < Z (FO,) - F(6)) <

0 Wagéj/
e 9h@>

Lo ‘Df@@&~

2p(F(0*) — F(6))

T



A “landscape” result
(and “exploration”)



Vanishing Gradients and Saddle Points

a4 G4
g
oy az
OOl O
ai ai — /\
=L



Vanishing Gradients and Saddle Points

a4

Q4
RN
oy L
O ORC O
ai ai

Sety = H/(H + 1). Policy param:
fora =ay,ay, a5, mylals) =06;, and myay|ls)=1-6;, -0, -0,
(this a “direct” param, which is valid inside the simplex)



Vanishing Gradients and Saddle Points

ay a4y
as
“... Taen /5] 4|
S
a al
Sety = H/(H + 1). Policy param "B/‘(Vl@& [
for a = ay,ay, a3, mylal|s)=0,, and mya,|s)=1- Qs’a] — 9& — 0,4, /Zb

(this a “direct” param, which is valid inside the simplex)

Theorem: For 0 < @ < 1 (componentwise) and Hs,al < 1/4 (for all states s).
For all k < O(H/log(H)), we have that

(where ||V§V”9(s0)|| is the operator norm of the tensor VSV”H(SO).

h
/)




“Vanilla” PG for the Softmax



Let’s consider having a ataring state
distribution with “coverage” ., ... "

W a §S<a‘/~'¥f
w X 6. Y



Let’s consider having a ataring state
distribution with “coverage”

« Given our a starting distribution p over states, recall our objective is:

Ty _ — 779
T V). F Esep Vol

where {my|0 € O C R?} is some class of parametric policies.



Let’s consider having a ataring state
distribution with “coverage”

(} =, (A/LM’F

« Given our a starting distribution p over states, recall our objective is: o

T W cang.
max V' . A

0O ] \ ) o N

where {m,| 0 € ® C R} is some class of parametric policies. 4

= g 01*—/ Some -
* While we are interested in d performance under p, it is helpful to optimize ¢ O
under a different measur@pecifically, consider optimizing: V"(11), i.e.

max V™(u),
0e® fﬁ\
even though our ultimate goal is performance under V"(p). Uje ) V%%

- Z\} &\M/LLSc/% Q,,L>

\VA DCQO COVadayg '



notation (+ overloading)

Today: we will use dg for a state distribution measure.
(it should be clear from context how we use it).

di(s) = (1 =7) ), 7"Ps;, = 5150, 7) Vi) = B, [VA(s)]
=0 di(s) = E, . [d(5)]

dr(s,a) = (1 =) )\ y"P(s, = 5,0, = a| s, 7)
h=0

Advantage function: A”(s,a) = Q"(s,a) — V*(s)



The Softmax Policy Class



The Softmax Policy Class

exp(b;,,)
za/ exp(gs,a/) ,

(where the number of parameters is SA).

. mlals) =



The Softmax Policy Class

exp(b;,,)
za/ exp(gs,a/) ,

(where the number of parameters is SA).

. mlals) =

* We have that:

dlogagg(éﬂs) = l[s = S/] <1[a - al] B ﬂe(a/“))

s’a’
where 1[ - ] is the indicator function.



The Softmax Policy Class

exp(b;,,)
Za/ exp(gs,a/) ,

(where the number of parameters is SA).

my(als) =

We have that:

dlogagg(CHS) = l[s = S/] <1[a - al] B ﬂe(a/|S)>

s’a’
where 1[ - ] is the indicator function.

Lemma: For the softmax policy class, we have:

oV7™(u) 1
= d¥(s)m)(a|s)A™(s, a
= T Omlal 9450

s,a




Proof

oV &
00 _ B o Z v' Voln zy(al s)A™(s, a)]
s,a | =0

= E1~Pr,’59 Z y[s, = 5] <1[at = a]A™(s,a) — my(al|s)A™(s, at)>]
=0

= T~Pry? Z )/tl[(St, ar) = (s,a)]A™(s, a)] + ﬂ@(a | s) Z ytEr~PrZH ll[st = S]Aﬂg(st’ at)]

| =0 =0

1
= ——E(yayan [L(5,.0) = (5,0)]A™(s, a)] +0 at

1—y : o
d™(s, a)A™(s, a), U/{ B (S &L\ = M{' (6\ M, ( f&L\
! Ve " 2

-y



Remember: The Performance Difference Lemma

For all , ', s:

/ I /
VH(s) — VZ(s0) = T EvaEamncis A7 (s, a)]

N Ny /‘5 1

o0 A oS
dr(s) = (1 =) ) y"P(s, = s|5p.7) N
h=0



Global Convergence



Global Convergence

* The update rule for gradient ascent is:

QU+ — g 4 n ng(t)(ﬂ)



Global Convergence

The update rule for gradient ascent is:
QU+ — g 4 n ng(t)(ﬂ)

Concerns:
* Non-convex

- Flat gradients if 6, = oo
(7, becoming any deterministic policy implies 6, approaches a stationary point)



Global Convergence L | Lf

The update rule for gradient ascent is:

9(t+1) — 0(1) + ;/IVHV(I)(M) J\ﬂ ( %> 7 O

Concerns: M
* Non-convex

- Flat gradients if 6, = oo
(, becoming any deterministic policy implies 6, apprgaches a stationary point)

Theorem: Assume the 4 is strictly positive i.e. u(s) > 0 for all states s. Forn < (1 — y)*/8,
then we have that for all states s,V'"(s) — V*(s), ast — oo.



Global Convergence

The update rule for gradient ascent is:
QU+ — g 4 n ng(t)(ﬂ)

Concerns:
* Non-convex

- Flat gradients if 6, = oo
(7, becoming any deterministic policy implies 6, approaches a stationary point)

Theorem: Assume the 4 is strictly positive i.e. u(s) > 0 for all states s. Forn < (1 — y)*/8,
then we have that for all states s,V'"(s) — V*(s), ast — oo.

Comments:

* rate could be exponentially slow in S, H. al

« need u > 0 is necessary. —) 0/t 5 (53 % O
-



PG+Log Barrier Regularization
(for the softmax)



Log Barrier Regularization



Log Barrier Regularization

« Relative-entropy for distributions p,q is: KL(p, q) := Epr[—log qx)/p(x)] .



Log Barrier Regularization /k»y %S

v N 0
| I kK
« Relative-entropy for distributions p,q is: KL(p, q) := E - log q(x)/p(x)] 2
« Consider the log barrier A-regularized objective: 3 \P 5
Ly(0):= V() — A E, _Unit,[KL(Unif, (- |5))] N bl 7/ heade,” L

A
= V%(u)+— ) lo als)+ AlogA ~
(1 +<= X log mfals) + Alog D%m\;\ (0
> €45



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qx)/p(x)] .

Consider the log barrier A-regularized objective:
L(0):= V™(u) — A E,_ynit, [KL(Unifa, 7( - | )]

= V(u) + 2 Y logmyals)+ Alog A
SA &

Gradient Ascent:
o) = 90 4+ yV,L,(07)



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := ExNP[—log qx)/p(x)] .

Consider the log barrier A-regularized objective:
Ly(0):= V™(u) — A Ey. nif, [KL(Unify, 74 - |5))]

= V(u) + 2 Y logmyals)+ Alog A
SA &

Gradient Ascent:
o) = 90 4+ yV,L,(07)

Do small gradients imply a globally optimal policy?



Stationarity and Optimality



Stationarity and Optimality

* Log barrier regularized objective:

A
L(0) = Vi) + Z log 7,(a|s) + Alog A



Stationarity and Optimality

* Log barrier regulariz/led objective:
L(0) = Vi) + Z log 7,(a|s) + Alog A

« Theorem: (Log barrier regularization) Suppose @ is such that:
||V9L/1(0)||2 S €0pt and €0pl < /1/(2SA)
then we have for all startlng state distributions p:

Va(p) > V*(p) — —||—||



Stationarity and Optimality

* Log barrier regularized objective:

A
L(0) = Vi) + Z log 7,(a|s) + Alog A

« Theorem: (Log barrier regularization) Suppose @ is such that:
IVoL,(Dl, < €, ande,,, < A/(25A)

then we have for all startlng state distributions p: :
" % ﬁ/Ll = , \K
VA(p) > V*(p) ——||—|| 4o 2
* where the “distribution mlsmatch coefficient” is —M > /
a ™ (s) - 1 -
p P e . fo — 5
”—” = max < ©) ) (componentwise division notation)
By H\S



Global Convergence with the Log Barrier



Global Convergence with the Log Barrier

8 24
r L 24

. The smoothness of L,(0) is f; := 't
-7




Global Convergence with the Log Barrier

Th thness of L,(0) is 8 S
e smoothness o is p, = —
. A A (1 _ 7/)3 S ‘ C x
; -
» Corollary: (Iteration complexity with log barrier regularization) p& 7/ ( )
e(l — .
Setl = u and 5 = 1/f,. Starting from any initial 8, Couty “&FL(C
ar*
2 (4
Flleo ( ?“%
then for all starting state distributions p, we have v Sr
[ — SQ,AZ dn.* 2 M < V\; Lz
min {V*(p) — V(t)(p)} <€ whenever T >c P
t<T (I=pbe?ill p Il

(for constantc). wWo -~ = >

S5~ ;}_\(QQSDB



Remember: The Performance Difference Lemma

For all , 7', sy:

/ 1 /
V(o) — V(s9) = 1—[ES%[EQN,,(,|S) A7 (s, )]

dr(s) = (1 =) ) y"P(s, = s|5p.7)
h=0



Proof, part 1



Proof, part 1

. The proof consists of showing that: max A™(s, a) < 21/(u(s)S) for all states s.

a



Proof, part 1

. The proof consists of showing that: max A™(s, a) < 21/(u(s)S) for all states s.

a
=
* To see that this is sufficient, observe that by the performance difference lemma:

1 x
VX(p) — V™(p) = -, ()™ (a] )A™(s, a)

s,a

b .
< L d/’f*(s) max A™(s, a) (/ 7 T

_1—}/ a€A [Tl\\é‘

N

1 *
< z 207 US|,

) -

* 4
2 d, (s) = I

Cl=y s N uls)
which would then complete the proof.




Proof, part 2



Proof, part 2

 need to show A™(s,a) < 2A/(u(s)S) for all (s,a). consider (s, a) where that A™(s, a) > 0 (else claim is true).



Proof, part 2

 need to show A™(s,a) < 2A/(u(s)S) for all (s,a). consider (s, a) where that A™(s, a) > 0 (else claim is true).

Lo __1 d™(s)my(a | 5)A™( )+i<l— <|))
—l_yﬂSﬂgaS s,a s\ 2 mylals

. Recall
s,a



Proof, part 2

 need to show A™(s,a) < 2A/(u(s)S) for all (s,a). consider (s, a) where that A™(s, a) > 0 (else claim is true).

oL,(0) | Al
. Recall = d,(s)my(a|s)A™(s,a) + —= | — — myals)
S,a =7 . S \A
« Solving for A%(s, a) in the first step and using ||V, L,(0)]|, < ¢€,,, < 4/(25A),
1 - 1 oL(6) 2 1
A0 == 2 - — )
d/,ta(s) ﬂ@(a I S ) ags,a \) ﬂa(a | S)A
1—y 1 A A
<—( +2)
dy(s) \ mo(als) 2SA S
(L) ing that d7(s) > (1 = Py(s)
— using tha s - s
=) \myals) 254 S J ) = TR



Proof, part 2

need to show A™(s,a) < 2A/(u(s)S) for all (s,a). consider (s, a) where that A™(s, a) > 0 (else claim is true).

oL,(0) | Al
Recall = d,(s)my(a|s)A™(s,a) + —= | — — myals)
S,a =7 . S \A
Solving for A®(s, a) in the first step and using ||V, L,(0)||, < €,,, < A/(2SA),
1 - 1 oL(6) 2 1
AEH(S,Cl)Z — 7( ﬂ( ) _(1_—)>
dlug(s) ﬂo(a I S ) ags,a \) EH(a I S)A
1—y 1 A A
<ol +5)
dy(s) \ mo(als) 2SA S
(L) ing that d7(s) > (1 = Py(s)
— using tha s - s
=) \myals) 254 S J ) = TR

Suppose we could show that 7z,(a | s) > 1/(2A), when A™(s, a) > 0, then

= and the proof is done!

1 1 A A A A 22
(a4 ) Spsloazi o3 ) -
u(s) \my(als) 2SA S u(s) 25A S u(s)S



Proof, part 3



Proof, part 3

« for (s, a) such that A™(s, a) > 0, we want show 7 (a |s) > 1/(2A).



Proof, part 3

« for (s, a) such that A™(s, a) > 0, we want show 7 (a |s) > 1/(2A).

« The gradient norm assumption ||V, L)(0)||, < €,,, implies that:
€ = s)mya|s)A™(s, a) + rg(als
P00, 1 —y # s\a "’

A1
>0+ 3 (X — my(a | s)) using A™(s,a) > 0



Proof, part 3

« for (s, a) such that A™(s, a) > 0, we want show 7 (a |s) > 1/(2A).

« The gradient norm assumption ||V, L)(0)||, < €,,, implies that:
€ = s)mya|s)A™(s, a) + rg(als
P00, 1 —y # s\a "’

A1
>0+ 3 (X — my(a | s)) using A™(s,a) > 0

* Rearranging and using our assumption €,,,, < A(2S5A),
@l sty ]
mals) > — — > —.
o A 1 T24




