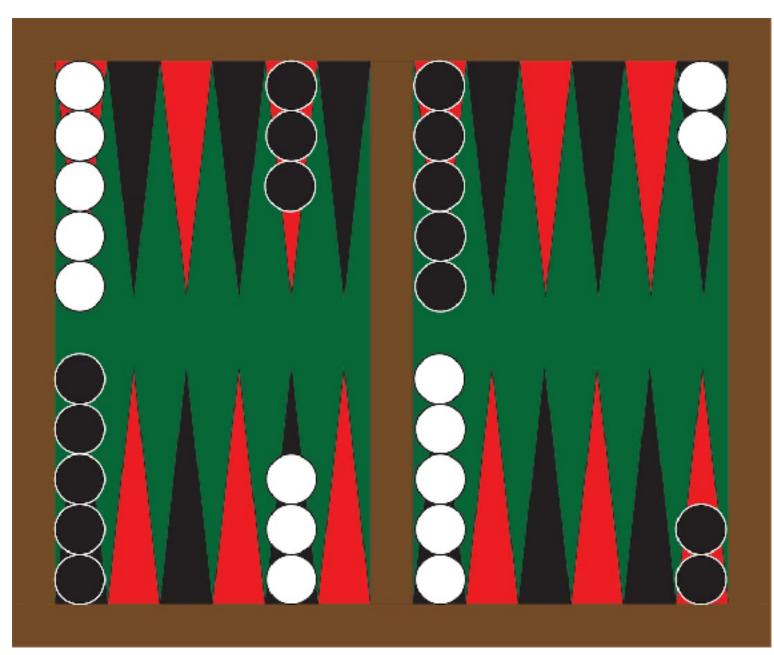
Introduction and Basics of Markov Decision Process

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Progress of RL in Practice



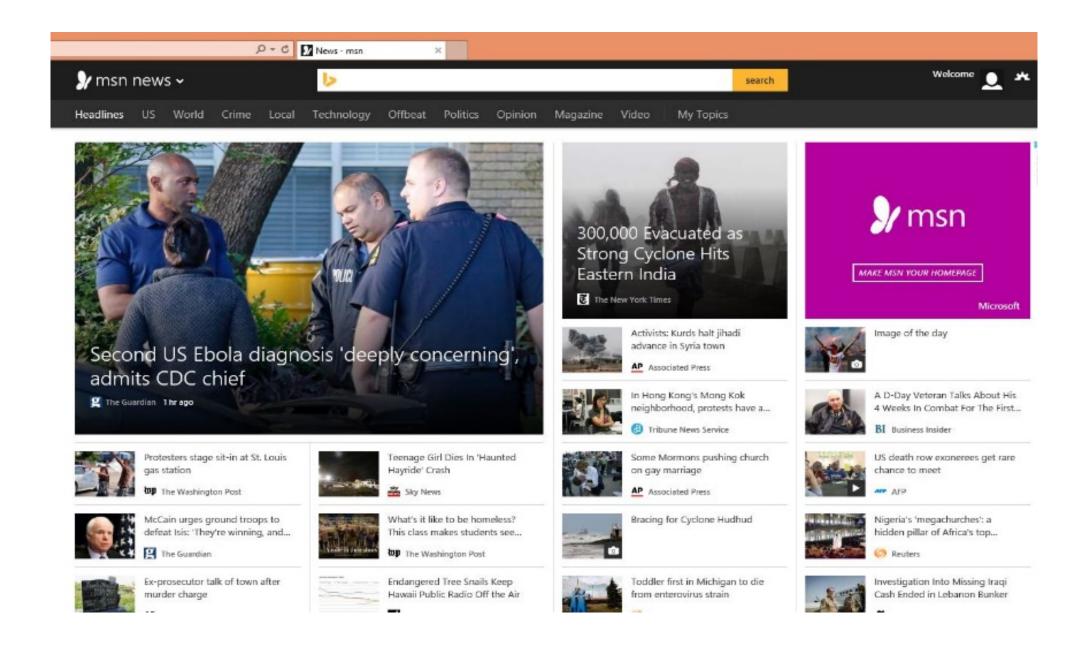
TD GAMMON [Tesauro 95]

[AlphaZero, Silver et.al, 17]

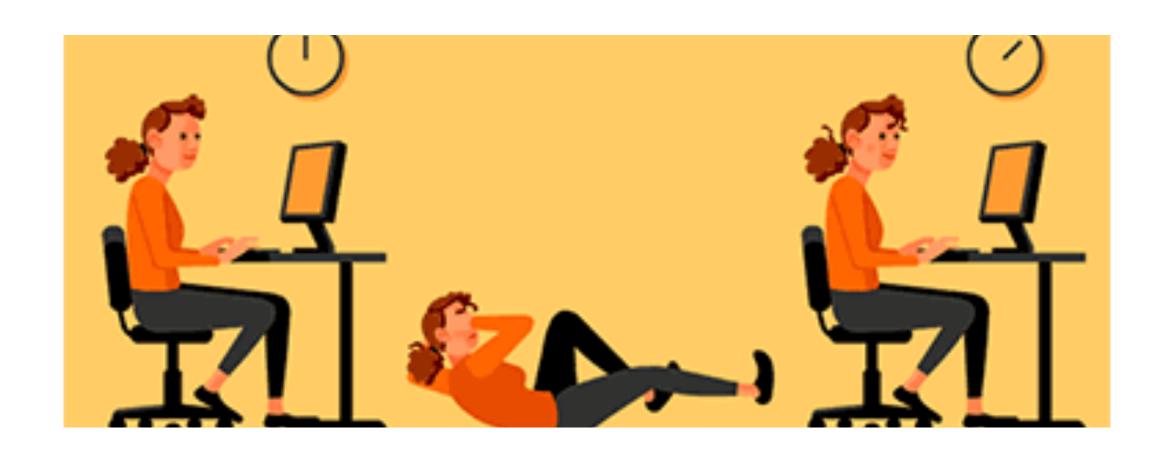
[OpenAl Five, 18]

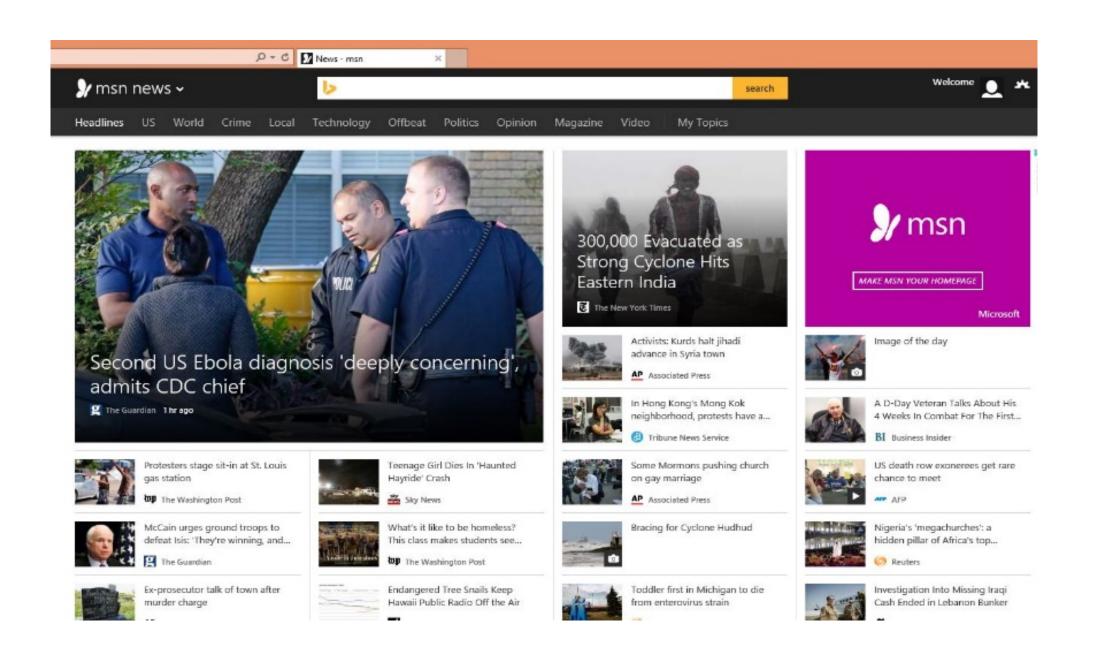
RL in Real World:

RL in Real World:



RL in Real World:





This course focuses on RL Theory

When and Why RL works!

(Convergence, sample / computation complexity, etc)

Four main themes we will cover in this course:

- 1. Fundamentals (MDPs, statistical limit, lower bounds)
- 2. Exploration (sample complexity)
- 3. Policy Gradient (global convergence)
- 4. Control & Imitation Learning (i.e., learning from demonstrations)

Logistics

Four (HW0-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HW0 10%, HW1-3 15% each)

HW0 is out today and due in two week

Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

Check out HW0 asap!

Course projects (40%)

- Team work: size 3
- Midterm report (5%), Final presentation (15%), and Final report (20%)

- Basics: **survey** of a set of similar RL theory papers. Reproduce analysis and provide a coherent story
- Advanced: identify extensions of existing RL papers, formulate theory questions, and provide proofs

Course Notes: Reinforcement Learning Theory & Algorithms

- Book website: https://rltheorybook.github.io/
- Many lectures will correspond to chapters in Version 2.
- Reading assignment (5%) is from this book
- Please let us know if you find typos/errors in the book!
 We appreciate it!

Outline

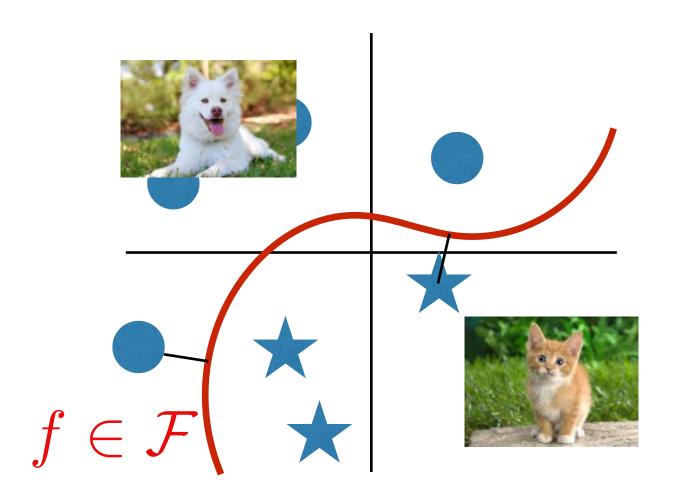
1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

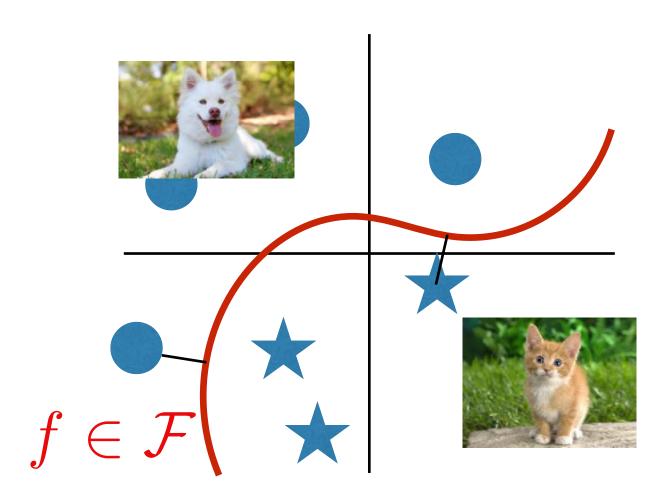
3. State-action distribution

Given i.i.d examples at training:

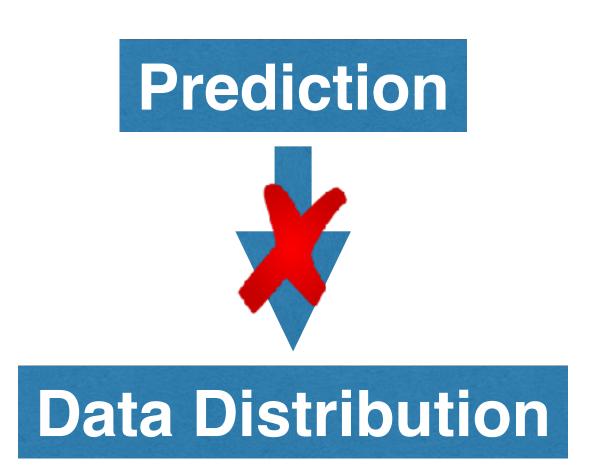
Given i.i.d examples at training:

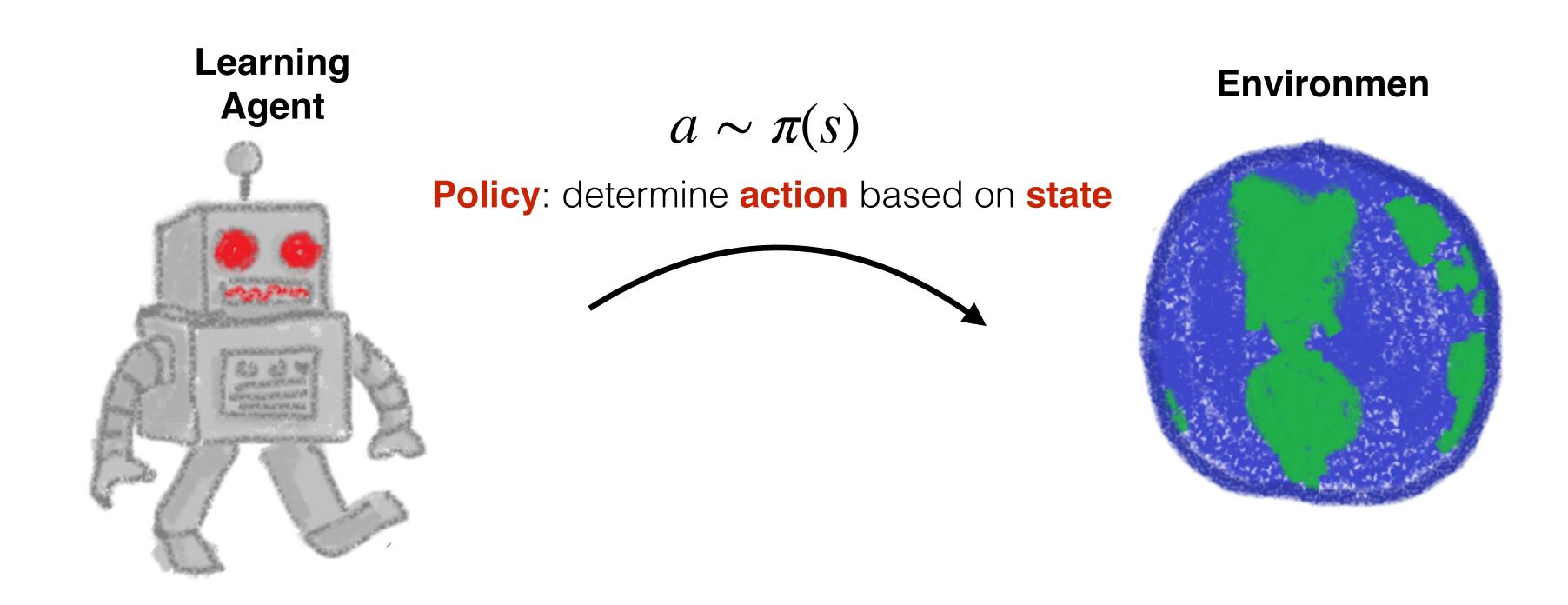


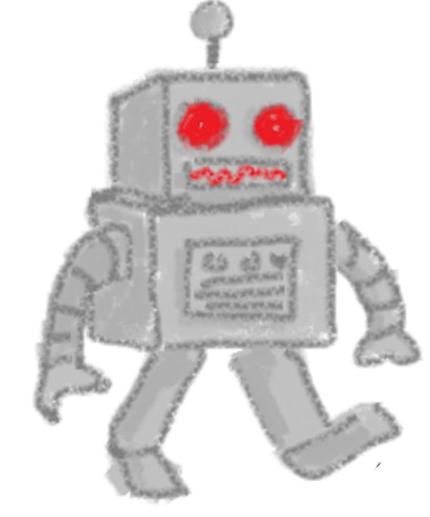
Given i.i.d examples at training:



Passive:





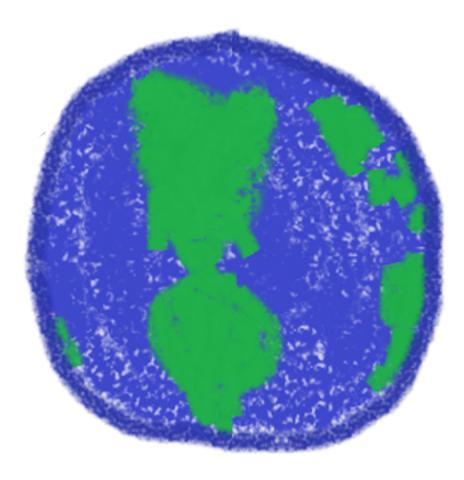


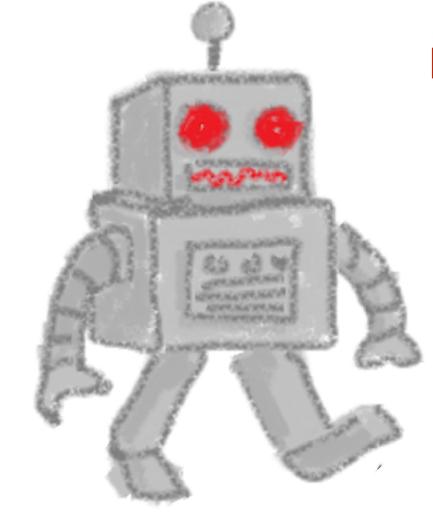
$$a \sim \pi(s)$$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(s,a), s' \sim P(\cdot \mid s,a)$$



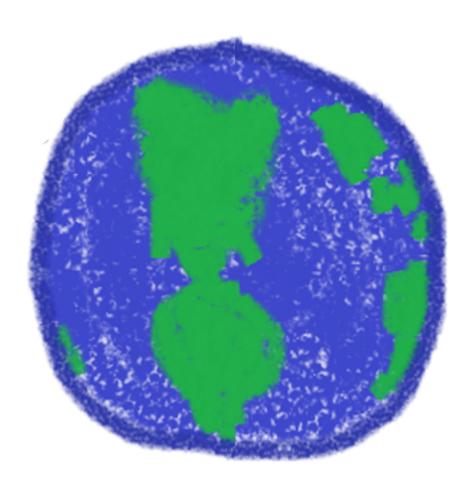


Policy: determine action based on state

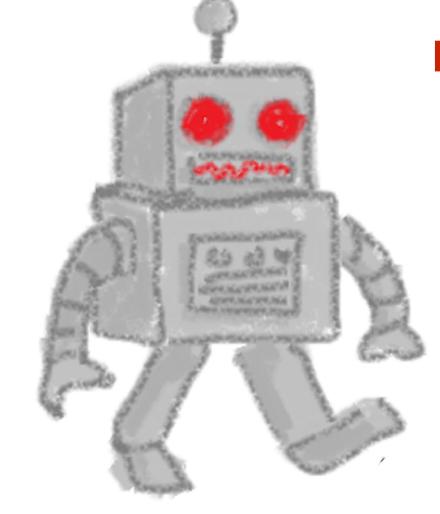
Multiple Steps

Send **reward** and **next state** from a Markovian transition dynamics

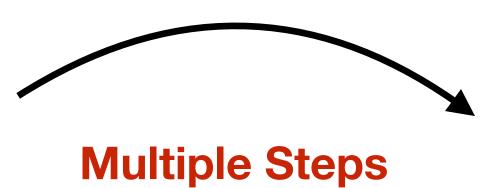
$$r(s,a), s' \sim P(\cdot \mid s,a)$$



Learning Agent

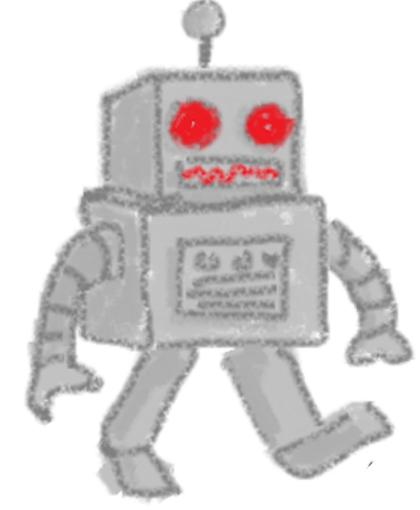


Policy: determine action based on state



Send **reward** and **next state** from a Markovian transition dynamics

$$r(s,a), s' \sim P(\cdot \mid s,a)$$



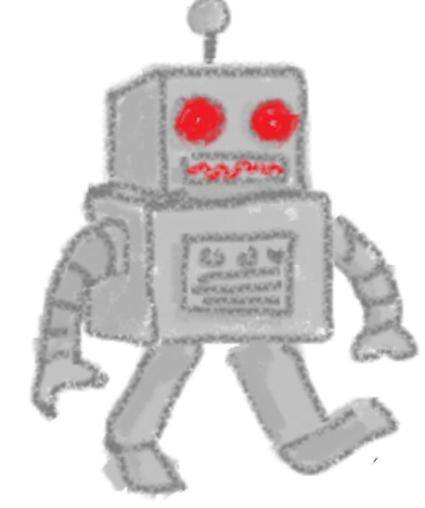
Policy: determine action based on state

Multiple Steps

Send **reward** and **next state** from a Markovian transition dynamics

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Learning Agent



Policy: determine action based on state



Send **reward** and **next state** from a Markovian transition dynamics

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

$$s_0 \sim \mu_0, a_0 \sim \pi(s_0), r_0, s_1 \sim P(s_0, a_0), a_1 \sim \pi(s_1), r_1...$$

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1)$$

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0, 1], \quad \gamma \in [0, 1)$$

Policy $\pi: S \mapsto \Delta(A)$

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0, 1], \quad \gamma \in [0, 1)$$

Policy $\pi: S \mapsto \Delta(A)$

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)\right]$$

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0, 1], \quad \gamma \in [0, 1)$$

Policy $\pi: S \mapsto \Delta(A)$

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)\right]$$

Q function
$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \, \middle| \, (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\, \cdot \, | \, s_h, a_h) \right]$$

Bellman Equation:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

Bellman Equation:

$$V^{\pi}(s) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,\middle|\, s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\,\cdot\,|\, s_{h}, a_{h})\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s') \right]$$

Bellman Equation:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)\right| (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)\right]$$

Bellman Equation:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \, \middle| \, (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h}) \right]$$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^*: S \mapsto A$$
, s.t., $V^{\pi^*}(s) \geq V^{\pi}(s)$, $\forall s, \pi$

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^*: S \mapsto A$$
, s.t., $V^{\pi^*}(s) \geq V^{\pi}(s)$, $\forall s, \pi$

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote
$$V^{\star} := V^{\pi^{\star}}, Q^{\star} := Q^{\pi^{\star}}$$

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^*: S \mapsto A$$
, s.t., $V^{\pi^*}(s) \geq V^{\pi}(s)$, $\forall s, \pi$

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote
$$V^{\star} := V^{\pi^{\star}}, Q^{\star} := Q^{\pi^{\star}}$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \underset{a}{\arg\max} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \underset{a}{\arg\max} \ Q^*(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^*(s)$, $\forall s$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} V^{\star}(s')$$

$$= r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} V^{\star}(s')$$

$$= r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$

$$\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} V^{\star}(s'') \right]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$\begin{split} &V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s') \\ &\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} V^{\star}(s') \\ &= r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} \left[r(s'', \widehat{\pi}(s'')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s''))} V^{\star}(s''') \right] \right] \end{split}$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

$$\begin{split} V^{\star}(s) &= r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s') \\ &\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} V^{\star}(s') \\ &= r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} \left[r(s'', \widehat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s', \widehat{\pi}(s''))} V^{\star}(s''') \right] \right] \\ &\leq \mathbb{E} \left[r(s, \widehat{\pi}(s)) + \gamma r(s', \widehat{\pi}(s')) + \ldots \right] = V^{\widehat{\pi}}(s) \end{split}$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we just proved $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

Theorem 1: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Denote
$$\widehat{\pi}(s) := \arg\max_{a} Q^{\star}(s, a)$$
, we just proved $V^{\widehat{\pi}}(s) = V^{\star}(s)$, $\forall s$

This implies that $\underset{a}{\operatorname{arg}} \max Q^{\star}(s, a)$ is an optimal policy

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^\star(s), \forall s$

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^\star(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^\star(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^\star(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s', a')} \left| V(s'') - V^{\star}(s'') \right| \right)$$

For any
$$V:S\to\mathbb{R}$$
, if $V(s)=\max_a\left[r(s,a)+\gamma\mathbb{E}_{s'\sim P(\cdot|s,a)}V(s')\right]$ for all s , then $V(s)=V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s', a')} \left| V(s'') - V^{\star}(s'') \right| \right)$$

$$\leq \max_{a_1, a_2, \dots a_{k-1}} \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^{\star}(s_k)|$$

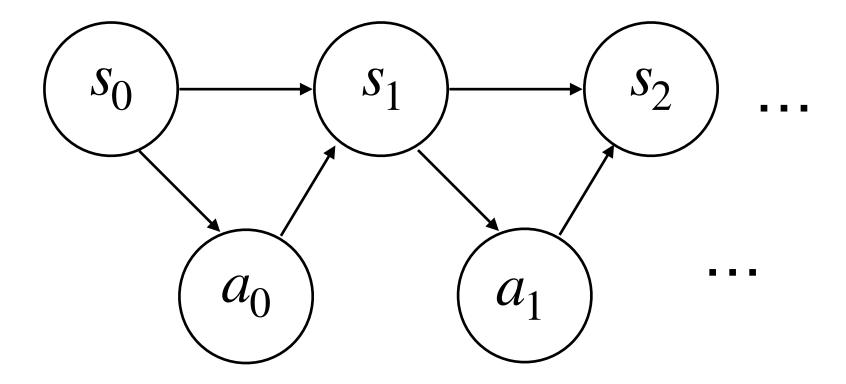
Outline

1. Definition of infinite horizon discounted MDPs

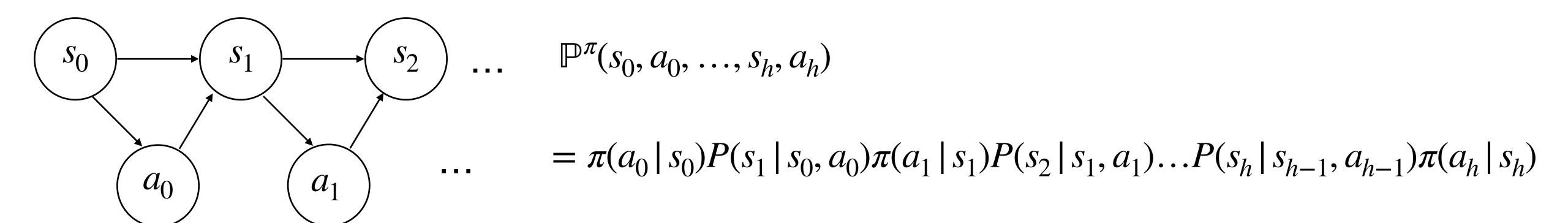
3. State-action distribution

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_h, a_h\}$?

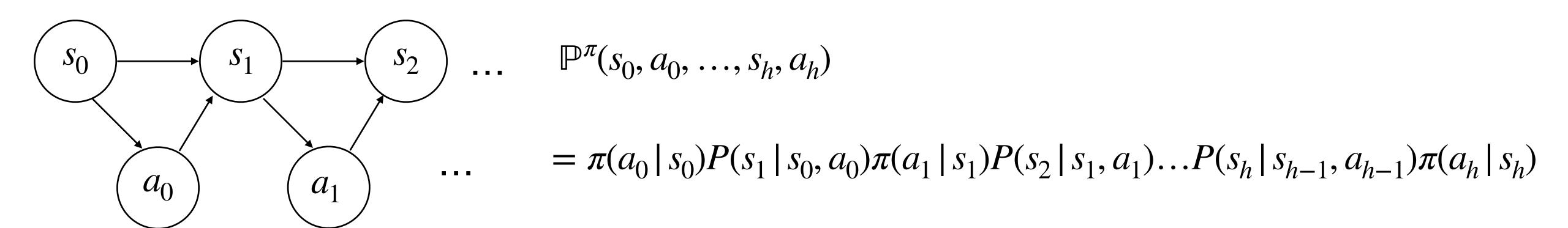
Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_h, a_h\}$?



Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_h, a_h\}$?

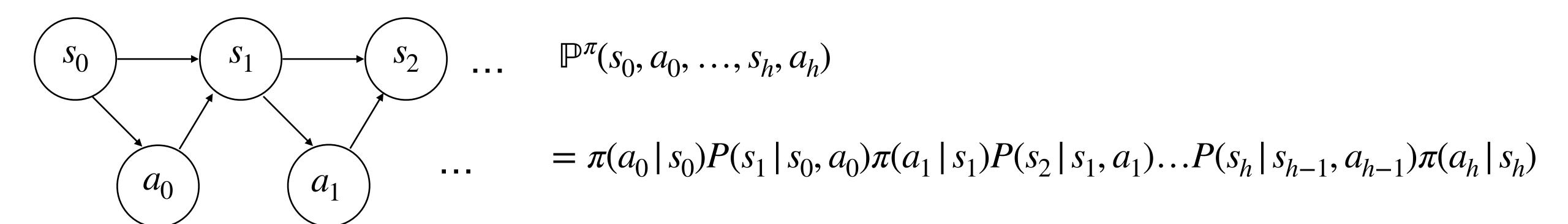


Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_h, a_h\}$?



Q: what's the probability of π visiting state (s,a) at time step h?

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_h, a_h\}$?



Q: what's the probability of π visiting state (s,a) at time step h?

$$\mathbb{P}_h^{\pi}(s, a; s_0) = \sum_{\substack{a_0, s_1, a_1, \dots, s_{h-1}, a_{h-1}}} \mathbb{P}^{\pi}(s_0, a_0, \dots, s_{h-1}, a_{h-1}, a_{h-1}, a_h = s, a_h = a)$$

State action occupancy measure

 $\mathbb{P}_h(s, a; s_0, \pi)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$, starting at s_0

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h(s, a; s_0, \pi)$$

$$V^{\pi}(s_0) = \frac{1}{1 - \gamma} \sum_{s,a} d_{s_0}^{\pi}(s, a) r(s, a)$$

Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)