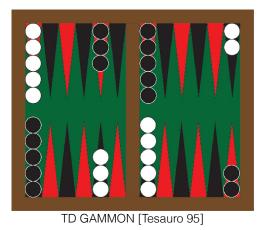
## Introduction and Basics of Markov Decision Process

# Sham Kakade and Wen Sun

**CS 6789: Foundations of Reinforcement Learning** 

#### **Progress of RL in Practice**



[AlphaZero, Silver et.al, 17]



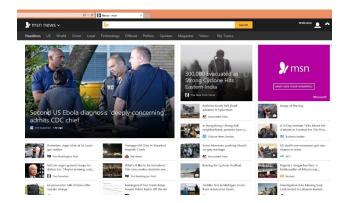
[OpenAl Five, 18]

## **RL** in Real World:



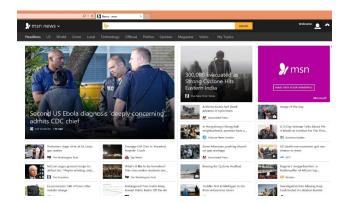
#### **RL in Real World:**





#### **RL in Real World:**







#### This course focuses on RL Theory

When and Why RL works! (Convergence, sample / computation complexity, etc)

#### Four main themes we will cover in this course:

- 1. Fundamentals (MDPs, statistical limit, lower bounds)
- 2. Exploration (sample complexity)
- 3. Policy Gradient (global convergence)
- 4. Control & Imitation Learning (i.e., learning from demonstrations)

#### Logistics

Four (HW0-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HW0 10%, HW1-3 15% each)

HW0 is out today and due in two week

#### **Prerequisites (HW0)**

#### Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

### **Prerequisites (HW0)**

#### Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

Check out HW0 asap!

## **Course projects (40%)**

- Team work: size 3
- Midterm report (5%), Final presentation (15%), and Final report (20%)
- Basics: **survey** of a set of similar RL theory papers. Reproduce analysis and provide a coherent story
- Advanced: identify extensions of existing RL papers, formulate theory questions, and provide proofs

## Course Notes: Reinforcement Learning Theory & Algorithms

- Book website: <a href="https://rltheorybook.github.io/">https://rltheorybook.github.io/</a>
- Many lectures will correspond to chapters in Version 2.
- Reading assignment (5%) is from this book
- Please let us know if you find typos/errors in the book! We appreciate it!

### Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

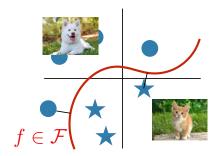
3. State-action distribution

Given i.i.d examples at training:

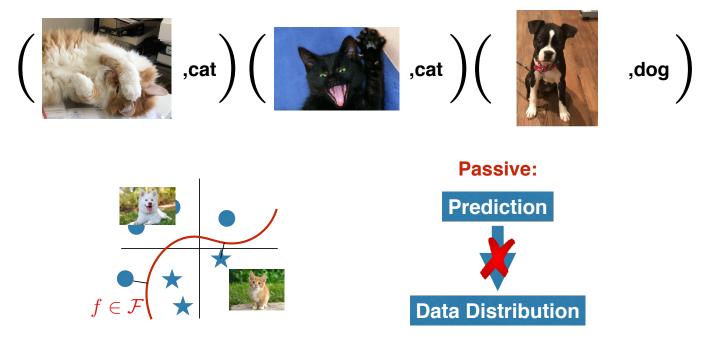


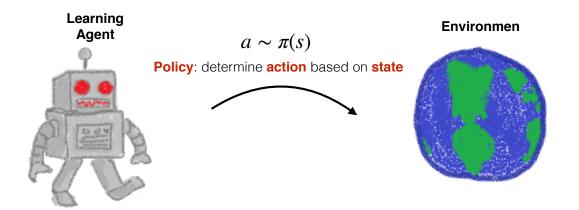
Given i.i.d examples at training:

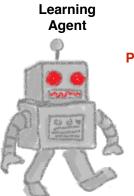




Given i.i.d examples at training:

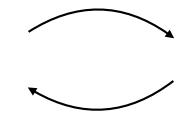






 $a \sim \pi(s)$ 

Policy: determine action based on state

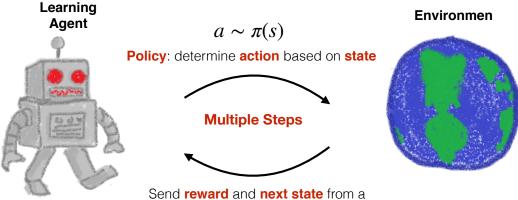


Environmen



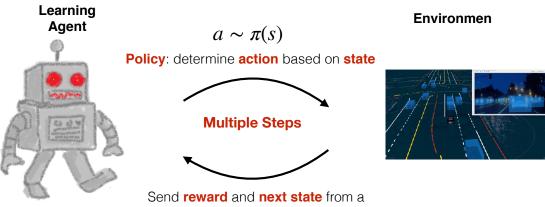
Send **reward** and **next state** from a Markovian transition dynamics

 $r(s,a), s' \sim P(\cdot \mid s, a)$ 



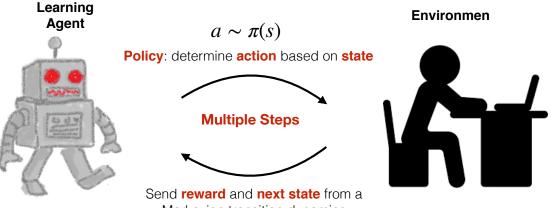
Send **reward** and **next state** from a Markovian transition dynamics

 $r(s,a), s' \sim P(\cdot \mid s, a)$ 



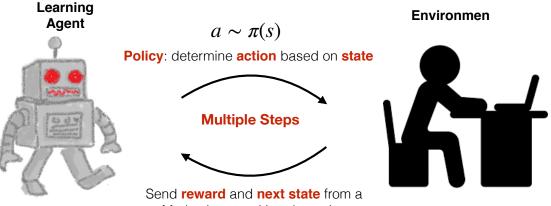
Markovian transition dynamics

 $r(s,a), s' \sim P(\cdot \mid s, a)$ 



Markovian transition dynamics

 $r(s, a), s' \sim P(\cdot \mid s, a)$ 



Markovian transition dynamics

 $r(s, a), s' \sim P(\cdot \mid s, a)$ 

 $s_0 \sim \mu_0, a_0 \sim \pi(s_0), r_0, s_1 \sim P(s_0, a_0), a_1 \sim \pi(s_1), r_1 \dots$ 

|                           | Learn from<br>Experience | Generalize | Interactive | Exploration | Credit<br>assignment |
|---------------------------|--------------------------|------------|-------------|-------------|----------------------|
| Supervised<br>Learning    |                          |            |             |             |                      |
| Reinforcement<br>Learning |                          |            |             |             |                      |

|                           | Learn from<br>Experience | Generalize | Interactive | Exploration | Credit<br>assignment |
|---------------------------|--------------------------|------------|-------------|-------------|----------------------|
| Supervised<br>Learning    | $\checkmark$             |            |             |             |                      |
| Reinforcement<br>Learning | $\checkmark$             |            |             |             |                      |

|                           | Learn from<br>Experience | Generalize   | Interactive | Exploration | Credit<br>assignment |
|---------------------------|--------------------------|--------------|-------------|-------------|----------------------|
| Supervised<br>Learning    | $\checkmark$             | $\checkmark$ |             |             |                      |
| Reinforcement<br>Learning |                          | $\checkmark$ |             |             |                      |

|                           | Learn from<br>Experience | Generalize   | Interactive  | Exploration | Credit<br>assignment |
|---------------------------|--------------------------|--------------|--------------|-------------|----------------------|
| Supervised<br>Learning    | $\checkmark$             | $\checkmark$ |              |             |                      |
| Reinforcement<br>Learning | $\checkmark$             | $\checkmark$ | $\checkmark$ |             |                      |

|                           | Learn from<br>Experience | Generalize   | Interactive  | Exploration  | Credit<br>assignment |
|---------------------------|--------------------------|--------------|--------------|--------------|----------------------|
| Supervised<br>Learning    | $\checkmark$             | $\checkmark$ |              |              |                      |
| Reinforcement<br>Learning | $\checkmark$             | $\checkmark$ | $\checkmark$ | $\checkmark$ |                      |

|                           | Learn from<br>Experience | Generalize   | Interactive  | Exploration  | Credit<br>assignment |
|---------------------------|--------------------------|--------------|--------------|--------------|----------------------|
| Supervised<br>Learning    | $\checkmark$             | $\checkmark$ |              |              |                      |
| Reinforcement<br>Learning | $\checkmark$             | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$
$$P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1)$$

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$
$$P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1)$$

Policy  $\pi: S \mapsto \Delta(A)$ 

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$
$$P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1], \quad \gamma \in [0, 1)$$

Policy  $\pi : S \mapsto \Delta(A)$ 

Value function 
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)\right]$$

$$\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$$
$$P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1)$$

Policy  $\pi: S \mapsto \Delta(A)$ 

Value function 
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$
  
Q function  $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$ 

## **Bellman Equation:**

$$V^{\pi}(s) = \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

#### **Bellman Equation:**

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right]$$

#### **Bellman Equation:**

$$V^{\pi}(s) = \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h}) \right]$$

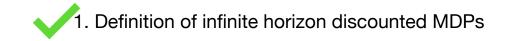
## **Bellman Equation:**

$$V^{\pi}(s) = \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h}) \right] \\ Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

## Outline



2. Bellman Optimality

3. State-action distribution

## **Optimal Policy**

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^{\star}: S \mapsto A$$
, s.t.,  $V^{\pi^{\star}}(s) \ge V^{\pi}(s), \forall s, \pi$ 

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

## **Optimal Policy**

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^{\star}: S \mapsto A$$
, s.t.,  $V^{\pi^{\star}}(s) \ge V^{\pi}(s), \forall s, \pi$ 

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote 
$$V^\star:=V^{\pi^\star}, Q^\star:=Q^{\pi^\star}$$

## **Optimal Policy**

For infinite horizon discounted MDP, there exists a deterministic stationary policy

$$\pi^{\star}: S \mapsto A$$
, s.t.,  $V^{\pi^{\wedge}}(s) \ge V^{\pi}(s), \forall s, \pi$ 

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote 
$$V^{\star} := V^{\pi^{\star}}, Q^{\star} := Q^{\pi^{\star}}$$

**Theorem 1**: Bellman Optimality  
$$V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$$

Theorem 1: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$$

**Theorem 1:** Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s') \right]$$

Theorem 1: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s') \right]$$

Denote  $\hat{\pi}(s) := \arg \max_{a} Q^{\star}(s, a)$ , we will prove  $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$ 

 $V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$ 

**Theorem 1**: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s') \right]$$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

**Theorem 1**: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s') \right]$$

**Theorem 1**: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s') \right]$$

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

$$= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$

$$\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right]$$

**Theorem 1**: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$$

$$\begin{aligned} V^{\star}(s) &= r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s') \\ &\leq \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s') \\ &= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right] \\ &\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} \left[ r(s'', \hat{\pi}(s'')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right] \end{aligned}$$

**Theorem 1**: Bellman Optimality  $V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$ Denote  $\hat{\pi}(s) := \arg \max Q^{\star}(s, a)$ , we will prove  $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$  $r_{(s)} - r(s, \pi_{(s)}) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$   $\leq \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$   $= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s') \right]$   $= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s') \right]$  $\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[ r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right]$  $\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left| r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} \left[ r(s'', \hat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s'', \hat{\pi}(s''))} V^{\star}(s''') \right] \right|$  $\leq \mathbb{E}\left[r(s, \hat{\pi}(s)) + \gamma r(s', \hat{\pi}(s')) + \ldots\right] = V^{\hat{\pi}}(s)$ 

**Theorem 1:** Bellman Optimality  $V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$ 

**Theorem 1:** Bellman Optimality  $V^{\star}(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$ 

Denote  $\hat{\pi}(s) := \arg \max_{a} Q^{\star}(s, a)$ , we just proved  $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$ This implies that  $\arg \max Q^{\star}(s, a)$  is an optimal policy

This implies that  $\arg \max_{a} Q^{(s,a)}$  is an optimal policy

ang max 
$$\left[ \Gamma(sa) + \partial E V(s') \right]$$

**Theorem 2:**  
For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$  for all  $s$ ,  
then  $V(s) = V^{\star}(s), \forall s$ 

**Theorem 2:**  
For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$  for all  $s$ , then  $V(s) = V^{\star}(s), \forall s$ 

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$

**Theorem 2:**  
For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$  for all  $s$ ,  
then  $V(s) = V^{\star}(s), \forall s$ 

Т

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\downarrow m \approx f(x) - m \approx \Im(x) \downarrow$$
  

$$\leq \max_{x} \left| \Im(x) - f(x) \right|$$

L

**Theorem 2:**  
For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$  for all  $s$ , then  $V(s) = V^{\star}(s), \forall s$ 

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right| \qquad \int \mathbb{E}_{s} f(s) ds = \int_{s}^{s} |f(s)|^{2} ds =$$

**Theorem 2:**  
For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$  for all  $s$ ,  
then  $V(s) = V^{\star}(s), \forall s$ 

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$$
  

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$
  

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left( \max_{a'} \gamma \mathbb{E}_{s'' \sim P(s', a')} \left| V(s'') - V^{\star}(s'') \right| \right)$$

For any 
$$V: S \to \mathbb{R}$$
, if  $V(s) = \max_{a} \left[ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V(s') \right]$  for all  $s$ ,  
then  $V(s) = V^{\star}(s), \forall s$   
 $\forall \leq z$   
 $|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{\star}(s')) \right|$   
 $\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{\star}(s')) \right|$   
 $\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left| V(s') - V^{\star}(s') \right|$   
 $\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left( \max_{a'} \gamma \mathbb{E}_{s'' \sim P(s',a)} \left| V(s'') - V^{\star}(s'') \right| \right)$   
 $\leq \max_{a_{1},a_{2},...,a_{k-1}} \gamma^{k} \mathbb{E}_{s_{k}} \left| V(s_{k}) - V^{\star}(s_{k}) \right|$ 

# Outline

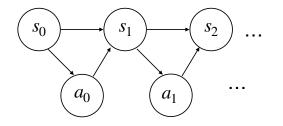
1. Definition of infinite horizon discounted MDPs



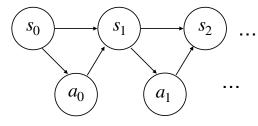
3. State-action distribution

Q: what is the probability of  $\pi$  generating trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$ ?

Q: what is the probability of  $\pi$  generating trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$ ?



Q: what is the probability of  $\pi$  generating trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$ ?



$$\mathbb{P}^{\pi}(s_0, a_0, \ldots, s_h, a_h)$$

 $\dots = \pi(a_0 | s_0) P(s_1 | s_0, a_0) \pi(a_1 | s_1) P(s_2 | s_1, a_1) \dots P(s_h | s_{h-1}, a_{h-1}) \pi(a_h | s_h)$ 

Q: what is the probability of  $\pi$  generating trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$ ?



$$\mathbb{P}^{\pi}(s_0, a_0, \ldots, s_h, a_h)$$

 $\dots = \pi(a_0 | s_0) P(s_1 | s_0, a_0) \pi(a_1 | s_1) P(s_2 | s_1, a_1) \dots P(s_h | s_{h-1}, a_{h-1}) \pi(a_h | s_h)$ 

Q: what's the probability of  $\pi$  visiting state (*s*,a) at time step h?

Q: what is the probability of  $\pi$  generating trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$ ?



$$\mathbb{P}^{\pi}(s_0, a_0, \dots, s_h, a_h)$$
  
=  $\pi(a_0 | s_0) P(s_1 | s_0, a_0) \pi(a_1 | s_1) P(s_2 | s_1, a_1) \dots P(s_h | s_{h-1}, a_{h-1}) \pi(a_h | s_h)$ 

Q: what's the probability of  $\pi$  visiting state (*s*,a) at time step h?

$$\mathbb{P}_{h}^{\pi}(s,a;s_{0}) = \sum_{a_{0},s_{1},a_{1},\ldots,s_{h-1},a_{h-1}} \mathbb{P}^{\pi}(s_{0},a_{0},\ldots,s_{h-1},a_{h-1}s_{h}=s,a_{h}=a)$$

#### State action occupancy measure

 $\mathbb{P}_h(s, a; s_0, \pi)$ : probability of  $\pi$  visiting (s, a) at time step  $h \in \mathbb{N}$ , starting at  $s_0$ 

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h(s, a; s_0, \pi)$$

$$V^{\pi}(s_0) = \frac{1}{1 - \gamma} \sum_{s,a} d^{\pi}_{s_0}(s, a) r(s, a)$$

### Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)