Computation Limits and The LP Formulation

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)
- Today: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in polynomial time?

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)
- Today: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in polynomial time?
- But first, our recap:
 - value/policy iteration + contraction

Recap

Define Bellman Operator \mathcal{I} :

Given a function $f: S \times A \mapsto \mathbb{R}$,

$$\mathcal{I}f: S \times A \mapsto \mathbb{R},$$

$$(\mathcal{T}f)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a' \in A} f(s',a'), \forall s, a \in S \times A$$

Value Iteration Algorithm:

1. Initialization:
$$Q^0: \|Q^0\|_{\infty} \in (0, \frac{1}{1-\gamma})$$

2. Iterate until convergence: $Q^{t+1} = \mathcal{I}Q^t$

Policy Iteration Algorithm:

Closed-form for PE (see AJKS)

- 1. Initialization: $\pi^0: S \mapsto \Delta(A)$
- 2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$
- 3. Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

Final Quality of the Policy (for VI):

$$\boldsymbol{\pi}^t:\boldsymbol{\pi}^t(s)=\arg\max_{\boldsymbol{a}}Q^t(s,\boldsymbol{a})$$
 Theorem: $V^{\pi^t}(s)\geq V^{\star}(s)-\frac{2\gamma^t}{1-\gamma}\|Q^0-Q^{\star}\|_{\infty} \forall s\in S$

Final Quality of the Policy (for VI):

$$\boldsymbol{\pi}^t:\boldsymbol{\pi}^t(s) = \arg\max_{a} Q^t(s,a)$$
 Theorem: $V^{\pi^t}(s) \geq V^{\star}(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^{\star}\|_{\infty} \forall s \in S$

• Corollary: Set
$$Q^0=0$$
. After $t\geq \frac{\log\frac{2}{\epsilon(1-\gamma)^2}}{1-\gamma}$ iterations, we have: $V^{\pi^t}(s)\geq V^\star(s)-\epsilon \quad \forall s\in S$

Final Quality of the Policy (for VI):

.
$$\pi^t: \pi^t(s) = \arg\max_a Q^t(s,a)$$
 Theorem: $V^{\pi^t}(s) \geq V^\star(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^\star\|_\infty \forall s \in S$

• Corollary: Set
$$Q^0=0$$
. After $t\geq \frac{\log\frac{2}{\epsilon(1-\gamma)^2}}{1-\gamma}$ iterations, we have: $V^{\pi^t}(s)\geq V^\star(s)-\epsilon \quad \forall s\in S$

Same rate for Pl.

Today

- Complexity to compute an exact solution given \mathcal{M} . (Aside: why?)
 - Assume basic arithmetic operations (+,-,x,÷) take unit time.

- Complexity to compute an exact solution given M. (Aside: why?)
 - Assume basic arithmetic operations (+,-,x,÷) take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^* in time poly $(S, A, L(P, r, \gamma))$?

- Complexity to compute an exact solution given M. (Aside: why?)
 - Assume basic arithmetic operations (+,-,x,÷) take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^* in time poly $(S, A, L(P, r, \gamma))$?
- (nearly) strongly polynomial time: Suppose (P,r) is specified with real numbers. Can we compute Q^* in $\text{poly}(S,A,\log(1/(1-\gamma))$, with no dependence on $L(P,r,\gamma)$?

- Complexity to compute an exact solution given \mathcal{M} . (Aside: why?)
 - Assume basic arithmetic operations (+,-,x,÷) take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^* in time poly $(S, A, L(P, r, \gamma))$?
- (nearly) strongly polynomial time: Suppose (P,r) is specified with real numbers. Can we compute Q^{\star} in $\text{poly}(S,A,\log(1/(1-\gamma))$, with no dependence on $L(P,r,\gamma)$?
- Scalings:
 - How does the complexity scale with the "horizon" $1/(1-\gamma)$? With $L(P, r, \gamma)$?

Computational Complexities of our Iterative Algorithms

• When the sub-optimality gap between Q^t and Q^* is less than $2^{-L(P,r,\gamma)}$, than the greedy policy will be optimal. (by a standard argument in optimization)

- When the sub-optimality gap between Q^t and Q^{\star} is less than $2^{-L(P,r,\gamma)}$, than the greedy policy will be optimal. (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma))$) iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A

- When the sub-optimality gap between Q^t and Q^* is less than $2^{-L(P,r,\gamma)}$, than the greedy policy will be optimal. (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma))$) iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A
- Poly runtime? For fixed γ, YES

. VI is poly with
$$O\left(S^2A \cdot \frac{L(P,r,\gamma)\,\log(1/(1-\gamma))}{1-\gamma}\right)$$
 complexity.

- When the sub-optimality gap between Q^t and Q^* is less than $2^{-L(P,r,\gamma)}$, than the greedy policy will be optimal. (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma))$) iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A
- Poly runtime? For fixed γ , YES
 - VI is poly with $O\left(S^2A \cdot \frac{L(P,r,\gamma)\,\log(1/(1-\gamma))}{1-\gamma}\right)$ complexity.
- Strongly poly? NO
 (There are counterexamples)

Policy Iteration

- PI Per iteration complexity: $S^3 + S^2A$ (why?)
 - PI is more costly than VI per iteration.
 - PI is observed to be much faster than VI to obtain an exact opt policy.

Policy Iteration

- PI Per iteration complexity: $S^3 + S^2A$ (why?)
 - PI is more costly than VI per iteration.
 - Pl is observed to be much faster than VI to obtain an exact opt policy.
- Poly runtime?
 - For fixed γ , YES

• PI is
$$O((S^3 + S^2A) \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma})$$

Policy Iteration

- PI Per iteration complexity: $S^3 + S^2A$ (why?)
 - PI is more costly than VI per iteration.
 - PI is observed to be much faster than VI to obtain an exact opt policy.
- Poly runtime?
 - For fixed γ , YES

• PI is
$$O((S^3 + S^2A) \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma})$$

- Strongly poly?
 - Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$? (ignoring other dependencies?)

Is PI a strongly poly algo?

- Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$?
 - Yes: after A^S iterations Why? There are at most A^S policies, and PI is monotonic.
 - Refinement: [Mansour & Singh '99] PI halts after A^S/S iterations.

Is PI a strongly poly algo?

- Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$?
 - Yes: after A^S iterations Why? There are at most A^S policies, and PI is monotonic.
 - Refinement: [Mansour & Singh '99] PI halts after A^S/S iterations.
- Is PI strongly polynomial?

For fixed γ , yes:

[Ye '12] PI halts after
$$\frac{S^2A \log(S^2/(1-\gamma))}{1-\gamma}$$
 iterations.

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^2 A^{\frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}}$	$(S^3 + S^2 A) \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$?
Strongly Poly.	X	$\left(S^3 + S^2 A\right) \cdot \min \left\{ \frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1-\gamma}}{1-\gamma} \right\}$?

- VI Per iteration complexity: S^2A
- PI Per iteration complexity: $S^3 + S^2A$

Are VI and PI Polynomial Time algorithms? (technically, no)

Is there a poly (and strongly poly) time algo for an MDP?

YES! Linear Programming

We can write the Bellman equations with values rather than Q-values:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}$$

• We can write the Bellman equations with values rather than Q-values:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}$$

An equivalent way to write the Bellman equations is as a linear program.

We can write the Bellman equations with values rather than Q-values:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}$$

- An equivalent way to write the Bellman equations is as a linear program.
- With variables $V \in \mathbb{R}^S$, the LP is: $\min V(s_0)$

s.t.
$$V(s) \ge r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V(s') \quad \forall s, a \in S \times A$$

LP Runtimes and Comments

An LP solver gives us a poly time algorithm.

LP Runtimes and Comments

- An LP solver gives us a poly time algorithm.
- [Ye, '05]: there is an interior point algorithm (CIPA) which is ("nearly") strongly polynomial.

LP Runtimes and Comments

- An LP solver gives us a poly time algorithm.
- [Ye, '05]: there is an interior point algorithm (CIPA) which is ("nearly") strongly polynomial.
- Comments:
 - VI is best thought of as a fixed point algorithm
 - PI is equivalent to a (block) simplex algorithm
 (Recall the simplex algo, in general, could be exp time.
 But not for MDPS, at least for fixed γ.)

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^2 A \frac{L(P, r, \gamma) \log \frac{1}{1 - \gamma}}{1 - \gamma}$	$1-\gamma$	$S^3AL(P,r,\gamma)$
Strongly Poly.	X	$\left(S^3 + S^2 A\right) \cdot \min\left\{\frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1-\gamma}}{1-\gamma}\right\}$	$S^4 A^4 \log \frac{S}{1-\gamma}$

- VI Per iteration complexity: S^2A
- PI Per iteration complexity: $S^3 + S^2A$
- The LP approach is only logarithmic in $1-\gamma$
- The linear programming is helpful in understanding the problem.
 (even though it is not used often)

What about the Dual LP?

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

 Let us start by understanding the dual variables and the "state-action polytope"

State-Action Visitation Measures

• For a fixed (possibly stochastic) policy π , define the state-action visitation distribution $d_{s_0}^{\pi}$ as:

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr^{\pi}(s_t = s, a_t = a \mid s_0)$$

where $\Pr^{\pi}(s_t = s, a_t = a \mid s_0)$ is the state-action visitation probability when we execute π starting at state s_0 .

State-Action Visitation Measures

• For a fixed (possibly stochastic) policy π , define the state-action visitation distribution $d_{s_0}^{\pi}$ as:

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr^{\pi}(s_t = s, a_t = a \mid s_0)$$

where $\Pr^{\pi}(s_t = s, a_t = a \mid s_0)$ is the state-action visitation probability when we execute π starting at state s_0 .

• We can verify that have $d_{s_0}^{\pi}$ satisfies, for all states $s \in S$:

$$\sum_{a} d_{s_0}^{\pi}(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a') d_{s_0}^{\pi}(s', a')$$

The "State-Action" Polytope

• Let us define the state-action polytope K as follows:

$$K_{s_0} := \left\{ d \mid d \ge 0 \text{ and } \right.$$

$$\sum_{a} d(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a')d(s', a')$$

The "State-Action" Polytope

Let us define the state-action polytope K as follows:

$$K_{s_0} := \left\{ d \mid d \ge 0 \text{ and } \right.$$

$$\sum_{a} d(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a')d(s', a')$$

This set precisely characterizes all state-action visitation distributions:

The "State-Action" Polytope

Let us define the state-action polytope K as follows:

$$K_{s_0}:=\left\{d\,|\,d\geq 0 \text{ and}\right.$$

$$\sum_a d(s,a)=(1-\gamma)I(s=s_0)+\gamma\sum_{s',a'}P(s\,|\,s',a')d(s',a')\right\}$$

• This set precisely characterizes all state-action visitation distributions: Lemma: $d \in K$ if and only if there exists a (possibly randomized) policy π s.t. $d_{s_0}^{\pi} = d$

The Dual LP

$$\max_{s,a} \sum_{s,a} d(s,a)r(s,a)$$
s.t. $d \in K$

- One can verify that this is the dual of the primal LP.
- Note that K is a polytope