Computation Limits and
The LP Formulation

CS 6789: Foundations of Reinforcement Learning
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Today:

* Next two lectures:
* Joday: & the linear programming approach
* Next lecture: (when the MDP is not known)

« Today: Given an MDP.Z = (S, A, P, r,y) can we exactly compute Q*
(or find ) in polynomial time?

o But first, our recap:
» value/policy iteration + contraction



Recap



Define Bellman Operator J :

Given a functionf: S XA — R,

T SXAP R,

(Pff) (s,a) :=r(s,a) + Yy p.js.0maxf(s,a’),Vs,a € S XA
a'€eA



Value Iteration Algorithm:

e . 0 0 I
1. Initialization: O : ||0"|| ., € (0O, 1—)
—7

2. Iterate until convergence: O’ = T O’



Policy lteration Algorithm:

Closed-form for PE 1. Initialization: 77 : S — A(A)

(see AJKS) t
2. Policy Evaluation: O” (s, a), Vs, a

3. Policy Improvement 7/ (s) = are max O” (s, a), Vs v>

A



Final Quality of the Policy (for VI):

, ' '(s) = arg max Q'(s, a)

t . 2y
Theorem: V" (s) > V™(s) —

1=y

HQO o Q*Hoovs €S
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Final Quality of the Policy (for VI):

, ' 1 w'(s) = arg max Q'(s, a)

: 2y
Theorem: V7(s) > V*(s) = - T 110° = Q*|| Vs €S
—7
log 6(13 .
, Corollary: Set 0" = 0. Afterr > l—y iterations, we have:
—7

VZ(s) > V*(s)—e Vs€eS

e Same rate for PlI.



loday
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Polynomial Time &
Strongly Polynomial Complexity

(Aside: why?)
e Assume basic arithmetic operations (+,-,X,=) take unit time.
. Suppose that (P, r, y) in our MDP ./ is specified
with rational entries, where L(FP, r, y) is total bit-size required to specify (P, r, y).
. Can we (exactly) compute O™ in time poly(S,A, L(P,r, ;/))?

e (nearly) Suppose (P, r) is specified with real numbers.
Can we compute O™ in , with no dependence
on L(P,r,y)?

» Scalings:

» How does the complexity scale with the “horizon” 1/(1 — y)? With L(F, r,y)?



Computational Complexities of
our lterative Algorithms
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Value lteration

. When the sub-optimality gap between O’ and Q* is less than 2 “/"*7) than

the greedy policy will be optimal.
(by a standard argument in optimization)

o VI:

e O log(l/(e(l — y))/(l — 7)) suffice for an e-accurate solution.

: S°A
. For fixed y, YES

L(P,r,y) log(1/(1 —
. Vlis poly with O(SZA - M) complexity.
—7

. NO

(There are counterexamples)
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Policy Iteration

e P| Per iteration complexity: S + S?A  (why?)
* Pl is more costly than VI per iteration.
* P|is observed to be much faster than VI to obtain an exact opt policy.

e Poly runtime?
» For fixed y, YES
Pl is 0((S3 + S°A)

L(P,r,y) log(1/(1 — 7)) )
I =y
e Strongly poly?
» Does Pl compute an optimal policy in time independent of L(P, r, y)?
(ignoring other dependencies?)



Is Pl a strongly poly algo?

» Does Pl compute an optimal policy in time independent of L.(F, r, )?

Why"? There are at most A® policies, and Pl is monotonic.
* Refinement: [Mansour & Singh '99] Pl halts after A>/S iterations.



Is Pl a strongly poly algo?

» Does Pl compute an optimal policy in time independent of L.(F, r, )?

Why"? There are at most A® policies, and Pl is monotonic.
* Refinement: [Mansour & Singh '99] Pl halts after A>/S iterations.

 |s Pl strongly polynomial®?

S*Alog(S*/(1 —
[Ye ’12] PI halts after M iterations.

1=y



Summary Table

Value Iteration

Policy Iteration

LP-based Algorithms

Poly.

L(P,r,v) log ——
) A 1—-~
524D

L(P,r,y)log =

(S° 4+ S2A)

1—~

!

Strongly Poly.

X

AS S2A10g%

(S° + S%A) - min {?,

1—

}

!

. VI Per iteration complexity: SZA
+ PI Per iteration complexity: S° + S?A




Are VI and Pl Polynomial Time algorithms?

( )

Is there a poly (and strongly poly) time
algo for an MDP?
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The Primal Linear Program

 We can write the Bellman equations with values rather than Q-values:

V(s) = max {r(s, a) + vy p(.s.a [V(S)] }

A

* An equivalent way to write the Bellman equations is as a linear program.

. With variables V € R°, the LP is:
min V(s,)

s.t. V(s) 2 r(s,a) + rEy ps.pV () Vs,aeSXA
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L P Runtimes and Comments

* [Ye, ’05]: there is an interior point algorithm (CIPA)
which is (“nearly”)

 Comments:
* Vlis best thought of as a
 Plis equivalent to a
(Recall the simplex algo, in general, could be exp time.

But not for MDPS, at least for fixed y.)



Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Poly. | s2altryless (5 4 §2.4) LEr 08 S3AL(P,r,7)
2 A 1o S2
Strongly Poly. X (83 4+ S?A) - min { f}; | S All_il—w } S4 A% log %

. VI Per iteration complexity: SZA
+ PI Per iteration complexity: S° + S?A
 The LP approach is

* The linear programming is helpful in understanding the problem.
(even though it is not used often)
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What about the Dual LP?

e | et us now consider the dual LP.

* |tis also very helpful conceptually.
* |n some cases, it also provides a reasonable algorithmic approach

* |et us start by understanding the dual variables
and the “state-action polytope”



State-Action Visitation Measures

e For a fixed (possibly stochastic) policy 7, define the
state-action visitation distribution d;g as:

d;f)(s, a)=(1—y) 2 y'Pr(s, = s,a, = a| s)
=0

where Pr”(s, = s5,a, = a | s;) is the state-action visitation probability
when we execute r starting at state .



State-Action Visitation Measures

e For a fixed (possibly stochastic) policy 7, define the
state-action visitation distribution d;g as:

ds’g(s, a)=(1—y) 2 y'Pr(s, = s,a, = a| s)
=0

where Pr”(s, = s5,a, = a | s;) is the state-action visitation probability
when we execute r starting at state .

. We can verify that have d;g satisfies, for all states s € 5:

D di(s,a) = (1= pI(s = s50) +7 Y, P(s|s’a)d(s', a)

A
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The “State-Action” Polytope

» | et us define the state-action polytope K as follows:

K. = {dle() and

50

Z d(s,a) = (1 —pI(s = sp) + yz P(s|s’,a)d(s’, a’)}

* This set precisely characterizes all state-action visitation distributions:
Lemma: d € K if and only if there exists a (possibly randomized) policy &

st.d] =d
0



The Dual LP

max 2 d(s,a)r(s, a)

s.t. de K

* One can verify that this is the dual of the primal LP.
 Note that K is a polytope



