Computation Limits and The LP Formulation

H:)

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)
- Today: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in polynomial time?

Today:

- Next two lectures:
 - Today: computational complexity & the linear programming approach
 - Next lecture: statistical complexity (when the MDP is not known)
- Today: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^{\star} (or find π^{\star}) in polynomial time?
- But first, our recap:
 - value/policy iteration + contraction

Recap

Define Bellman Operator \mathcal{T} :

Given a function $f: S \times A \mapsto \mathbb{R}$,

 $\mathcal{T}f: S \times A \mapsto \mathbb{R},$

 $(\mathscr{T}f)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a' \in A} f(s',a'), \forall s, a \in S \times A$

Value Iteration Algorithm:
$$wart$$
1. Initialization: $Q^0 : ||Q^0||_{\infty} \in (0, \frac{1}{1-\gamma})$ $Q = \chi Q$ 2. Iterate until convergence: $Q^{t+1} = \mathcal{T}Q^t$

Policy Iteration Algorithm:

Closed-form for PE (see AJKS) 2. Policy Evaluation: $\pi^0 : S \mapsto \Delta(A)$ 2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$ 3. Policy Improvement $\pi^{t+1}(s) = \arg \max_a Q^{\pi^t}(s, a), \forall s$

Final Quality of the Policy (for VI):

•
$$\pi^{t}$$
: $\pi^{t}(s) = \arg \max_{a} Q^{t}(s, a)$
Theorem: $V^{\pi^{t}}(s) \ge V^{\star}(s) - \frac{2\gamma^{t}}{1-\gamma} \|Q^{0} - Q^{\star}\|_{\infty} \forall s \in S$ • $\bigvee \mathcal{I}$

Final Quality of the Policy (for VI):

•
$$\pi^t : \pi^t(s) = \arg \max_a Q^t(s, a)$$

Theorem: $V^{\pi^t}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^{\star}\|_{\infty} \forall s \in S$

• Corollary: Set
$$Q^0 = 0$$
. After $t \ge \frac{\log \frac{2}{\epsilon(1-\gamma)^2}}{1-\gamma}$ iterations, we have:
 $V^{\pi^t}(s) \ge V^{\star}(s) - \epsilon \quad \forall s \in S$

Final Quality of the Policy (for VI):

•
$$\pi^t : \pi^t(s) = \arg \max_a Q^t(s, a)$$

Theorem: $V^{\pi^t}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^{\star}\|_{\infty} \forall s \in S$

• Corollary: Set
$$Q^0 = 0$$
. After $t \ge \frac{\log \frac{2}{\epsilon(1-\gamma)^2}}{1-\gamma}$ iterations, we have:
 $V^{\pi^t}(s) \ge V^{\star}(s) - \epsilon \quad \forall s \in S$

• Same rate for PI.

Today

- Complexity to compute an **exact solution** given *M*. (Aside: why?)
 - Assume basic arithmetic operations $(+, -, x, \div)$ take unit time.

- Complexity to compute an **exact solution** given *M*. (Aside: why?)
 - Assume basic arithmetic operations $(+,-,x,\div)$ take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^* in time poly $(S, A, L(P, r, \gamma))$?

- Complexity to compute an **exact solution** given *M*. (Aside: why?)
 - Assume basic arithmetic operations $(+,-,x,\div)$ take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^* in time poly $(S, A, L(P, r, \gamma))$?
- (nearly) strongly polynomial time: Suppose (*P*, *r*) is specified with real numbers. Can we compute *Q*^{*} in poly(*S*, *A*, log(1/(1 - γ)), with no dependence on *L*(*P*, *r*, γ)?

- Complexity to compute an **exact solution** given *M*. (Aside: why?)
 - Assume basic arithmetic operations $(+, -, x, \div)$ take unit time.
- Polytime computation: Suppose that (P, r, γ) in our MDP \mathcal{M} is specified with rational entries, where $L(P, r, \gamma)$ is total bit-size required to specify (P, r, γ) .
 - Can we (exactly) compute Q^{\star} in time poly $(S, A, L(P, r, \gamma))$?
- (nearly) strongly polynomial time: Suppose (P, r) is specified with real numbers. Can we compute Q^{\star} in poly $(S, A, \log(1/(1 - \gamma)))$, with no dependence on $L(P, r, \gamma)$? with S, A, +

• Scalings:

• How does the complexity scale with the "horizon" $1/(1 - \gamma)$? With $L(P, r, \gamma)$?

Computational Complexities of our Iterative Algorithms

When the sub-optimality gap between Q^t and Q^{*} is less than 2^{-L(P,r,γ)}, than the greedy policy will be optimal.
 (by a standard argument in optimization)

- When the sub-optimality gap between Q^t and Q^{*} is less than 2^{-L(P,r,γ)}, than the greedy policy will be optimal.
 (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma))$ iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A

- When the sub-optimality gap between Q^t and Q^{*} is less than 2^{-L(P,r,γ)}, than the greedy policy will be optimal.
 (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma)))$ iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A
- Poly runtime? For fixed γ , YES • VI is poly with $O\left(S^2A \cdot \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma}\right)$ complexity.

- When the sub-optimality gap between Q^t and Q^{*} is less than 2^{-L(P,r,γ)}, than the greedy policy will be optimal.
 (by a standard argument in optimization)
- VI:
 - $O(\log(1/(\epsilon(1-\gamma))/(1-\gamma)))$ iterations suffice for an ϵ -accurate solution.
 - Per iteration complexity: S^2A
- Poly runtime? For fixed γ , YES • VI is poly with $O\left(S^2A \cdot \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma}\right)$ complexity.
- Strongly poly? NO (There are counterexamples)

Policy Iteration

VI and checked

- PI Per iteration complexity: $S^3 + S^2 A$ (why?) complex Q^{π}
 - PI is more costly than VI per iteration.
 - PI is observed to be much faster than VI to obtain an exact opt policy.

Policy Iteration

- PI Per iteration complexity: $S^3 + S^2A$ (why?)
 - PI is more costly than VI per iteration.
 - PI is observed to be much faster than VI to obtain an exact opt policy.
- Poly runtime? • For fixed γ , YES • Pl is $O\left((S^3 + S^2A) \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma}\right)$

Policy Iteration

- PI Per iteration complexity: $S^3 + S^2A$ (why?)
 - PI is more costly than VI per iteration.
 - PI is observed to be much faster than VI to obtain an exact opt policy.
- Poly runtime?
 - For fixed γ , YES

• Pl is
$$O((S^3 + S^2 A) \frac{L(P, r, \gamma) \log(1/(1 - \gamma))}{1 - \gamma})$$

- Strongly poly?
 - Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$? (ignoring other dependencies?)

Is PI a strongly poly algo?

- Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$?
 - Yes: after A^S iterations Why? There are at most A^S policies, and PI is monotonic.
 - Refinement: [Mansour & Singh '99] PI halts after A^S/S iterations.

Is PI a strongly poly algo?

- Does PI compute an optimal policy in time independent of $L(P, r, \gamma)$?
 - Yes: after A^S iterations Why? There are at most A^S policies, and PI is monotonic.
 - Refinement: [Mansour & Singh '99] PI halts after A^S/S iterations.
- Is PI strongly polynomial?

For fixed γ , yes: [Ye '12] PI halts after $\frac{S^2 A \log(S^2/(1-\gamma))}{1-\gamma}$ iterations.

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^2 A \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$(S^3 + S^2 A) \frac{L(P,r,\gamma)\log\frac{1}{1-\gamma}}{1-\gamma}$?
Strongly Poly.	Х	$\left(S^3 + S^2 A\right) \cdot \min\left\{\frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1-\gamma}}{1-\gamma}\right\}$?

- VI Per iteration complexity: S^2A
- PI Per iteration complexity: $S^3 + S^2A$

Are VI and PI Polynomial Time algorithms? (technically, no)

Is there a poly (and strongly poly) time algo for an MDP? YES! Linear Programming

• We can write the Bellman equations with values rather than Q-values: $V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V(s) \right] \right\}$

- We can write the Bellman equations with values rather than Q-values: $V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V(s) \right] \right\}$
- An equivalent way to write the Bellman equations is as a linear program.

- We can write the Bellman equations with values rather than Q-values: $V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V(s) \right] \right\} \qquad \begin{array}{c} \downarrow \varsigma_{a} & \downarrow & \downarrow \\ \varsigma_{c} \rightarrow & \downarrow \\ \varsigma_{c} \rightarrow$
- An equivalent way to write the Bellman equations is as a linear program.
- With variables $V \in \mathbb{R}^{S}$, the LP is: $\min V(s_{0})$ $V \in \mathbb{R}^{S}$, the LP is: $\min \frac{1}{5} \stackrel{\frown}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\frown}{\downarrow} \stackrel{\frown}{\downarrow} \stackrel{\frown}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}$

s.t. $V(s) \ge r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \quad \forall s, a \in S \times A$

LP Runtimes and Comments

• An LP solver gives us a poly time algorithm.

LP Runtimes and Comments

- An LP solver gives us a poly time algorithm.
- [Ye, '05]: there is an interior point algorithm (CIPA) which is ("nearly") strongly polynomial.

LP Runtimes and Comments

- An LP solver gives us a poly time algorithm.
- [Ye, '05]: there is an interior point algorithm (CIPA) which is ("nearly") strongly polynomial.
- Comments:
 - VI is best thought of as a fixed point algorithm
 - PI is equivalent to a (block) simplex algorithm (Recall the simplex algo, in general, could be exp time. But not for MDPS, at least for fixed *γ*.)

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^2 A \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$(S^3 + S^2 A) \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$S^3AL(P,r,\gamma)$
Strongly Poly.	Х	$\left(S^3 + S^2 A\right) \cdot \min\left\{\frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1-\gamma}}{1-\gamma}\right\}$	$S^4 A^4 \log \frac{S}{1-\gamma}$

CTAPA

- VI Per iteration complexity: S^2A
- PI Per iteration complexity: $S^3 + S^2A$
- The LP approach is only logarithmic in 1γ
- The linear programming is helpful in understanding the problem. (even though it is not used often)

What about the Dual LP?

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

• Let us start by understanding the dual variables and the "state-action polytope"

State-Action Visitation Measures

• For a fixed (possibly stochastic) policy π , define the Pr(So, ao rom state-action visitation distribution ν^{π} as: $\nu_{\infty}^{(\pi)}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \Pr^{\pi}(s_{t} = s, a_{t} = a \mid s_{0}) \quad \forall (a) \quad \forall s_{0}, \tau)$ where $\Pr^{\pi}(s_t = s, a_t = a \mid s_0)$ is the state-action visitation probability when we execute π starting at state s_0 . think it as rector

State-Action Visitation Measures

• For a fixed (possibly stochastic) policy π , define the state-action visitation distribution ν^{π} as:

$$\nu_{g}^{\pi}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \Pr^{\pi}(s_{t} = s, a_{t} = a \mid s_{0})$$

where $\Pr^{\pi}(s_t = s, a_t = a \mid s_0)$ is the state-action visitation probability when we execute π starting at state s_0 .

• We can verify that have ν^{π} satisfies, for all states $s \in S$: $\sum_{\substack{a \\ r}} \nu_{\underline{s}}^{\pi}(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{\substack{s', a'}} P(s \mid s', a') \nu_{\underline{s}}^{\pi}(s', a')$

The "State-Action" Polytope

• Let us define the state-action polytope K as follows: $K := \begin{cases} \nu \mid \nu \ge 0 \text{ and} \end{cases}$

$$\sum_{a} \nu(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a')\nu(s', a')$$

The "State-Action" Polytope

• Let us define the state-action polytope K as follows: $K := \begin{cases} \nu \mid \nu \ge 0 \text{ and} \end{cases}$

$$\sum_{a} \nu(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a')\nu(s', a') \bigg\}$$

• This set precisely characterizes all state-action visitation distributions:

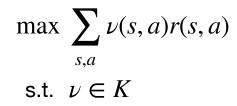
The "State-Action" Polytope

• Let us define the state-action polytope K as follows:

$$K := \left\{ \nu \mid \nu \ge 0 \text{ and} \right.$$
$$\sum_{a} \nu(s, a) = (1 - \gamma)I(s = s_0) + \gamma \sum_{s', a'} P(s \mid s', a')\nu(s', a') \right\}$$

• This set precisely characterizes all state-action visitation distributions: Lemma: $\nu \in K$ if and only if there exists a (possibly randomized) policy π s.t. $\nu^{\pi} = \nu$

The Dual LP



- One can verify that this is the dual of the primal LP.
- Note that K is a polytope