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Today:

* Next two lectures:
* Today: & the linear programming approach
* Next lecture: (when the MDP is not known)

« Today: Given an MDP.Z = (S, A, P, r, y) can we exactly compute Q*
(or find 7*) in polynomial time?

» But first, our recap:
 value/policy iteration + contraction



Recap



Define Bellman Operator J :

Given a functionf: S X A — R,

(Pff) (s,a) == r(s,a) + YE, _p(|sqMmaxf(s’,a’),Vs,a € S XA
a'€A



Value lteration Algorithm:

e 0 0 1
1. Initialization: 0" : ||O"|| , € (0,1—)
—Y

2. Iterate until convergence: Q'™ = T 0’



Policy Iteration Algorithm:

Closed-form for PE 1. Initialization: 77 : S — A(A)

(see AJKS) r
2. Policy Evaluation: O” (s, a), Vs, a

3. Policy Improvement 7/ (s) = arg max 0" (s, a), Vs ‘>

a



Final Quality of the Policy (for VI):

. ' 7'(s) = argmax Q'(s, a)
| a ) 2}/ ; . v \/ L
Theorem: V*(s) > V*(s) — " 10" — 07| Vs €S
-7
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Final Quality of the Policy (for VI):

. ' 7'(s) = argmax Q'(s, a)

2y!

Theorem: V7 (s) > V*(s) — |
—7

10° - 0¥l Vs €S

log T
6 —
., Corollary: Set 0°% = 0. Afterr > " " iterations, we have:
—7

VZ(s) > VX(s)—e Vs€ES

e Same rate for PI.
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Polynomial Time &
Strongly Polynomial Complexity

Complexity to compute an exact solution given .Z. (Aside: why?)

* Assume basic arithmetic operations (+,-,X,~) take unit time.

Polytime computation: Suppose that (P, r, y) in our MDP ./ is specified

with rational entries, where L.(P, r, y) is total bit-size required to specify (P, r, y).
« Can we (exactly) compute Q™ in time pon(S, A,L(P,r, }/))?

(nearly) strongly polynomial time: Suppose (P, r) is specified with real numbers.
Can we compute Q* in pon(S,A, log(1/(1 — y)), with no dependence

on L(P,r,y)?
VA r\/k S/ /L‘ L~ f"}/
Scalings:

« How does the complexity scale with the “horizon” 1/(1 — y)? With L(P, r,y)?



Computational Complexities of
our lterative Algorithms
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Value lteration

When the sub-optimality gap between Q' and Q* is less than 2~ """*") than
the greedy policy will be optimal.
(by a standard argument in optimization)

VI:
. O( log(l/(e(l - }/))/(1 -7)) suffice for an e-accurate solution.
. S?A

For fixed y, YES
L(P,r,y) log(1/(1 —
. Vlis poly with o(SzA. (P, 1,y) log(1/(1 — y))

1=y
NO
(There are counterexamples)

) complexity.



Policy Iteration > Q

h@V\L AD

T
e Pl Periteration complexity: 82 + S?A  (why?) (ow W/Jré (:2 ’

* Pl is more costly than VI per iteration.

* Pl is observed to be much faster than VI to obtain an exact opt policy.
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Policy lteration

e PI Per iteration complexity: §° + S?A  (why?)

* Pl is more costly than VI per iteration.

* Pl is observed to be much faster than VI to obtain an exact opt policy.
e Poly runtime?

» For fixed y, YES

Plis 0((53 +524)

L(P,r,y) log(1/(1 —7)) )
1=y
» Strongly poly?
« Does Pl compute an optimal policy in time independent of L(P, r, y)?
(ignoring other dependencies?)



Is Pl a strongly poly algo?

« Does Pl compute an optimal policy in time independent of L.(FP, 7, y)?
Why? There are at most A® policies, and Pl is monotonic.
« Refinement: [Mansour & Singh *99] PI halts after A°/S iterations.



Is Pl a strongly poly algo?

« Does Pl compute an optimal policy in time independent of L.(FP, 7, y)?

Why? There are at most A® policies, and Pl is monotonic.
« Refinement: [Mansour & Singh *99] PI halts after A°/S iterations.

* |s Pl strongly polynomial?

S*Alog(S%/(1 —
[Ye ’12] PI halts after gl( ( 2) iterations.
—7




Summary Table

Value Iteration

Policy Iteration

LP-based Algorithms

Poly.

S2AL(P,T”7> log ﬁ

1—

(S + S24)

L(P,r,y)log =

1—v

?

Strongly Poly.

X

AS S2A10g15;—,y

)

(8% + S2A) - min {?,

1—~

?

« VI Per iteration complexity: S2A
« Pl Per iteration complexity: S° + S2A




Are VI and Pl Polynomial Time algorithms?

( )

Is there a poly (and strongly poly) time
algo for an MDP?



The Primal Linear Program
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The Primal Linear Program

« We can write the Bellman equations with values rather than Q-values:

V(s) = max {r(s, @) + YEypiis.a) |V } Lj” Loy
a 28 \/ - /Z': \/

* An equivalent way to write the Bellman equations is as a linear program.

~ZV
o With variables V € R”, the LPis: > s s CS)
min Vis)— S (Y

st. V(s) 2 r(s,a) + yEy ps0)V(8) Vs,a€SXA
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LP Runtimes and Comments

* [Ye, '05]: there is an interior point algorithm (CIPA)
which is (“nearly”) :

« Comments:
* Vlis best thought of as a
* Plis equivalent to a
(Recall the simplex algo, in general, could be exp time.

But not for MDPS, at least for fixed y.)



Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Poly,. | s2a™Prlers (8% + 524) HEI e I SSAL(P,1,7)
2 Alog 52
Strongly Poly X 5+ 524 min {47, TS | statiog

VI Per iteration complexity: S2A (e
Pl Per iteration complexity: S3 + S%A )(\P/;‘

The LP approach is

The linear programming is helpful in understanding the problem.
(even though it is not used often)
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» Let us now consider the dual LP.
* |tis also very helpful conceptually.
* In some cases, it also provides a reasonable algorithmic approach



What about the Dual LP?

» Let us now consider the dual LP.
* |tis also very helpful conceptually.
* In some cases, it also provides a reasonable algorithmic approach

e Let us start by understanding the dual variables
and the “state-action polytope”



State-Action Visitation Measures
+ra ) /t}%[ .
» For a fixed (possibly stochastic) policy x, define the
state-action visitation distribution »” as: P 9@/ Xy (-

gs’a):(l ;/)Z:;errﬂ(s,:s,a[:mSO) \/\( M} \90/;(—)

where Pr”(s, = 5,a, = a| 5,) is the state-action visitation prgbability

when we execute 7 starting at state ;. Haiale N b 5
—
ve C)%;

| >
\( (’( & > “'"/)“ o 7
SR



State-Action Visitation Measures

For a fixed (possibly stochastic) policy x, define the
state-action visitation distribution »/” as:

0
yi(s,a):= (1= y) ) y'Pr(s, = 5,0, = a| sp)
b =0
where Pr”(s, = 5, a, = a| 5;) is the state-action visitation probability

when we execute 7 starting at state ;.

We can verify that have " satisfies, for all states s € S:

z UZB(S, a) = (1 = p)I(s = s) + }/z P(s|s, a’)I/S:(S’, a’)

a s’.a’
!



The “State-Action” Polytope

» Let us define the state-action polytope K as follows:

K = {uleO and

Y uis.a) = (1=pls=s))+7 ) Pls|s,a)us, a’)}

a sa
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The “State-Action” Polytope

» Let us define the state-action polytope K as follows:

K = {vluZO and

Z v(s,a) =1 —=y)I(s = sy) + yz P(s|s',a")u(s’, a’)}

a sa

» This set precisely characterizes all state-action visitation distributions:
Lemma: v € K if and only if there exists a (possibly randomized) policy x
st.v"=v



The Dual LP

max Z v(s,a)r(s,a)

s,a

st. vreK

* One can verify that this is the dual of the primal LP.
* Note that K is a polytope



