
Computation Limits and
The LP Formulation

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning

Hi

Today:

• Next two lectures:

• Today: computational complexity & the linear programming approach

• Next lecture: statistical complexity (when the MDP is not known) 

Today:

• Next two lectures:

• Today: computational complexity & the linear programming approach

• Next lecture: statistical complexity (when the MDP is not known) 

• Today: Given an MDP can we exactly compute
(or find) in polynomial time?  

ℳ = (S, A, P, r, γ) Q⋆

π⋆

Today:

• Next two lectures:

• Today: computational complexity & the linear programming approach

• Next lecture: statistical complexity (when the MDP is not known) 

• Today: Given an MDP can we exactly compute
(or find) in polynomial time?  

ℳ = (S, A, P, r, γ) Q⋆

π⋆

• But first, our recap:

• value/policy iteration + contraction

Recap

Define Bellman Operator :#

Given a function ,

,

f : S × A ↦ ℝ

#f : S × A ↦ ℝ

(#f)(s, a) := r(s, a) + γ's′ ∼P(⋅|s,a) max
a′ ∈A

f(s′ , a′), ∀s, a ∈ S × A

Value Iteration Algorithm:

1. Initialization: Q0 : ∥Q0∥∞ ∈ (0, 1
1 − γ

)

2. Iterate until convergence: Qt+1 = #Qt

want
Q sit
Q TQ

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ Δ(A)

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Closed-form for PE

(see AJKS)

•  

Theorem:  

 

πt : πt(s) = arg max
a

Qt(s, a)

Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

Final Quality of the Policy (for VI):

VI

•  

Theorem:  

 

πt : πt(s) = arg max
a

Qt(s, a)

Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

• Corollary: Set . After iterations, we have:  

 

Q0 = 0 t ≥
log 2

ϵ(1 − γ)2

1 − γ
Vπt(s) ≥ V⋆(s) − ϵ ∀s ∈ S

Final Quality of the Policy (for VI):

•  

Theorem:  

 

πt : πt(s) = arg max
a

Qt(s, a)

Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

• Corollary: Set . After iterations, we have:  

 

Q0 = 0 t ≥
log 2

ϵ(1 − γ)2

1 − γ
Vπt(s) ≥ V⋆(s) − ϵ ∀s ∈ S

• Same rate for PI.

Final Quality of the Policy (for VI):

Today

Polynomial Time &  
Strongly Polynomial Complexity

• Complexity to compute an exact solution given . (Aside: why?)

• Assume basic arithmetic operations (+,-,x,) take unit time.

ℳ
÷

Polynomial Time &  
Strongly Polynomial Complexity

• Complexity to compute an exact solution given . (Aside: why?)

• Assume basic arithmetic operations (+,-,x,) take unit time.

ℳ
÷

• Polytime computation: Suppose that in our MDP is specified  
with rational entries, where is total bit-size required to specify .

• Can we (exactly) compute in time ?

(P, r, γ) ℳ
L(P, r, γ) (P, r, γ)

Q⋆ poly(S, A, L(P, r, γ))

Polynomial Time &  
Strongly Polynomial Complexity

• Complexity to compute an exact solution given . (Aside: why?)

• Assume basic arithmetic operations (+,-,x,) take unit time.

ℳ
÷

• Polytime computation: Suppose that in our MDP is specified  
with rational entries, where is total bit-size required to specify .

• Can we (exactly) compute in time ?

(P, r, γ) ℳ
L(P, r, γ) (P, r, γ)

Q⋆ poly(S, A, L(P, r, γ))
• (nearly) strongly polynomial time: Suppose is specified with real numbers. 

Can we compute in , with no dependence  
on ? 

(P, r)
Q⋆ poly(S, A, log(1/(1 − γ))

L(P, r, γ)

Polynomial Time &  
Strongly Polynomial Complexity

• Complexity to compute an exact solution given . (Aside: why?)

• Assume basic arithmetic operations (+,-,x,) take unit time.

ℳ
÷

• Polytime computation: Suppose that in our MDP is specified  
with rational entries, where is total bit-size required to specify .

• Can we (exactly) compute in time ?

(P, r, γ) ℳ
L(P, r, γ) (P, r, γ)

Q⋆ poly(S, A, L(P, r, γ))
• (nearly) strongly polynomial time: Suppose is specified with real numbers. 

Can we compute in , with no dependence  
on ? 

(P, r)
Q⋆ poly(S, A, log(1/(1 − γ))

L(P, r, γ)

• Scalings:

• How does the complexity scale with the “horizon” ? With ?1/(1 − γ) L(P, r, γ)

with S A T

Computational Complexities of  
our Iterative Algorithms

Value Iteration
• When the sub-optimality gap between and is less than , than

the greedy policy will be optimal. 
(by a standard argument in optimization)

Qt Q⋆ 2−L(P,r,γ)

Value Iteration
• When the sub-optimality gap between and is less than , than

the greedy policy will be optimal. 
(by a standard argument in optimization)

Qt Q⋆ 2−L(P,r,γ)

• VI:

• iterations suffice for an -accurate solution.

• Per iteration complexity:

O(log(1/(ϵ(1 − γ))/(1 − γ)) ϵ
S2A

Value Iteration
• When the sub-optimality gap between and is less than , than

the greedy policy will be optimal. 
(by a standard argument in optimization)

Qt Q⋆ 2−L(P,r,γ)

• VI:

• iterations suffice for an -accurate solution.

• Per iteration complexity:

O(log(1/(ϵ(1 − γ))/(1 − γ)) ϵ
S2A

• Poly runtime? For fixed , YES

• VI is poly with complexity.

γ
O(S2A ⋅ L(P, r, γ) log(1/(1 − γ))

1 − γ)

Value Iteration
• When the sub-optimality gap between and is less than , than

the greedy policy will be optimal. 
(by a standard argument in optimization)

Qt Q⋆ 2−L(P,r,γ)

• VI:

• iterations suffice for an -accurate solution.

• Per iteration complexity:

O(log(1/(ϵ(1 − γ))/(1 − γ)) ϵ
S2A

• Poly runtime? For fixed , YES

• VI is poly with complexity.

γ
O(S2A ⋅ L(P, r, γ) log(1/(1 − γ))

1 − γ)
• Strongly poly? NO 

(There are counterexamples)

Policy Iteration

• PI Per iteration complexity: (why?)

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A

I attacked
have to
compute Q

Policy Iteration

• PI Per iteration complexity: (why?)

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A

• Poly runtime?

• For fixed , YES

• PI is

γ
O((S3 + S2A) L(P, r, γ) log(1/(1 − γ))

1 − γ)
meters to opt

exactly

Policy Iteration

• PI Per iteration complexity: (why?)

• PI is more costly than VI per iteration.

• PI is observed to be much faster than VI to obtain an exact opt policy.

S3 + S2A

• Poly runtime?

• For fixed , YES

• PI is

γ
O((S3 + S2A) L(P, r, γ) log(1/(1 − γ))

1 − γ)
• Strongly poly?

• Does PI compute an optimal policy in time independent of ? 

(ignoring other dependencies?)
L(P, r, γ)

Is PI a strongly poly algo?

• Does PI compute an optimal policy in time independent of ?

• Yes: after iterations  

Why? There are at most policies, and PI is monotonic.

• Refinement: [Mansour & Singh ’99] PI halts after iterations. 

L(P, r, γ)
AS

AS

AS/S

Is PI a strongly poly algo?

• Does PI compute an optimal policy in time independent of ?

• Yes: after iterations  

Why? There are at most policies, and PI is monotonic.

• Refinement: [Mansour & Singh ’99] PI halts after iterations. 

L(P, r, γ)
AS

AS

AS/S

• Is PI strongly polynomial?  
For fixed , yes: 

[Ye ’12] PI halts after iterations.

γ
S2A log(S2/(1 − γ))

1 − γ

Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� ?

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
?

• VI Per iteration complexity:

• PI Per iteration complexity:

S2A
S3 + S2A

Are VI and PI Polynomial Time algorithms? 
(technically, no) 

 
Is there a poly (and strongly poly) time

algo for an MDP? 
YES! Linear Programming

The Primal Linear Program

The Primal Linear Program

• We can write the Bellman equations with values rather than Q-values: 
 V(s) = max

a {r(s, a) + γ's′ ∼P(⋅|s,a) [V(s)]}

The Primal Linear Program

• We can write the Bellman equations with values rather than Q-values: 
 V(s) = max

a {r(s, a) + γ's′ ∼P(⋅|s,a) [V(s)]}
• An equivalent way to write the Bellman equations is as a linear program. 

The Primal Linear Program

• We can write the Bellman equations with values rather than Q-values: 
 V(s) = max

a {r(s, a) + γ's′ ∼P(⋅|s,a) [V(s)]}
• An equivalent way to write the Bellman equations is as a linear program. 

• With variables , the LP is: V ∈ ℝS

min V(s0)
s.t. V(s) ≥ r(s, a) + γ's′ ∼P(⋅|s,a)V(s′) ∀s, a ∈ S × A

find U
sat VIT V

min I p
I Ks

LP Runtimes and Comments

• An LP solver gives us a poly time algorithm.

LP Runtimes and Comments

• An LP solver gives us a poly time algorithm.
• [Ye, ’05]: there is an interior point algorithm (CIPA)  

which is (“nearly”) strongly polynomial. 

LP Runtimes and Comments

• An LP solver gives us a poly time algorithm.
• [Ye, ’05]: there is an interior point algorithm (CIPA)  

which is (“nearly”) strongly polynomial. 

• Comments:

• VI is best thought of as a fixed point algorithm

• PI is equivalent to a (block) simplex algorithm 

(Recall the simplex algo, in general, could be exp time.  
But not for MDPS, at least for fixed .)γ

Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� S3AL(P, r, �)

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
S4A4 log S

1��

• VI Per iteration complexity:

• PI Per iteration complexity:

• The LP approach is only logarithmic in  

• The linear programming is helpful in understanding the problem. 
(even though it is not used often)

S2A
S3 + S2A

1 − γ

T
CIPA

What about the Dual LP?

What about the Dual LP?

• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach  
 

What about the Dual LP?

• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach  
 

• Let us start by understanding the dual variables  
and the “state-action polytope”

State-Action Visitation Measures
• For a fixed (possibly stochastic) policy , define the  

state-action visitation distribution as:

 

where is the state-action visitation probability  
when we execute starting at state . 

π
νπ

νπ(s, a) = (1 − γ)
∞

∑
t=0

γtPrπ(st = s, at = a |s0)

Pr π(st = s, at = a |s0)
π s0

tray dist

Pulseno ro
I0 real 1so at

think it a vector

VI I SEE I

State-Action Visitation Measures
• For a fixed (possibly stochastic) policy , define the  

state-action visitation distribution as:

 

where is the state-action visitation probability  
when we execute starting at state . 

π
νπ

νπ(s, a) = (1 − γ)
∞

∑
t=0

γtPrπ(st = s, at = a |s0)

Pr π(st = s, at = a |s0)
π s0

• We can verify that have satisfies, for all states :νπ s ∈ S

∑
a

νπ(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′

P(s |s′ , a′)νπ(s′ , a′)

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

K := {ν | ν ≥ 0 and

∑
a

ν(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′

P(s |s′ , a′)ν(s′ , a′)}

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

K := {ν | ν ≥ 0 and

∑
a

ν(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′

P(s |s′ , a′)ν(s′ , a′)}
• This set precisely characterizes all state-action visitation distributions:

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

K := {ν | ν ≥ 0 and

∑
a

ν(s, a) = (1 − γ)I(s = s0) + γ∑
s′ ,a′

P(s |s′ , a′)ν(s′ , a′)}
• This set precisely characterizes all state-action visitation distributions:
Lemma: if and only if there exists a (possibly randomized) policy  
s.t.

ν ∈ K π
νπ = ν

The Dual LP

• One can verify that this is the dual of the primal LP.

• Note that K is a polytope

max ∑
s,a

ν(s, a)r(s, a)

s.t. ν ∈ K

