
Homework 1: Linear Programming
& Sample Complexity

CS 6789: Foundations of Reinforcement Learning

0 Instructions
For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework. Please add your remarks in a
“Question 0”.

1 The (Discounted) State-Action Visitation Measure (20 Points)
1. (5 Points) Show that:

(I − γP π)−11 = (1− γ)−11

where 1 is the vector of all ones.
2. (5 Points) Write an expression for Pr(st = s′, at = a′|s0 = s, a0 = a) in terms of the transition

model P π. You should write this as a matrix of size |S||A| × |S||A|, where the (s, a), (s′, a′)
entry is Pr(st = s′, at = a′|s0 = s, a0 = a).

3. (10 Points) Show that:

[(1− γ)(I − γP π)−1](s,a),(s′,a′) = (1− γ)
∞∑
h=0

γtPπh(sh = s′, ah = a′|s0 = s, a0 = a)

This rows of this matrix are often referred to as discounted state-action visitation measures (or
state-action visitation distributions); we can view the (s, a)-th row of this matrix as an induced
distribution over states and actions when following π after starting with s0 = s and a0 = a.

2 Linear Programming for MDPS (20 Points)
1. (5 Points) Consider the following linear programming that we covered in the lecture:

min
V ∈RS

∑
s

µ(s)V (s), s.t., V (s) ≥ r(s, a) + γEs′∼P (·|s,a)V (s′),∀a ∈ A, s ∈ S.

Here we assume µ(s) > 0 for all s. Prove that V ? is the unique solution to the above LP.
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2. (5 points) Let us now consider a modified definition of the average state-action visitation mea-
sure: dπs0(s, a) := (1 − γ)

∑∞
h=0 γ

hPπh(sh = s, ah = a|s0), with respect to for a fixed start state
s0 and a stationary policy π : S 7→ ∆(A). 1 Prove that:∑

a

dπs0(s, a) = (1− γ)δ(s0) + γ
∑
s′,a′

dπs0(s
′, a′)P (s|s′, a′),∀s

Here δ(s0) is the delta distribution, i.e., δ(s0) = 1 and 0 for any other state.
3. (No answer needed) Observe that we can write V π(s0) = 1

1−γd
π
s0
· r where we can view dπs0 and

r as vectors of length |S| · |A|, i.e. the value is a linear functions of the state-action measure.
4. (10 Points) Consider the following polytope:

K = {v ∈ ∆(S×A) :
∑
a

v(s, a) = (1− γ)δ(s0) + γ
∑
s′,a′

v(s′, a′)P (s|s′, a′),∀s}.

Consider any v ∈ K. Denote the stationary policy as πv(a|s) = v(s,a)∑
a′∈A v(s,a)

,∀s, a. Prove that
we have v(s, a) = dπs0(s, a),∀s, a.
(Hint: Directly work on v(s, a) − dπs0(s, a), and use recursion. The whole process consists of
straight equalities.)

5. (No answer needed) Equipped with what you just showed, read (and feel free to interpret) the
formulation of the dual LP in the book.

3 Bellman Consistency of the Variance (20 Points)
For any policy π in an MDP M , let us define

Σπ(s, a) , E

∣∣∣∣∣∑
t≥0

γtr(st, at)−Qπ(st, at)

∣∣∣∣∣
2 ∣∣∣s0 = s, a0 = a


as the variance of the sum of discounted rewards for the sequence of state-action pairs,
{(s0, a0), (s1, a1), . . .}. Furthermore, let us define

Vary∼ρ(f(y)) , Ey∼ρ
[
|f(y)− Ey∼ρ[f(y)]|2

]
as the variance of a real-valued function f : Y → R under the probability distribution ρ. For
V π ∈ R|S|, we define the vector VarP (V π) ∈ R|S||A as:

VarP (V π) , VarP (·|s,a)(V
π) = P (V )2 − (PV )2

Given these definitions, show that for any policy π, the variance Σπ satisfies the following Bellman-
like recursion.

Σπ = γ2VarP (V π) + γ2P πΣπ ,

1Note that the modification from the definition in Problem 1 is that here we are starting at a fixed state s0 and then
follow π, while the latter starts with s0, a0 and then we follow π. We could denote the latter definition by dπs0,a0(s, a).
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where P is the transition model in the MDP M (and we have dropped the M subscripts).

Variance and the Doob martingale: If you are familiar with martingales, you may find it natural
to think about the concepts above in terms of the Doob martingale based on the random variable
Z = (1 − γ)

∑∞
t=0 γ

tr(st, at). If you are not familiar with martingales, then not to worry as the
above will give you insights into this concept.
Minimax Optimal Sample Complexity: The Bellman consistency condition for the variance is a
key lemma in obtaining the minimax optimal sample complexity. This lemma, along with the
“Weighted Sum of Deviations” Lemma (see the book) provide much of the insights for how to
achieve minimax optimal sample complexity. For a mastery of the material, please read Chapter 2
and the proof sketch in the slides.

4 A Worst-case Example of `∞ Error Amplification (20 Points)
Provide an example that shows the worst case bound from Lecture 1, on the suboptimality of the
greedy policy itself, is (nearly) tight. In particular, specify an MDP M (the transition model P and
the reward function r), such that for every γ and ε, you show there is vector Q ∈ R|S||A| such that
‖Q−Q?‖∞ = ε and such that:

V πQ ≤ V ? − ε

1− γ
1.

where 1 denotes the vector of all ones. In other words, you should be specifying your Q as a
function of Q∗, ε and γ. (Note that Q∗ will be a function of γ).

(Hint: It is possible to do this with just two states and two actions, so that Q ∈ R4. The idea
of this simple “worst-case” MDP is that it should give you insight into how errors accumulate. It
might help to think of a two state MDP where one (suboptimal) action is absorbing at one of the
two states.)

5 Learning Transition Models (20 Points)

In this problem, we are going to bound the model error, i.e., ‖P̂ (·|s, a) − P ?(·|s, a)‖1 for all s, a,
where P̂ is the learned model and P ? is the ground truth model. Let us assume that we have a
dataset D = {si, ai, s′i}Ni=1 which we use to learn P̂ as follows:

P̂ (s′|s, a) =

∑N
i=1 1{(si, ai, s′i) = (s, a, s′)}

N(s, a)
, N(s, a) =

N∑
i=1

1{(si, ai) = (s, a)},

where for simplicity let us assume that N(s, a) > 0,∀s, a. We will assume that given (s, a), the
next state s′ is sampled from P ?(·|s, a) in an i.i.d fashion.

Q1 (5 points): Prove that for all s, a, ‖P̂ (·|s, a) − P ?(·|s, a)‖1 = maxf :S 7→[−1,1](P̂ (·|s, a) −
P ?(·|s, a))>f , where we treat P (·|s, a) as a vector in RS and f as a vector in RS as well.

3



Q2 (5 points): Now let us consider a fixed function f ∈ S 7→ [−1, 1]. Prove that with probability
at least 1− δ, for ALL s, a, we have:

∣∣∣(P̂ (·|s, a)− P ?(·|s, a))>f
∣∣∣ ≤ 2

√
ln(SA/δ)

N(s, a)
.

Here you will use Hoeffding’s inequality and union bound.

Note that in Q2, the result only applies to the fixed function f we choose. Now we want to
derive the model error that works for all f ∈ S 7→ [−1, 1] so that using the result in Q1, we will
get the model error under the `1 norm. From now on, since we only have finite number of states,
let us consider f as a vector in [−1, 1]S , i.e., a vector whose length is S and each element of the
vector is [−1, 1].

If the space [−1, 1]S were discrete, then we would have done by just applying a union bound
over all possible vectors there. Unfortunately, [−1, 1]S is a continuous space, so we cannot do a
union bound directly over that space. We will work out the standard solution to deal with this
situation, which is the ε-net covering argument. Below is the standard ε-net definition.

Definition 1 (ε-net (under `2 norm)). Consider a compact set R (for simplicity, let us just assume
R ⊂ Rd for some d). An ε-net Nε ⊂ R is a discrete set such that for any point v ∈ R, there exists
a point v′ ∈ Nε, such that ‖v − v′‖2 ≤ ε.

Basically, we can think about Nε as a type of discretization of the space R where the discretiza-
tion resolution is roughly ε (i.e., any point in R is always covered by a point in Nε that is ε close in
the `2 norm metric).

Now let us consider R to be a ball in Rd with radius equal to R ∈ R+, i.e., R = {x ∈ Rd :
‖x‖2 ≤ R}. The following proposition shows that there always exists an ε-net whose size is at
most (1 + 2R/ε)d.

Lemma 1. For R = {x ∈ Rd : ‖x‖2 ≤ R}, there exists an ε-net Nε such that |Nε| ≤ (1 + 2R/ε)d.

We are not going to prove this lemma, but intuitively the exponent d is not hard to see: if
we discrete each dimension, then roughly the number of points on the discrete grid is exp(d). In
general computing the smallest ε-net is hard, but approximation algorithm exists. Note that in this
problem, we only use an ε-net inside the analysis, i.e., we only need its existence, and there is no
need to construct it explicitly.

The benefit of ε-net is that it is a finite set, which allows us to apply a union bound over all
points inside it. We also know that any point in R is ε-close to a point in Nε, so hopefully via
tuning the magnitude of ε, we are able to build a uniform convergence bound for ALL points in R.
This covering argument is a very standard tool in learning theory to derive uniform convergence
bounds over a continuous set.
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Q3 (5 points): Denote Nε as the ε-net of [−1, 1]S . Show that with probability at least 1 − δ, for
ALL s, a and ALL f ∈ [−1, 1]S , we have:

∣∣∣(P̂ (·|s, a)− P ?(·|s, a))>f
∣∣∣ ≤ 2

√
S ln(SA(1 + 2

√
S/ε)/δ)

N(s, a)
+ 2ε.

Q4 (5 points): Since ε > 0 is a free parameter, now we can set ε to be a small number. Par-
ticularly, we can set ε = 1/(2N) where N is the total number of samples and we know that
N ≥ N(s, a) (this means that 1/N ≤ 1/N(s, a) ≤ 1/

√
N(s, a). Now substitute ε = 1/(2N) into

the above bound, prove the following: with probability at least 1− δ, for ALL s, a, we have:

‖P̂ (·|s, a)− P ?(·|s, a)‖1 = argmaxf∈[−1,1]S
∣∣∣(P̂ (·|s, a)− P ?(·|s, a))>f

∣∣∣
≤ O

√S ln(SA(1 +
√
SN)/δ)

N(s, a)

 = Õ

(√
S

N(s, a)

)
,

where O(·) ignores absolute constants, and Q̃(·) notation ignores log terms.

5


	Instructions
	The (Discounted) State-Action Visitation Measure (20 Points)
	Linear Programming for MDPS (20 Points)
	Bellman Consistency of the Variance (20 Points)
	A Worst-case Example of  Error Amplification (20 Points)
	Learning Transition Models (20 Points)

