
Homework 2: Performance Difference Lemma,
Simulation Lemma, and Absorbing MDPs

CS 6789: Foundations of Reinforcement Learning

0 Instructions
For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework. Please add your remarks in a
“Question 0”.

1 Performance Difference Lemma (20 points)
Consider finite horizon MDPs {S,A, H, {rh}h, {Ph}h, s0}. Denote Pπh(s, a) as the state-action
distribution induced by π : S → ∆(A) at time step h, i.e., the probability of π visiting (s, a) at
time step h starting from s0 at h = 0.

Let us denote V π as the expected total reward of policy π starting at s0, i.e.,

V π = E

[
H−1∑
h=0

r(sh, ah)|ah ∼ π(sh)

]
.

1.1 Classic PDL proof (10 points)
Prove the following equality for two arbitrary stochastic stationary policies π and π̃:

V π − V π̃ =
H−1∑
h=0

Es,a∼Pπh
[
Aπ̃h(s, a)

]
,

where Aπ is the advantage function of a policy π, i.e., Aπh(s, a) = Qπ
h(s, a)− V π

h (s)

1.2 Extension of PDL (10 points)
Now let us consider a function f : S × A → [0, H]. Note that f here is not necessarily corre-
sponding to any value Q function Qπ (think about f as some function approximation of some Q?

for instance). Denote πf as the stationary policy πf (s) = argmaxa f(s, a) for all s (you can think
about πf as a stochastic policy which puts all probability mass at argmaxa).

Recall that we consider finite horizon H . Let’s assume that at h = H − 1, for any s, a, the
transition PH−1(·|s, a) always transits to a special state ŝ (i.e., PH−1(ŝ|s, a) = 1) at time step H ,
and f(ŝ, a′) = 0 for all a′ ∈ A.
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Prove the following equality as well:

V πf −max
a
f(s0, a) =

H−1∑
h=0

E
s,a∼P

πf
h

[
rh(s, a) + Es′∼Ph(·|s,a) max

a′
f(s′, a′)− f(s, a)

]
.

2 Simulation Lemma and Model-based Learning (20 points)

Consider two finite horizon MDPs M := {S,A, H, {rh}h, {Ph}h, s0} and M̃ := {S,A, H, rh, {P̃h}h, s0}.
Consider an arbitrary stochastic stationary policy π : S 7→ ∆(A). Similarly to the above problem,
we define V π as the expected total reward of π under M, and Ṽ π as the expected total reward of π
under M̃. We denote Pπh as the state-action distribution of π under M at step h.

2.1 Proving Simulation Lemma (10 points)
Prove the following equality

V π − Ṽ π =
H−1∑
h=0

Es,a∼Pπh
[
Es′∼Ph(·|s,a)Ṽ

π
h+1(s′)− Es′∼P̃h(·|s,a)Ṽ

π
h+1(s′)

]
Note that Ṽ π

h+1(s′) is the expected total reward of π under M̃ from time h+ 1.

2.2 Model-based Learning (10 points)

Imagine the following situation: we have M as the true real MDP, and we have M̃ as some learned
model that supposes to approximate the real MDP M. Given M̃, the natural thing to do is to
compute the optimal policy under M̃, i.e.,

π̃? = argmaxπ∈Π Ṽ
π,

where Π ⊂ {π : S → ∆(A} is a pre-defined policy class. Let us also denote the true optimal
policy π? under the real model as:

π? = argmaxπ∈Π V
π.

A natural question is that what is the performance of π̃? under the real model M, compared to π?

under M?
Let’s prove the following inequality:

V π? − V π̃? ≤ H
H−1∑
h=0

[
Es,a∼Pπ?h ‖P̃h(·|s, a)− Ph(·|s, a)‖1 + Es,a∼Pπ̃?h ‖P̃h(·|s, a)− Ph(·|s, a)‖1

]
The above inequality shows the challenging of model-based approach. As we can see, in

order for π̃? to be near optimal, we need to make sure P̃ is accurate under both Pπ? and Pπ̃? , and
unfortunately we have no way to know what Pπ? looks like.
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3 Concluding the proof for Bellman rank (10 points)
In this problem, we will wrap up the last few steps of the proof for Bellman rank.

In class, we have proved that via optimism and the Bellman rank condition, for any iteration t,
we have:

V ?
0 (s0)− V πft

0 (s0) ≤
H−1∑
h=0

‖Wh(ft)‖Σt,h‖Xh(ft)‖Σ−1
t,h
,

where Σt,h =
∑t−1

i=0 Xh(fi)Xh(fi)
> + λI for some λ ∈ R+. and we also proved that for any t,

‖Wh(ft)‖Σt,h ≤
√

4Tεgen + λB2
WT whereBW upper bounds the norm ofWh(f), i.e., supf∈H ‖Wh(f)‖2 ≤

BW ∈ R+.
We will also use the following lemma:

Lemma 1. For any sequence of vectors x0, . . . , xt−1 with xi ∈ Rd and ‖xi‖2 ≤ B, we always
have:

t−1∑
i=0

ln
(
1 + x>i Σ−1

i xi
)
≤ d ln

(
1 + tB2/(dλ)

)
,

where Σ0 = λI , and Σi = Σi−1 + x>i xi.

The above lemma is proved in the linear bandit lecture and was used in linear MDP’s proofs as
well.

Q1 Assume that supf∈H,h ‖Xh(f)‖2 ≤ BX . Prove that after T iterations, there must exist an
iteration t, such that:

∀h ∈ [0, . . . , H − 1] : ln
(

1 + ‖Xh(ft)‖Σ−1
t,h

)
≤ Hd

T
ln

(
1 +

TB2
X

dλ

)
(1)

Q2 Consider the iteration t where the above inequality 1 holds. We immediately have:

V ?
0 (s0)− V πft

0 (s0) ≤ H
√

4Tεgen + λB2
WT

√
exp

(
Hd

T
ln

(
1 +

TB2
X

dλ

))
− 1.

Now we are ready to set the two free parameters λ and T . Try to work out the detailed parameters
λ and T , such that eventually, we get:

V ?
0 (s0)− V πft

0 (s0) ≤ cεgen

√
dH3 ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

))
,

where c is some absolute constant. Try to get something that looks like the above — you do not
have to exactly match the above formulation, but in high level, the dependence on the dominating
terms should be matched, i.e., εgen,

√
d,H1.5, but things inside the log terms could be different.
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4 Absorbing MDPs (60 points)
Consider an infinite horizon discounted MDP M = {S,A, γ, r, P, s0}. Let us assume S and A are
discrete here, and r(s, a) ∈ [0, 1]. We will consider stationary policy π here, and recall dπ(s, a) is
the state-action visitation of π under transition P , i.e.,

dπ(s, a) = (1− γ)
∞∑
h=0

γhPπh(s, a),

where Pπh(s, a) is the probability of π hitting (s, a) at time step h under model P starting at s0 at
h = 0.

Let us also assume that we are given a dataset {si, ai, s′i}Ni=1 that consists of N state-action-
next state triples, where s′i ∼ P (·|si, ai). Following what we did in the tabular UCBVI lecture, we
will define two statistics: N(s, a) =

∑N
i=1 1{si, ai = s, a} and N(s, a, s′) =

∑N
i=1 1{si, ai, s′i =

s, a, s′}, and we define P̂ as:

P̂ (s′|s, a) =
N(s, a, s′)

N(s, a)
,∀s, a, s′.

For simplicity, let us assumeN(s, a) ≥ 1 for all s, a. We define a known set K ⊂ S×A as follows:

K = {s, a ∈ S×A : N(s, a) ≥ k},

where k ∈ N+ is some pre-defined constant integer and let us think about k as some reasonably big
number. So from the lecture, we know that for any s, a ∈ K, we have a reasonably good estimate
of P̂ (·|s, a), i.e., we can easy formulate the following high-probability event: with probability at
least 1− δ, for all s, a ∈ K, we have that:∥∥∥P̂ (·|s, a)− P (·|s, a)

∥∥∥
1
≤
√
S ln(SA/δ)

k
,∀s, a (2)

Again let’s think about k as a big number here, so that P̂ (·|s, a) is pair-wise accurate for any
s, a ∈ K (refer to Ch. 2 of the monograph for a detailed treatment). For now, let us just condition
on the above inequality being true.

Of course, outside K, we cannot really guarantee a good accurate model. The question we
want to study here is that given the current data, how can we encourage the agent to visit unknown
state-action pairs?

Let us build the following absorbing MDP structure. Let us define an absorbing state s† (note
that s† is some additional state we add to S). Let us define the following two absorbing MDPs.

P †(·|s, a) =

{
P (·|s, a) s, a ∈ K,

δs† s = s† or s, a 6∈ K,
, P̂ †(·|s, a) =

{
P̂ (·|s, a) s, a ∈ K,

δs† s = s† or s, a 6∈ K,

where δs† is a delta distribution that has probability 1 at s†. Namely, in both models, whenever we
hit a state-action pair not from K, we transit to s† immediately, and then we will just self-loop at
s† forever.
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Let us define a reward function for both MDPs,

r†(s, a) =

{
r(s, a) s, a ∈ K,

1 s = s† or s, a 6∈ K.

At this stage, we have setup all things we want. Let’s see how we can use the absorbing structures
we constructed above.

4.1 Probabilities and State action Visitations (30 points)
Given a policy π, let us denote dπ

P †(s, a) as the state-action visitation under P † and dπ(s, a) as the
state-action visitation under the true model P . We denote dπ

P †(s) =
∑

a∈A d
π
P †(s, a).

1. (10 points) Prove that:

dπ(s, a) ≥ dπP †(s, a),∀s, a ∈ K.

2. (10 points) Recall that for P †, we have an extra absorbing state s†. Prove that:

dπP †(s
†) =

γ

1− γ
∑

s,a∈(S×A)\K

dπP †(s, a),

where dπ
P †(s

†) =
∑

a d
π
P †(s

†, a)
3. (10 points) Let us consider s, a ∈ (S×A) \K. Prove that:

dπP †(s, a) ≤ dπ(s, a).

Hint: Remember that M does not contain the state s†. That is ∀s, a ∈ S × A, P (s†|s, a) = 0. It
may be helpful to think about what kind of (s, a) an agent needs to be in for P †(s†|s, a) 6= 0.

4.2 Optimism from the Absorbing MDPs (15 points)
Let us consider an arbitary stationary stochastic policy π : S 7→ ∆(A). Denote V †,π as the policy
π’s expected discounted total reward under P † and r†. Prove the following inequality: for any π.

V †,π ≥ V π.

Namely we have found an upper bound of V π.

4.3 Not Too Much Optimism (15 points)
Being optimism itself is not enough for efficient learning, afterall, +∞ is always a valid upper
bound of V π. We want the gap between V †,π and V π not too big. Prove the following:

V †,π ≤ V π +
1

(1− γ)2

∑
s,a∈(S×A)\K

dπ(s, a),
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i.e., the gap is upper bounded by the probability of π escaping the known set K.
Hint: first write V †,π and V π using the state-action distributions. Second, group state-action

pairs into three groups: the known, the unknown, and the additional s†. Reason each term, and use
the results you proved in Section 3.1.

4.4 Summary
(No question in this section) So in summary, we have seen another approach of providing opti-
mism: we construct absorbing MDP where for any unknown state-action pair, we simply let it be
absorbed into s† and give the maximum possible reward one for the unknown state-action pair and
s†. We also show that the optimism gap is related to the probability of escaping the known set
K. We will continue in Homework 3 to see how this construction gives an a polynomial sample
complexity exploration algorithm in tabular MDPs.
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