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Intro to MAB

Setting:

We have Kmany arms: a, ..., dg

Each arm has a unknown reward distribution, i.e., v; € A([0,1]),
w/ mean y; =, [r]

Example: ¢; has a Bernoulli distribution v; w/ mean p; := p:

. . 1 w/probp
Every time we pull arm a;, we observe an i.i.d reward r =
0 w/probl—p
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Intro to MAB

More formally, we have the following learning objective:

* = max y;
T—1 K ie[K] Hi
— *
Regret, = Tu™ - Z'“lz
I
Total expected reward if we Total expected reward of the
pulled best arm over T rounds arms we pulled over T rounds

Goal: no-regret, i.e., RegretT/T —0,asT = o©
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UCB: Optimism in the face of Uncertainty

Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

,(2) +/In(KTT3)/N2)

[ ]
i (1) +/IKTTSINGT) Setl =2 (,3) +/IKTIB)IN,G)
ﬁr(z)I i
Al " A3
Hi
[ ]

A1) = y/In(KT/S)IN(1) fi(2) —/INKTI8)IN2) 4,3) — /INKTIS)ING)
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UCB Regret:

[Theorem (informal)] With high probability, UCB has the following regret:

Regret, = o <\/ KT>
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Generalization in RL

@ (distribution free) Agnostic learning is not possible in RL:
we showed that to get O(log |[1]) sample complexity we need either:

@ poly(|S|) samples OR
e exp(H) samples.

in order to learn the best policy in some policy class.
@ upshot: we need stronger assumptions for RL analysis.
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Handling Large Actions Spaces

@ On each round, we must choose a decision x; € D ¢ RY.
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Handling Large Actions Spaces

@ On each round, we must choose a decision x; € D ¢ RY.
@ Obtain areward r; € [-1, 1], where

Elrelxt = x] = p* - x € [-1,1],
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Handling Large Actions Spaces

@ On each round, we must choose a decision x; € D ¢ RY.
@ Obtain areward r; € [-1, 1], where

Elri|xe = x] = p* - x € [-1,1],
@ so the the conditional expectation of r; is linear)
o Also, we have the noise sequence,

N =" — - X

is i.i.d noise.
model due to Abe & Long '99
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Our Objective

If Xo,...x7_1 are our decisions, then our cumulative regret is

T-1

RTZTM*'X*—ZN*'Xt
t=0

where x* € D is an optimal decision for u*, i.e.

X* € argmaxycp ¥ - X
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The “Confidence Ball”

After t rounds, define our uncertainty region BALL;: with center, 11, and
shape, ¥, using the A-regularized least squares solution:

t—1

i = argmin > [ X = o3 + All 13
=0

1
1
=5 rx.,
7=0
-1

Te=M+Y x-x, with To = Al
=0
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The “Confidence Ball”

After t rounds, define our uncertainty region BALL;: with center, 11, and
shape, ¥, using the A-regularized least squares solution:

~

t—1
g =argmin } |- xe = ro[[3 + Al 3
=0

1
1
=5 rx.,
=0

t—1
Te=M+Y x-x, with To = Al
=0

Define the uncertainty region:

BaLLy = (s | (it = 1) el — ) < Bt}

where 3; is a parameter of the algorithm.
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LinUCB (the algo)

@ Input: )\, 3¢
Q@ Fort=0,1,...
@ Execute

Xt = argmax max
& xeDb HEBALLy

and observe the reward r;.
@ Update BALL;, 1.
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LinUCB Regret Bound

Sublinear regret: Ry < O*(dv/'T)
poly dependence on d , no dependence on the cardinality |D|.
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LinUCB Regret Bound

Sublinear regret: Ry < O*(dv/'T)
poly dependence on d , no dependence on the cardinality |D|.

Theorem

Suppose: |u* - x| <1 and ||x|| < B for all x € D; that the noise is o
sub-Gaussian; and that ||| < W. Set A = 02/ W? and

2 1N/2
Bt := a2 (2 + 4d log (1 + B dW > + 8|og(4/5)>.

With probability greater than 1 — ¢, that for all T > 0,

Rr < coV'T (dlog (1 + s Wz) + Iog(4/6)>

do?

where c is an absolute constant.

due to Dani, Hayes, K. '09
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In establishing the upper bounds there are two main propositions from
which the upper bounds follow. The first is in showing that the
confidence region is valid.

Proposition

(Confidence) Let 5 > 0. We have that

Pr(Vt, u* € BALL;) > 1 — 0.
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Sum of Squares Regret Bound

Assuming the confidence event holds, the following controls on the
growth of the regret.

Proposition

(Sum of Squares Regret Bound) Define:
regret; = p* - X* — - Xq

Suppose || x|| < B for x € D. Suppose p; is increasing and larger than
1. Suppose u* € BALL; for all t, then

T—1
TB?
2
Z regret; < 4(37dlog (1 + —>
e ax
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Completing the Proof

Proof:[Proof of Theorem 1] With the two previous Propositions, along
with the Cauchy-Schwarz inequality, we have, with probability at least
1 -0,

T—1
Rr = Z regret; < , | T Z regret2 < \/4 T5rd Iog ) .
t=0

The remainder of the proof follows from using our chosen value of g7
and algebraic manipulations. [ ]

S. M. Kakade RL 14/22



0 Recap

e Linear Bandits

© Analysis
@ Regret Analysis

S. M. Kakade RL 14/22



“Width” of Confidence Ball

Letx € D. If u € BALL; and x € D. Then

(1 — Fie) x| < \/BexTZ X
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“Width” of Confidence Ball

Letx € D. If u € BALL; and x € D. Then

(1 — Fie) x| < \/BexTZ X

Proof: By Cauchy-Schwarz, we have:
~ 1/2——1 2 1 ~ —1/2
(= 710) X = [ — i) T2 Px] = 15y B (- ) T2 x|
< 52— A0 lIE, 2x) = 15200 = il XTE; X < /B TE;  x

where the last inequality holds since © € BALL;. [
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Instantaneous Regret Lemma
Define
we = /X I ' x

which is the “normalized width” at time t in the direction of our decision.
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Instantaneous Regret Lemma
we = /X I ' x

which is the “normalized width” at time t in the direction of our decision.

Define

Fixt < T. If u* € BALLy, then

regret, < 2min (v/Biwy, 1) < 2+/B7 min (w;, 1)
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Instantaneous Regret Lemma
we = /X I ' x

which is the “normalized width” at time t in the direction of our decision.

Define

Fixt < T. If u* € BALLy, then

regret, < 2min (v/Biwy, 1) < 2+/B7 min (w;, 1)

Proof: Let ;» € BALL; denote the vector which maximizes the dot
product 1z x;. By choice of x;, we have

I'xt= max p'xe=max max u' x> () x*,
nEBALL; xeD peBALL;

where the inequality used the hypothesis p* € BALL;. Hence,
regret; = (1*) ' x* — () Txe < (7 — p*) " xe
= (5 — fir) "%t + (e — 1*) ' xe < 2/Biwy
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Geometric Argument: Part 1

The next two lemmas give us ‘geometric’ potential function argument,

where can bound the sum of widths independently of the choices
made by the algorithm.
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Geometric Argument: Part 1

The next two lemmas give us ‘geometric’ potential function argument,
where can bound the sum of widths independently of the choices
made by the algorithm.

We have:
T—1

det X7 =detXo [J (1 + wp).
t=0
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Geometric Argument: Part 1

The next two lemmas give us ‘geometric’ potential function argument,
where can bound the sum of widths independently of the choices
made by the algorithm.

We have:
T—1

det X7 =detXo [J (1 + wp).
t=0

Proof: By the definition of ;. ¢, we have

det Typ1 = det(Xy + X' ) = det(X, /(1 + =, 2xx £, V/2)x)/?)
= det(Sy) det(/ + X, 2x (57 2x) ) = det(y) det(/ + vy ),

where v; ;== %, '/2x,. Now observe that v, vi = w? and . n
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Geometric Argument: Part 2

For any sequence Xy, ... x7_1 such that, fort < T, ||x¢||2 < B, we have:

1= TB?
log (det Y71 q/det Zo) = log det (l—l— X Z XtXtT) < dlog (1 + ﬁ) .
t=0
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Geometric Argument: Part 2

For any sequence Xy, ... x7_1 such that, fort < T, ||x¢||2 < B, we have:

12 TB?
log (det Y71 q/det Zo) = log det (l—l— X Z XtXtT) < dlog <1 + W) .
t=0

Proof: Denote the eigenvalues of Zt 0 x,xt as o4, ...04, and note:

Za,- = Trace( Z XtXtT> = Z [X%? < TB2.
i=1 t=0 t=0

Using the AM-GM inequality,

log det (/+ % gxtxf) — log (i]ju +o,~/)\)>
:dlog(ﬁ<1+a//)\)>1/ og(;zd: (14 0i/N) )Sdlog(1+%8)\2)
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Proving “sum of squares regret” Proposition

Proof:[Proof of Proposition 3] Assume p* € BALL; for all t. We have:

T_

Z regrett < Z 434 mln(Wt ,1) <487 Z mln(W, 1)
t=0 t=0
T-1
<8pr Z In(1 + w?) < 887 log (det Y7 1/det Zo)
t=0

TB?

where the first inequality follow from by Lemma 5; the second from that
Bt is an increasing function of t; the third uses thatfor0 < y <1,
In(1 4 y) > y/2; the final two inequalities follow by Lemmas 6 and 7. m
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Confidence [Proof of Proposition 2]

Proof: Since r, = x; - u* + n,;, we have:
t—1 t—1

ﬁt - ,U/* = 21_1 ZrTXT - ,Uf* = 21‘_1 ZXT(XT ’ M* +777—) - M*

=0 7=0
t—1 t—1
=3 <Z XT(XT)T> P X e
=0 =0

t—1
=A% Z NrXr
=0
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Confidence [Proof of Proposition 2]

Proof: Since r. = x; - u* + n,, we have:
t—1 t—1

ﬁt - ,U/* = Zt_1 ZrTXT - ,Uf* = 21‘_1 ZXT(XT ’ M* +777—) - M*

=0 7=0
t—1 t—1
=3 (Z XT(XT)T> P X e
=0 =0

t—1
= A5 5D nexe
=0
By the triangle inequality,

t—1
~ ~ —1/2 —1/2
\/(,Ut — ) TE(fir — p*) < HAZt Pl + 1= > ek
7=0
< V|| + 7.
How can we bound “??” To be continued... ]
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Self-Normalizing Sum

Lemma (Self-Normalized Bound for Vector-Valued Martingales)

(Abassi et. al '11) Suppose {¢;}?°, are mean zero random variables
(can be generalized to martingales), and ¢; is bounded by o. Let
{X;}2, be a stochastic process. Define T = Yo + Y.!_, X;X.. With
probability at least1 — &, we have forall t > 1:

t
> Xei
i=1

2

1
< 0% log <det(zt) zgt(ZO) ) .
—1

X
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Continued... [Proof of Proposition 2]

Proof:

~ * ~ * —-1/2 &
(it — ) "Ze(fie — %) < H/\Zt P2+

t—1
—-1/2
z[ / ZnTXT
=0

< V]| + /202 log (det(.) det(£0)~1 /).

We seek to lower bound Pr(Vt, u* € BALL;). Assign failure probability
5 = (3/72) /12 for the t-th event, which gives us:

1— Pr(Vt, ¥ € BALLy) = Pr(3t, u* ¢ BALL) < > Pr(u* ¢ BALL;)

t=1
00

<> (1/B)(8/7%) =1/2.

t=1

This along with Lemma 7 completes the proof. ]
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