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Intro to MAB
Setting:

We have K many arms: a1, …, aK

Each arm has a unknown reward distribution, i.e., , 

w/ mean 

�i � �([0,1])
�i = �r��i

[r]

Example:  has a Bernoulli distribution  w/ mean :ai �i �i := p

Every time we pull arm , we observe an i.i.d reward ai r = {1  w/ prob p
0 w/ prob 1 � p

S. M. Kakade RL 2 / 22



Intro to MAB

More formally, we have the following learning objective:

RegretT = T�� �
T�1
∑
t=0

�It

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: no-regret, i.e., RegretT /T � 0, as T � �

�� = max
i�[K]

�i
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UCB: Optimism in the face of Uncertainty
Given the confidence interval, we pick arm that has the highest Upper-Conf-Bound:

��t(2)

��t(2) + ln(KT/�)/Nt(2)

��t(2) � ln(KT/�)/Nt(2)

�2��t(1)

��t(1) + ln(KT/�)/Nt(1)

��t(1) � ln(KT/�)/Nt(1)

�1
��t(3)

��t(3) + ln(KT/�)/Nt(3)

��t(3) � ln(KT/�)/Nt(3)

�3

Set It = 2
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UCB Regret:

[Theorem (informal)]  With high probability, UCB has the following regret:

RegretT = Õ ( KT)

S. M. Kakade RL 5 / 22
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Generalization in RL

(distribution free) Agnostic learning is not possible in RL:
we showed that to get O(log |⇧|) sample complexity we need either:

poly(|S|) samples OR
exp(H) samples.

in order to learn the best policy in some policy class.
upshot: we need stronger assumptions for RL analysis.
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Handling Large Actions Spaces

On each round, we must choose a decision xt 2 D ⇢ Rd .

Obtain a reward rt 2 [�1, 1], where

E[rt |xt = x ] = µ? · x 2 [�1, 1],

so the the conditional expectation of rt is linear)
Also, we have the noise sequence,

⌘t = rt � µ? · xt

is i.i.d noise.

model due to Abe & Long ’99
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Our Objective

If x0, . . . xT�1 are our decisions, then our cumulative regret is

RT = Tµ? · x? �
T�1X

t=0

µ? · xt

where x? 2 D is an optimal decision for µ?, i.e.

x? 2 argmaxx2D µ? · x

S. M. Kakade RL 8 / 22
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The “Confidence Ball”
After t rounds, define our uncertainty region BALLt : with center, bµt , and
shape, ⌃t , using the �-regularized least squares solution:

bµt = argmin
µ

t�1X

⌧=0

kµ · x⌧ � r⌧k2
2 + �kµk2

2

= ⌃�1
t

t�1X

⌧=0

r⌧x⌧ ,

⌃t = �I +
t�1X

⌧=0

x⌧x>
⌧ , with ⌃0 = �I.

Define the uncertainty region:

BALLt =
n
µ | (bµt � µ)>⌃�1

t (bµt � µ)  �t

o
,

where �t is a parameter of the algorithm.

S. M. Kakade RL 9 / 22
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LinUCB (the algo)

1 Input: �, �t
2 For t = 0, 1, . . .

1 Execute
xt = argmaxx2D max

µ2BALLt
µ · x

and observe the reward rt .
2 Update BALLt+1.

S. M. Kakade RL 10 / 22



LinUCB Regret Bound

Sublinear regret: RT  O?(d
p

T )
poly dependence on d , no dependence on the cardinality |D|.

Theorem
Suppose: bounded noise |⌘t |  �, that kµ?k  W, and that kxk  B

for all x 2 D. Set � = �2/W 2 and

�t := �2
⇣

2 + 4d log

✓
1 +

tB2W 2

d

◆
+ 8 log(4/�)

⌘
.

With probability greater than 1 � �, that for all t � 0,

RT  c�
p

T
✓

d log

✓
1 +

TB2W 2

d�2

◆
+ log(4/�)

◆

where c is an absolute constant.

due to Dani, Hayes, K. ’09

S. M. Kakade RL 11 / 22
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Confidence

In establishing the upper bounds there are two main propositions from
which the upper bounds follow. The first is in showing that the
confidence region is valid.

Proposition

(Confidence) Let � > 0. We have that

Pr(8t , µ? 2 BALLt) � 1 � �.

S. M. Kakade RL 12 / 22
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Sum of Squares Regret Bound

Assuming the confidence event holds, the following controls on the
growth of the regret.

Proposition

(Sum of Squares Regret Bound) Define:

regrett = µ? · x⇤ � µ? · xt

Suppose kxk  B for x 2 D. Suppose �t is increasing and larger than
1. Suppose µ? 2 BALLt for all t , then

T�1X

t=0

regret2t  4�T d log

✓
1 +

TB2

d�

◆

S. M. Kakade RL 13 / 22
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Completing the Proof

Proof:[Proof of Theorem 1] With the two previous Propositions, along
with the Cauchy-Schwarz inequality, we have, with probability at least
1 � �,

RT =
T�1X

t=0

regrett 

vuutT
T�1X

t=0

regret2t 

s

4T�T d log

✓
1 +

TB2

d�

◆
.

The remainder of the proof follows from using our chosen value of �T
and algebraic manipulations.

S. M. Kakade RL 14 / 22
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“Width” of Confidence Ball

Lemma

Let x 2 D. If µ 2 BALLt and x 2 D. Then

|(µ� bµt)
>x | 

q
�t x>⌃�1

t x

Proof: By Cauchy-Schwarz, we have:

|(µ� bµt)
>x | = |(µ� bµt)

>⌃1/2
t ⌃�1/2

t x | = |(⌃1/2
t (µ� bµt))

>⌃�1/2
t x |

 k⌃1/2
t (µ� bµt)kk⌃�1/2

t xk = k⌃1/2
t (µ� bµt)k

q
x>⌃�1

t x 
q
�t x>⌃�1

t x

where the last inequality holds since µ 2 BALLt .
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Instantaneous Regret Lemma
Define

wt :=
q

x>
t ⌃�1

t xt

which is the “normalized width” at time t in the direction of our decision.

Lemma

Fix t  T . If µ? 2 BALLt , then

regrett  2min (
p

�twt , 1)  2
p
�T min (wt , 1)

Proof: Let eµ 2 BALLt denote the vector which minimizes the dot
product eµ>xt . By choice of xt , we have

eµ>xt = max
µ2BALLt

max
x2D

µ>x � (µ?)>x⇤,

where the inequality used the hypothesis µ? 2 BALLt . Hence,

regrett = (µ?)>x⇤ � (µ?)>xt  (eµ� µ?)>xt

= (eµ� bµt)
>xt + (bµt � µ?)>xt  2

p
�twt

where the last step follows from Lemma 4 since eµ and µ? are in BALLt .
Since rt 2 [�1, 1], regrett is always at most 2 and the first inequality
follows. The final inequality is due to that �t is increasing and larger
than 1.

S. M. Kakade RL 16 / 22
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Geometric Argument: Part 1

The next two lemmas give us ’geometric’ potential function argument,
where can bound the sum of widths independently of the choices
made by the algorithm.

Lemma

We have:

det⌃T = det⌃0

T�1Y

t=0

(1 + w2
t ).

Proof: By the definition of ⌃t+1, we have

det⌃t+1 = det(⌃t + xtx>
t ) = det(⌃1/2

t (I + ⌃�1/2
t xtx>

t ⌃�1/2
t )⌃1/2

t )

= det(⌃t) det(I + ⌃�1/2
t xt(⌃

�1/2
t xt)

>) = det(⌃t) det(I + vtv>
t ),

where vt := ⌃�1/2
t xt . Now observe that v>

t vt = w2
t and . . .

S. M. Kakade RL 17 / 22
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Geometric Argument: Part 2

Lemma

For any sequence x0, . . . xT�1 such that, for t < T , kxtk2  B, we have:

log
⇣
det⌃T�1/ det⌃0

⌘
= log det

 
I +

1
�

T�1X

t=0

xtx>
t

!
 d log

✓
1 +

TB2

d�

◆
.

Proof: Denote the eigenvalues of
PT�1

t=0 xtx>
t as �1, . . .�d , and note:

dX

i=1

�i = Trace
⇣ T�1X

t=0

xtx>
t

⌘
=

T�1X

t=0

kxtk2  TB2.

Using the AM-GM inequality,

log det
⇣

I +
1
�

T�1X

t=0

xtx>
t

⌘
= log

⇣ dY

i=1

(1 + �i/�)
⌘

= d log
⇣ dY

i=1

⇣
1 + �i/�

⌘⌘1/d
 d log

⇣ 1
d

dX

i=1

(1 + �i/�)
⌘
 d log

⇣
1 +

TB2

d�

⌘

which concludes the proof.
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Proving “sum of squares regret” Proposition

Proof:[Proof of Proposition 3] Assume µ? 2 BALLt for all t . We have:

T�1X

t=0

regret2t 
T�1X

t=0

4�t min(w2
t , 1)  4�T

T�1X

t=0

min(w2
t , 1)

 4�T

T�1X

t=0

ln(1 + w2
t )  4�T log

⇣
det⌃T�1/ det⌃0

⌘

= 4�T d log

✓
1 +

TB2

d�

◆

where the first inequality follow from by Lemma 5; the second from that
�t is an increasing function of t ; the third uses that for 0  y  1,
ln(1 + y) � y/2; the final two inequalities follow by Lemmas 6 and 7.
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Confidence [Proof of Proposition 2]
Proof: Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧ )� µ?

= ⌃�1
t

 t�1X

⌧=0

x⌧ (x⌧ )>
!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧

= �⌃�1
t µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧

By the triangle inequality,
q
(bµt � µ?)>⌃t(bµt � µ?) 

����⌃�1/2
t µ?

���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k + ??.

How can we bound “??” To be continued...
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Self-Normalizing Sum

Lemma (Self-Normalized Bound for Vector-Valued Martingales)
(Abassi et. al ’11) Suppose {"i}1i=1 are mean zero random variables
(can be generalized to martingales), and "i is bounded by �. Let
{Xi}1i=1 be a stochastic process. Define ⌃t = ⌃0 +

Pt
i=1 XiX>

i . With
probability at least 1 � �, we have for all t � 1:

�����

tX

i=1

Xi"i

�����

2

⌃�1
t

 �2 log

✓
det(⌃t) det(⌃0)

�1

�2

◆
.
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Continued... [Proof of Proposition 2]

Proof:

(bµt � µ?)>⌃t(bµt � µ?) 
����⌃�1/2

t µ?
���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k+

q
2�2 log

�
det(⌃t) det(⌃0)�1/�t

�
.

We seek to lower bound Pr(8t , µ? 2 BALLt). Assign failure probability
�t = (3/⇡2)/t2 for the t-th event, which gives us:

1 � Pr(8t , µ? 2 BALLt) = Pr(9t , µ? /2 BALLt) 
1X

t=1

Pr(µ? /2 BALLt)

<
1X

t=1

(1/t2)(3/⇡2) = 1/2.

This along with Lemma 7 completes the proof.
S. M. Kakade RL 22 / 22


