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2. If we have  such that it’s nearly Bellman-consistent, i.e., 
Q
∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification: 

, which implies that ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality says that if  then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Similar results hold in finite horizon, with the effective horizon  being replaced by H1/(1 − γ)



Question for Today:

We know that  being linear in some feature  is not 
enough for efficient learning… 

Q⋆
h (s, a) ϕ(s, a)

Q: what structural conditions can permit efficient learning?
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2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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reward  is linear in , i.e.,  is linear, 

now recursively show that  is linear 
r(s, a) ϕ Q⋆

H−1(s, a)
Q⋆

h
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ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]
⊤

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!



What we will show today:

1. Generative Model 

(i.e., we can reset system to any , query )(s, a) r(s, a), s′ ∼ P( . |s, a)

+
2. Linear Bellman Completion

= 
Sample efficient Learning 


(finding near optimal policy in poly time)
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Theorem: There exists a way to construct datasets , such that 
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

Plans: (1) OLS and D-optimal design; (2) construct  using D-optimal 
design; (3) transfer regression error to 

𝒟h
∥θ⊤

h ϕ − Q⋆
h ∥∞
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∑
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xix⊤
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With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict 
well here!

Let’s actively design a diverse dataset !

(D-optimal Design)
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D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

max
y∈𝒳

y⊤ [𝔼x∼ρxx⊤]
−1

y ≤ d
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D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains  many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query  (noisy measure);x ∈ 𝒟 y

The OLS solution  on  has the following point-wise guarantee: w/ prob ̂θ 𝒟 1 − δ

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N
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Summary so far on OLS & D-optimal Design

D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N

D-optimal design allows us to actively construct a dataset , 
such that OLS solution is POINT-WISE accurate:

𝒟 = {x, y}
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Concluding the proof of LSVI
1. OLS /w D-optimal design implies that  is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator  is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies  is close to  (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)
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Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e.,  viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′ 

θ⊤
h+1ϕ(s′ , a′ )

3. Leverage D-optimal design, we make sure that  is point-wise accurate, which ensures 
near Bellman consistent, i.e.,  is small

θh
Qh − 𝒯hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of  (holds in general)Qh


