
Learning with Linear Bellman
Completion & Generative Model

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning

Recap: DP in Finite Horizon MDPs
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Compute via DP (backward in time):π⋆

Recap: DP in Finite Horizon MDPs
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Compute via DP (backward in time):π⋆

1. set , Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a), V⋆

H−1(s) = max
a

Q⋆
H−1(s, a)

Recap: DP in Finite Horizon MDPs
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Compute via DP (backward in time):π⋆

1. set , Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a), V⋆

H−1(s) = max
a

Q⋆
H−1(s, a)

2. At , set , h Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)
π⋆

h (s) = arg max
a

Q⋆
h (s, a), V⋆

h (s) = max
a

Q⋆
h (s, a)

Recap: Error amplification
1. Bellman optimality says that if then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recap: Error amplification

2. If we have such that it’s nearly Bellman-consistent, i.e.,
Q
∥Q − 𝒯Q∥∞ ≤ ϵ,

1. Bellman optimality says that if then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recap: Error amplification

2. If we have such that it’s nearly Bellman-consistent, i.e.,
Q
∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification:

, which implies that ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality says that if then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recap: Error amplification

2. If we have such that it’s nearly Bellman-consistent, i.e.,
Q
∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification:

, which implies that ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality says that if then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Similar results hold in finite horizon, with the effective horizon being replaced by H1/(1 − γ)

Question for Today:

We know that being linear in some feature is not
enough for efficient learning…

Q⋆
h (s, a) ϕ(s, a)

Q: what structural conditions can permit efficient learning?

Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

This is a function of , and it’s linear in (s, a) ϕ(s, a)

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

This is a function of , and it’s linear in (s, a) ϕ(s, a)

Notation: we will denote such θ := 𝒯h(w), where 𝒯h : ℝd ↦ ℝd

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆)⊤ϕ, ∀h

It implies that is linear in :Q⋆
h ϕ

Why?

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆)⊤ϕ, ∀h

It implies that is linear in :Q⋆
h ϕ

Why?

reward is linear in , i.e., is linear,

now recursively show that is linear
r(s, a) ϕ Q⋆

H−1(s, a)
Q⋆

h

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Claim: is a linear function in r(s, a) + 𝔼s′ ∼P(s,a) max
a′

wTϕ(s′ , a′) ϕ

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Claim: is a linear function in r(s, a) + 𝔼s′ ∼P(s,a) max
a′

wTϕ(s′ , a′) ϕ

(we will see the details when we get to the LQR lectures)

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Adding additional elements to can break the condition! ϕ

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]
⊤

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]
⊤

Linear Bellman completion breaks!

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]
⊤

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!

What we will show today:

1. Generative Model

(i.e., we can reset system to any , query)(s, a) r(s, a), s′ ∼ P(. |s, a)

+
2. Linear Bellman Completion

=
Sample efficient Learning

(finding near optimal policy in poly time)

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set VH(s) = 0,∀s

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

Why LSVI may work?
Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

Why LSVI may work?
Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

Why LSVI may work?
Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

Why LSVI may work?
Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

If , and linear regression
succeeds (e.g.,),
Vh+1 ≈ V⋆

h+1
θh ≈ 𝒯h(θh+1)

Why LSVI may work?
Set VH(s) = 0,∀s

For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

If , and linear regression
succeeds (e.g.,),
Vh+1 ≈ V⋆

h+1
θh ≈ 𝒯h(θh+1)

Then we should hope θ⊤
h ϕ(s, a) ≈ Q⋆

h (s, a)

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Sample complexity of LSVI

Theorem: There exists a way to construct datasets , such that
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

Sample complexity of LSVI

Theorem: There exists a way to construct datasets , such that
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

Plans: (1) OLS and D-optimal design; (2) construct using D-optimal
design; (3) transfer regression error to

𝒟h
∥θ⊤

h ϕ − Q⋆
h ∥∞

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

OLS : ̂θ = arg min
θ

N

∑
i=1

(θ⊤xi − yi)2

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

OLS : ̂θ = arg min
θ

N

∑
i=1

(θ⊤xi − yi)2

Standard OLS guarantee: with probability at least , we have:
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict
well here!

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict
well here!

Let’s actively design a diverse dataset !

(D-optimal Design)

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

max
y∈𝒳

y⊤ [𝔼x∼ρxx⊤]
−1

y ≤ d

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query (noisy measure);x ∈ 𝒟 y

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query (noisy measure);x ∈ 𝒟 y

The OLS solution on has the following point-wise guarantee: w/ prob ̂θ 𝒟 1 − δ

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N

Summary so far on OLS & D-optimal Design

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Summary so far on OLS & D-optimal Design

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤
σd ln(1/δ)

N

D-optimal design allows us to actively construct a dataset ,
such that OLS solution is POINT-WISE accurate:

𝒟 = {x, y}

Using D-optimal design to construct in LSVI𝒟h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

Using D-optimal design to construct in LSVI𝒟h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (𝔼s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])

Using D-optimal design to construct in LSVI𝒟h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (𝔼s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])
Construct that contains many copies of ,

for each , query

𝒟h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′), s′ ∼ Ph(. |s, a)

Using D-optimal design to construct in LSVI𝒟h
Consider the space Φ = {ϕ(s, a) : s, a ∈ S × A}

D-optimal Design : ρ⋆ ∈ Δ(Φ) ρ⋆ = arg max
ρ∈Δ(Φ)

ln det (𝔼s,a∼ρ [ϕ(s, a)ϕ(s, a)⊤])
Construct that contains many copies of ,

for each , query

𝒟h ⌈ρ(s, a)N⌉ ϕ(s, a)
ϕ(s, a) y := r(s, a) + Vh+1(s′), s′ ∼ Ph(. |s, a)

OLS /w D-optimal design implies that is point-wise accurate:̂θh

max
s,a

θ⊤
h ϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ Õ (Hd/ N) .

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies is close to (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

Concluding the proof of LSVI
1. OLS /w D-optimal design implies that is point-wise accurate:θh

max
s,a

θhϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies is close to (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)

Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

3. Leverage D-optimal design, we make sure that is point-wise accurate, which ensures
near Bellman consistent, i.e., is small

θh
Qh − 𝒯hQh+1 ∞

Summary for today

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′

θ⊤
h+1ϕ(s′ , a′)

3. Leverage D-optimal design, we make sure that is point-wise accurate, which ensures
near Bellman consistent, i.e., is small

θh
Qh − 𝒯hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of (holds in general)Qh

