Learning with Linear Bellman **Completion & Generative Model**

Sham Kakade and Wen Sun **CS 6789: Foundations of Reinforcement Learning**

Recap: DP in Finite Horizon MDPs $\mathscr{M} = \{S, A, P_h, r, H\}$

 $P_h: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Compute π^* via DP (backward in time):

Recap: DP in Finite Horizon MDPs $\mathcal{M} = \{S, A, P_h, r, H\}$

Compute π^* via DP (backward in time):

1. set $Q_{H-1}^{\star}(s, a) = r(s, a), \pi_{H-1}^{\star}(s) = \arg\max Q_{H-1}^{\star}(s, a), V_{H-1}^{\star}(s) = \max Q_{H-1}^{\star}(s, a)$

- $P_h: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Recap: DP in Finite Horizon MDPs $\mathscr{M} = \{S, A, P_h, r, H\}$

Compute π^* via DP (backward in time):

1. set
$$Q_{H-1}^{\star}(s,a) = r(s,a), \pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s,a), V_{H-1}^{\star}(s) = \max_{a} Q_{H-1}^{\star}(s,a)$$

2. At h, set
$$Q_h^{\star}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(\cdot | s, a)} V_{h+1}^{\star}(s')$$
,
 $\pi_h^{\star}(s) = \arg\max_a Q_h^{\star}(s, a), V_h^{\star}(s) = \max_a Q_h^{\star}(s, a)$

- $P_h: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

1. Bellman optimality says that if $\|Q - \mathcal{T}Q\|_{\infty} = 0$, then $Q = Q^*$

2. If we have Q such that it's nearly Bellman-consistent, i.e., $\|Q - \mathcal{T}Q\|_{\infty} \leq \epsilon,$

1. Bellman optimality says that if $\|Q - \mathcal{T}Q\|_{\infty} = 0$, then $Q = Q^*$

1. Bellman optimality says that

2. If we have Q such that it's nearly Bellman-consistent, i.e., $\|Q - \mathcal{T}Q\|_{\infty} \leq \epsilon$,

Then we have error amplification: $\|Q - Q^{\star}\|_{\infty} \leq \epsilon/(1 - \gamma)$, which implies that $V^{\star} - V^{\hat{\pi}} \leq \epsilon/(1 - \gamma)^2$

if
$$\|Q - \mathcal{T}Q\|_{\infty} = 0$$
, then $Q = Q^*$

1. Bellman optimality says that

if
$$\|Q - \mathcal{T}Q\|_{\infty} = 0$$
, then $Q = Q^*$

- 2. If we have Q such that it's nearly Bellman-consistent, i.e., $\|Q - \mathcal{T}Q\|_{\infty} \leq \epsilon,$
- Then we have error amplification: $\|Q - Q^{\star}\|_{\infty} \leq \epsilon/(1 - \gamma)$, which implies that $V^{\star} - V^{\hat{\pi}} \leq \epsilon/(1 - \gamma)^2$
- Similar results hold in finite horizon, with the effective horizon $1/(1 \gamma)$ being replaced by H

Question for Today:

Q: what structural conditions can permit efficient learning?

We know that $Q_h^{\star}(s, a)$ being linear in some feature $\phi(s, a)$ is not enough for efficient learning...

3. Guarantee and the proof sketch

Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

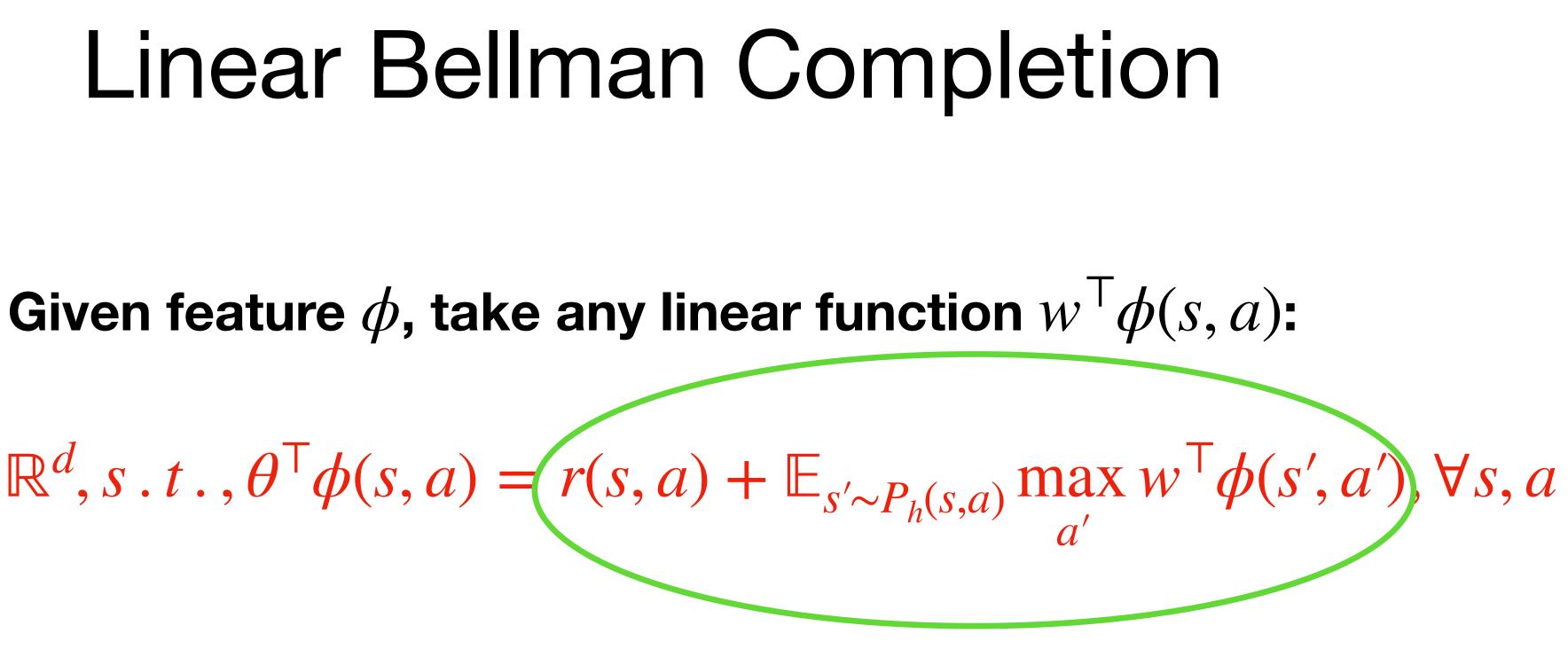
Linear Bellman Completion

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

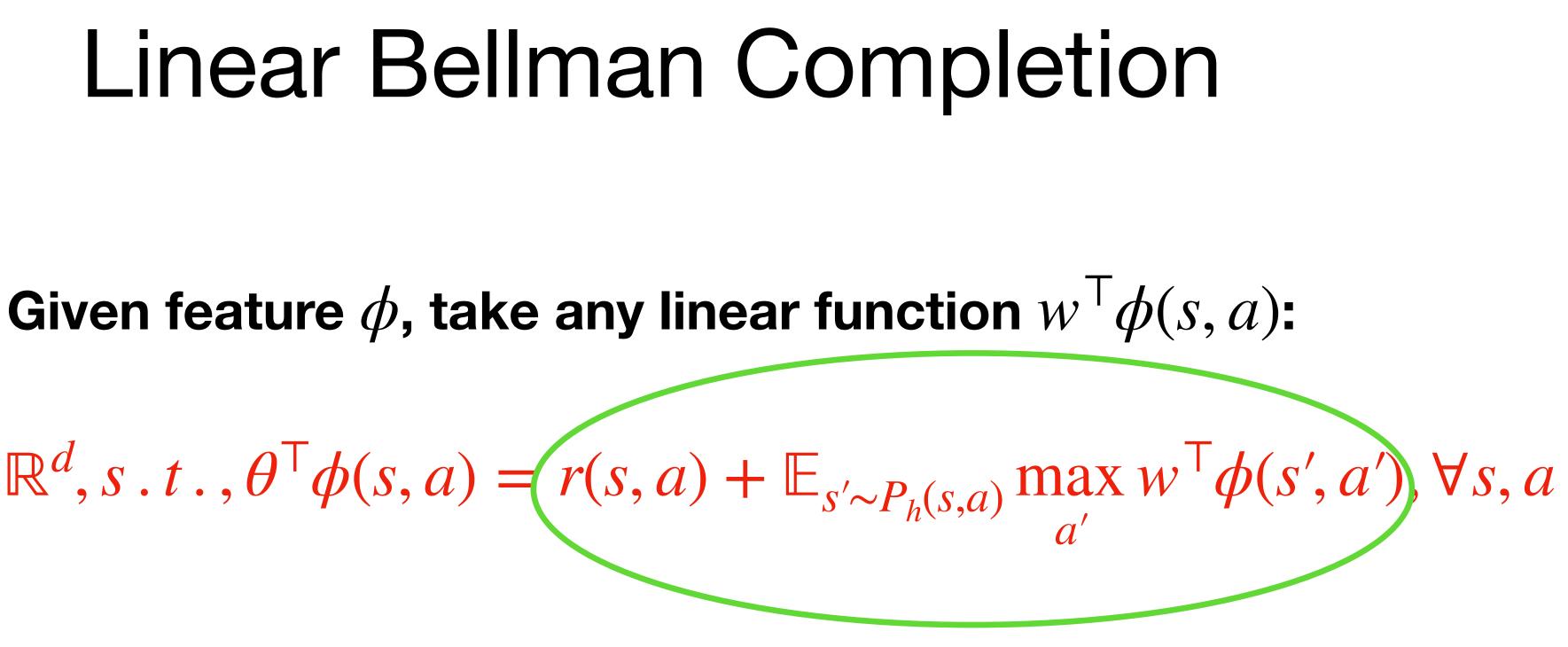
$$\forall h, \exists \theta \in \mathbb{R}^d, s \cdot t \cdot, \theta^{\mathsf{T}} \phi(s, a) = r$$

This is a function of (s, a), and it's linear in $\phi(s, a)$



$$\forall h, \exists \theta \in \mathbb{R}^d, s \cdot t \cdot, \theta^{\mathsf{T}} \phi(s, a) = r$$

This is a function of (s, a), and it's linear in $\phi(s, a)$



Notation: we will denote such $\theta := \mathcal{T}_h(w)$, where $\mathcal{T}_h : \mathbb{R}^d \mapsto \mathbb{R}^d$

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

- $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$
 - It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta^{\star})^{\mathsf{T}} \phi, \forall h$
 - Why?

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

- $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$
 - It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta^{\star})^{\mathsf{T}} \phi, \forall h$
 - Why?

reward r(s, a) is linear in ϕ , i.e., $Q_{H-1}^{\star}(s, a)$ is linear, now recursively show that Q_h^{\star} is linear

- It captures at least two special cases: tabular MDP and linear dynamical systems
 - 1. Tabular MDP:
- Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$

 $s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot)$

- It captures at least two special cases: tabular MDP and linear dynamical systems
 - 1. Tabular MDP:
- Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$
 - 2. Linear System with Quadratic feature ϕ

$$|s,a\rangle = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot \mid s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

 $\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1]^{\top}$

- It captures at least two special cases: tabular MDP and linear dynamical systems
 - 1. Tabular MDP:
- Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\mathsf{T}}$
 - 2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1]^{\mathsf{T}}$$

Claim: $r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \max_{x} w^T \phi(s', a')$ is a linear function in ϕ

- It captures at least two special cases: tabular MDP and linear dynamical systems
 - 1. Tabular MDP:
- Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$
 - 2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1]^{\mathsf{T}}$$

Claim: $r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \max_{x} w^T \phi(s', a')$ is a linear function in ϕ

- It captures at least two special cases: tabular MDP and linear dynamical systems
 - 1. Tabular MDP:
- Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$
 - 2. Linear System with Quadratic feature ϕ

(we will see the details when we get to the LQR lectures)

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

Adding additional elements to ϕ can break the condition!

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s \, . \, t \, . \, , \theta^\top \phi(s, a) = r \theta$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

$$f(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s \cdot t \cdot, \theta^\top \phi(s, a) = r \phi(s, a)$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

 $\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, s_1^3]^\top$

$$f(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} w^{\mathsf{T}} \phi(s',a'), \forall s, a$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s \, . \, t \, . \, \theta^\top \phi(s, a) = r \theta$

Adding additional elements to ϕ can break the condition!

 $s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot$

$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1, \mathbf{s_1^3}]^{\mathsf{T}}$$

Linear Bellman completion breaks!

$$f(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} w^{\mathsf{T}} \phi(s',a'), \forall s, a$$

$$\cdot | s, a) = \mathcal{N} \left(As + ba, \sigma^2 I \right)$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r \theta$

Adding additional elements to ϕ can break the condition!

 $s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot$

$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1, \mathbf{s_1^3}]^{\mathsf{T}}$$

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!

$$f(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} w^{\mathsf{T}} \phi(s',a'), \forall s, a$$

$$|s,a\rangle = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

What we will show today:

1. Generative Model (i.e., we can reset system to any (s, a), query $r(s, a), s' \sim P(.|s, a)$)

2. Linear Bellman Completion

Sample efficient Learning (finding near optimal policy in poly time)

3. Guarantee and the proof sketch

Outline:

2. Learning: The Least Square Value Iteration Algorithm

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Given datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Given datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

Given datasets $\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

> Let's simulate the DP process w/ linear function to approximate Q^{\star}

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

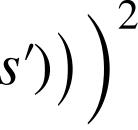
Set $V_H(s) = 0, \forall s$

Given datasets $\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

> Let's simulate the DP process w/ linear function to approximate Q^{\star}

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\dagger} \phi(s, a), \forall s, a, h$

```
Set V_H(s) = 0, \forall s
For h = H-1 to 0:
      \theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left( \theta^{T} \phi(s, a) - \left( r + V_{h+1}(s') \right) \right)^{2}
```

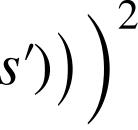


Given datasets $\mathcal{D}_0, ..., \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

> Let's simulate the DP process w/ linear function to approximate Q^{\star}

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\begin{vmatrix} \theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2 \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{aligned}$



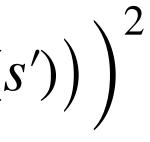
Given datasets $\mathcal{D}_0, ..., \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

> Let's simulate the DP process w/ linear function to approximate Q^{\star}

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - (r + V_{h+1}) \right) \\ \operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array} \right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

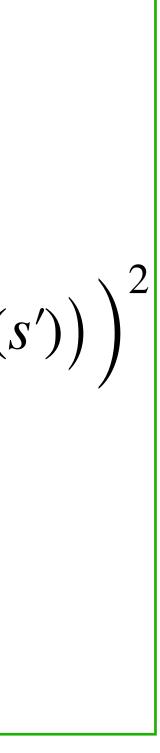


When we do linear regression at step h:

 $x := \phi(s, a), \quad y := r + V_{h+1}(s')$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1} \phi(s, a) - \left(r + V_{h+1} \phi(s, a)\right) \right) \right| \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$



When we do linear regression at step h:

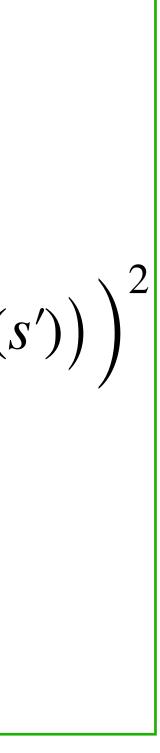
$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that: $\mathbb{E}[y \mid x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$

 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1} \phi(s, a) - \left(r + V_{h+1} \phi(s, a)\right) \right) \right| \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$



When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

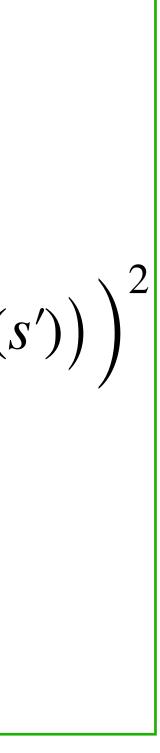
We note that: $\mathbb{E}[y \mid x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^\top \phi(s', a')$

 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1} \phi(s, a) - \left(r + V_{h+1} \phi(s, a)\right) \right) \right| \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$



When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that: $\mathbb{E}[y \mid x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^\top \phi(s', a')$

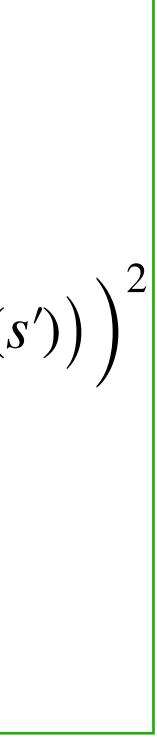
 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - (r + V_{h+1}) \right) \\ \operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array} \right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{T}_h(\theta_{h+1})$),



When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that: $\mathbb{E}[y \mid x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$

 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

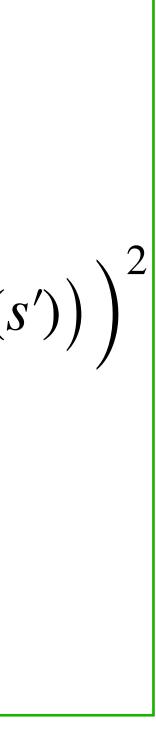
i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - (r + V_{h+1}) \right) \\ \operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array} \right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{T}_h(\theta_{h+1})$),

Then we should hope $\theta_h^{\mathsf{T}} \phi(s, a) \approx Q_h^{\star}(s, a)$



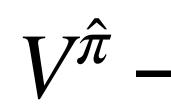
3. Guarantee and the proof sketch

Outline:

2. Learning: The Least Square Value Iteration Algorithm

Sample complexity of LSVI

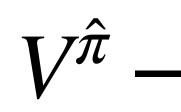
Theorem: There exists a way to construct datasets $\{\mathscr{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:



- $V^{\hat{\pi}} V^{\star} < \epsilon$
- w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:



w/ total number of samples in thes

$$-V^{\star} \leq \epsilon$$

se datasets scaling
$$\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$$

Plans: (1) OLS and D-optimal design; (2) construct \mathscr{D}_h using D-optimal design; (3) transfer regression error to $\|\theta_h^{\mathsf{T}}\phi - Q_h^{\star}\|_{\infty}$

Detour: Ordinary Linear Squares

- Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i =$
 - with $|\epsilon_i| \leq \sigma$, assume

$$(\theta^{\star})^{\top} x_i + \epsilon_i, \quad \mathbb{E}[\epsilon_i | x_i] = 0, \ \epsilon_i \text{ are independence}$$

 $e \Lambda = \sum_{i=1}^N x_i x_i^{\top} / N \text{ is full rank;}$

Detour: Ordinary Linear Squares

- Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i =$
 - with $|\epsilon_i| \leq \sigma$, assume

 $OLS: \hat{\theta} = a$

$$(\theta^{\star})^{\top} x_i + \epsilon_i, \quad \mathbb{E}[\epsilon_i | x_i] = 0, \ \epsilon_i \text{ are independence}$$

 $\Phi \Lambda = \sum_{i=1}^N x_i x_i^{\top} / N \text{ is full rank;}$
 $\arg \min_{\theta} \sum_{i=1}^N (\theta^{\top} x_i - y_i)^2$

Detour: Ordinary Linear Squares

- Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = x_i$
 - with $|\epsilon_i| \leq \sigma$, assume

- $OLS: \hat{\theta} = a$
- - $(\hat{\theta} \theta^{\star})^{\mathsf{T}} \Lambda(\hat{\theta} \theta^{\star})^{\mathsf{T}$

$$(\theta^{\star})^{\mathsf{T}} x_i + \epsilon_i, \quad \mathbb{E}[\epsilon_i | x_i] = 0, \ \epsilon_i \text{ are independence}$$

 $e \Lambda = \sum_{i=1}^N x_i x_i^{\mathsf{T}} / N \text{ is full rank;}$
 $\arg \min_{\theta} \sum_{i=1}^N (\theta^{\mathsf{T}} x_i - y_i)^2$

Standard OLS guarantee: with probability at least $1 - \delta$, we have:

$$(-\theta^*) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

Detour: Issues in Ordinary Linear Squares <u>N</u> With probability at least $1 - \delta$

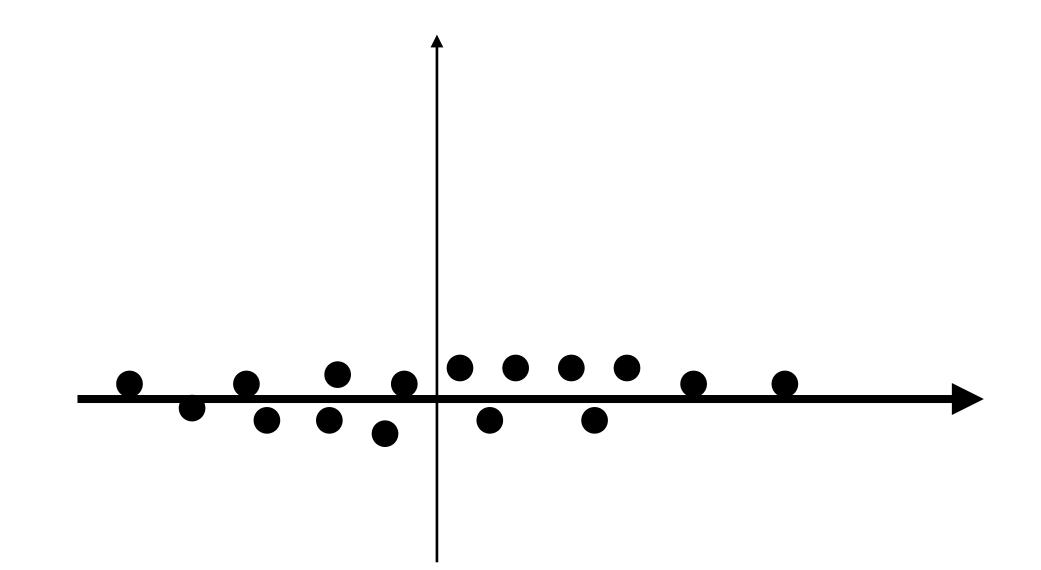
Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$; With probability at least $1 - \delta$: $(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$

Detour: Issues in Ordinary Linear Squares With probability at least $1 - \delta$: Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$; $(\hat{\theta} - \hat{\theta})$

$$(-\theta^{\star})^{\mathsf{T}}\Lambda(\hat{\theta}-\theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

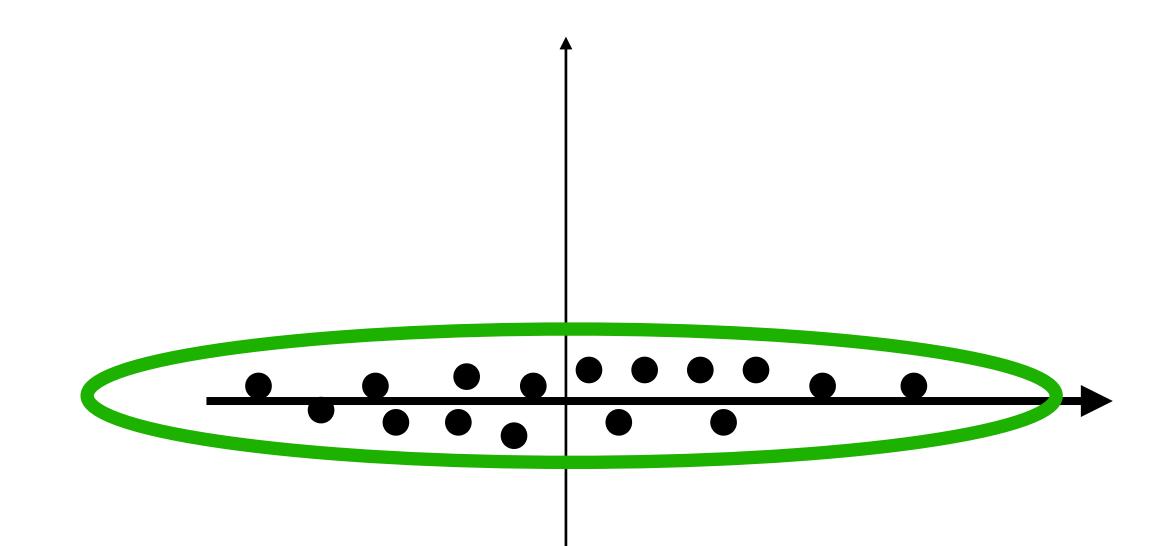
Detour: Issues in Ordinary Linear Squares Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$; With probability at least $1 - \delta$: $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\theta)}{1 + 1}\right)$

$$(-\theta^{\star})^{\mathsf{T}}\Lambda(\hat{\theta}-\theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



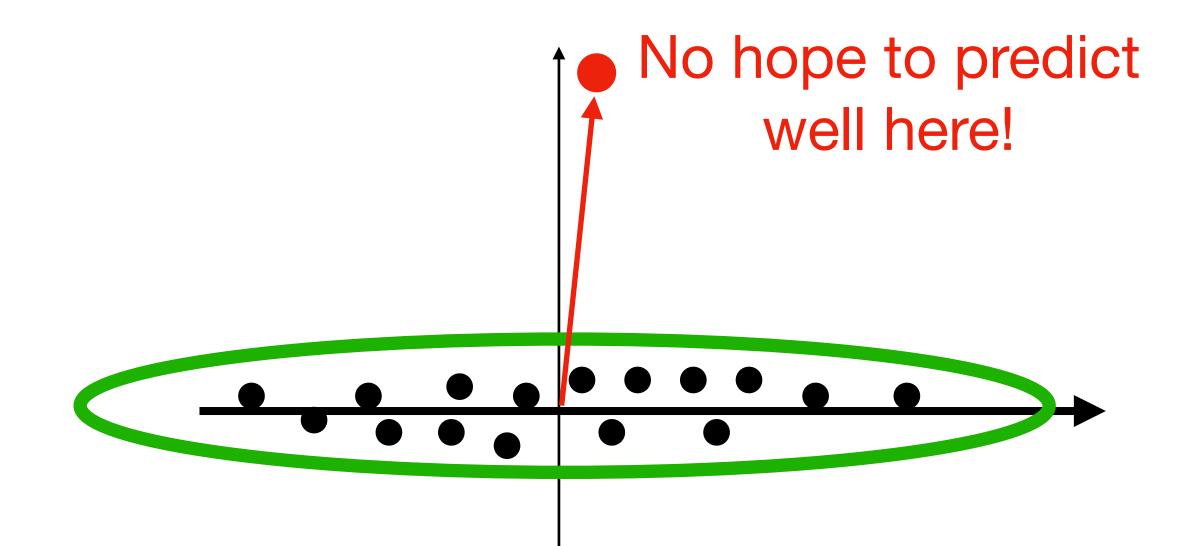
Detour: Issues in Ordinary Linear Squares With probability at least $1 - \delta$: Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$; $(\hat{\theta} - \hat{\theta})$

$$(-\theta^{\star})^{\mathsf{T}}\Lambda(\hat{\theta}-\theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



Detour: Issues in Ordinary Linear Squares Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$; With probability at least $1 - \delta$: $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \leq O \left(\frac{\sigma^2 d \ln(1/\theta)}{(\theta - \theta^{\star})} \right)$

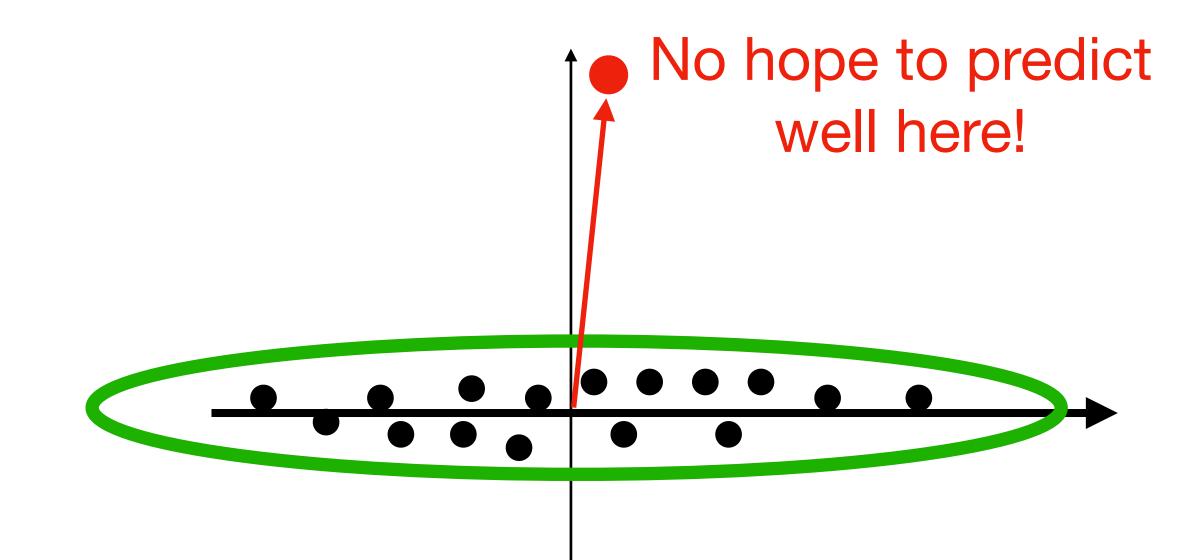
$$(-\theta^{\star})^{\mathsf{T}}\Lambda(\hat{\theta}-\theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



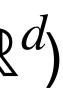
Detour: Issues in Ordinary Linear Squares Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$; Wit With probability at least $1 - \delta$:

Let's actively design a diverse dataset ! (D-optimal Design)

$$(-\theta^{\star})^{\mathsf{T}}\Lambda(\hat{\theta}-\theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span($\mathscr{X}) = \mathbb{R}^d$)



Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\mathsf{T}} \right] \right)$

- - **D-optimal Design** $\rho^* \in \Delta(\mathcal{X})$:

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

$$\rho^{\star} = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\mathsf{T}} \right] \right)$$

Properties of the D-optimal Design:

 $support(\rho^{\star}) \le d(d+1)/2$

- Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)
 - **D-optimal Design** $\rho^* \in \Delta(\mathcal{X})$:
 - - support(
 - $\max_{y \in \mathscr{X}} y^{\mathsf{T}} \Big|$

$$\rho^{\star} = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\mathsf{T}} \right] \right)$$

Properties of the D-optimal Design:

$$\rho^{\star}) \le d(d+1)/2$$

$$\left[\mathbb{E}_{x\sim\rho}xx^{\top}\right]^{-1}y \le d$$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span($\mathcal{X}) = \mathbb{R}^d$)

We actively construct a dataset \mathcal{D} , which contains $[\rho(x)N]$ many copies of x

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span($\mathcal{X}) = \mathbb{R}^d$)

- **D-optimal Design** $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$
- We actively construct a dataset \mathcal{D} , which contains $\lfloor \rho(x)N \rfloor$ many copies of x
 - For each $x \in \mathcal{D}$, query y (noisy measure);

- **D-optimal Design** $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\mathsf{T}} \right] \right)$
- We actively construct a dataset \mathcal{D} , which contains $[\rho(x)N]$ many copies of x For each $x \in \mathcal{D}$, query y (noisy measure);
 - The OLS solution $\hat{\theta}$ on \mathscr{D} has the following point-wise guarantee: w/ prob 1δ

$$\max_{x \in \mathcal{X}} \left| \left\langle \hat{\theta} - \theta^{\star}, x \right\rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span($\mathscr{X}) = \mathbb{R}^d$)

Summary so far on OLS & D-optimal Design

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Summary so far on OLS & D-optimal Design

D-optimal Design $\rho^* \in \Delta(\mathcal{X})$:

$$\max_{x \in \mathcal{X}} \left| \left\langle \hat{\theta} - \theta^{\star}, x \right\rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

$$\rho^{\star} = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\mathsf{T}} \right] \right)$$

D-optimal design allows us to actively construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

Using D-optimal design to construct \mathcal{D}_h in LSVI

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

Using D-optimal design to construct \mathcal{D}_h in LSVI

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$

Using D-optimal design to construct \mathcal{D}_h in LSVI

- Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$
- **D-optimal Design** $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$
 - Construct \mathcal{D}_h that contains $[\rho(s, a)N]$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, query $y := r(s, a) + V_{h+1}(s'), s' \sim P_h(. | s, a)$

Using D-optimal design to construct \mathscr{D}_h in LSVI

- Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$
- **D-optimal Design** $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\mathsf{T}} \right] \right)$
 - Construct \mathcal{D}_h that contains $[\rho(s, a)N]$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, query $y := r(s, a) + V_{h+1}(s'), s' \sim P_h(. | s, a)$
 - OLS /w D-optimal design implies that $\hat{\theta}_h$ is point-wise accurate: $\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq \widetilde{O} \left(\frac{Hd}{\sqrt{N}} \right).$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

 $\max_{s,a} \left| \theta_h \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N} \right).$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

 $\max_{s,a} \left| \theta_h \phi(s,a) - \mathcal{T}_h(\theta_h) \right|$

2. This implies that our estimator $Q_h := \theta_h^\top \phi$ is nearly **Bellman-consistent**, i.e.,

$$(a_{n+1})^{\mathsf{T}}\phi(s,a) \bigg| \leq O\left(Hd/\sqrt{N}\right).$$

 $\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|_{\infty} \le O\left(\frac{Hd}{\sqrt{N}} \right)$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

 $\max_{s,a} \left| \theta_h \phi(s,a) - \mathcal{T}_h(\theta_h) \right|$

2. This implies that our estimator $Q_h := \theta_h^\top \phi$ is nearly **Bellman-consistent**, i.e.,

 $\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general) $\|Q_h - Q_h^\star\|_{\infty} \le O(H^2 d/\sqrt{N})$

$$(a_{n+1})^{\mathsf{T}}\phi(s,a) \bigg| \leq O\left(Hd/\sqrt{N}\right).$$

$$\Big\|_{\infty} \le O\left(Hd/\sqrt{N}\right)$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

 $\max_{s,a} \left| \theta_h \phi(s,a) - \mathcal{T}_h(\theta_h) \right|$

2. This implies that our estimator $Q_h := \theta_h^\top \phi$ is nearly **Bellman-consistent**, i.e.,

 $\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general) $\|Q_h - Q_h^\star\|_{\infty} \le O(H^2 d/\sqrt{N})$

$$(a_{n+1})^{\mathsf{T}}\phi(s,a) \bigg| \leq O\left(Hd/\sqrt{N}\right).$$

$$\Big\|_{\infty} \le O\left(Hd/\sqrt{N}\right)$$

$$\Rightarrow V^{\star} - V^{\hat{\pi}} \le \widetilde{O}(H^3 d / \sqrt{N})$$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^+ \phi \approx Q_h^{\star}$ via

 $\phi(s,a) \mapsto r(s,a) + \max_{a'} \theta_{h+1}^{\top} \phi(s',a')$

- $\phi(s,a) \mapsto r(s)$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$(s, a) + \max_{a'} \theta_{h+1}^{\top} \phi(s', a')$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\| Q_h - \mathcal{T}_h Q_{h+1} \|$ is small

- $\phi(s,a) \mapsto r(s)$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$(s, a) + \max_{a'} \theta_{h+1}^{\top} \phi(s', a')$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\| Q_h - \mathcal{T}_h Q_{h+1} \|$ is small

4. Near-Bellman consistency implies small approximation error of Q_h (holds in general)

