Learning with Linear Bellman Completion & Generative Model

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$$

$$\uparrow_{h} \left(\omega \right)$$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\top} \phi, \forall h$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\top} \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

It implies that Q_h^{\star} is linear in ϕ : $Q_h^{\star} = (\theta_h^{\star})^{\top} \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition

 $\begin{aligned} &\text{Datasets } \mathcal{D}_0,...,\mathcal{D}_{H-1}, \, \text{w/} \\ \mathcal{D}_h = \{s,a,r,s'\}, r = r(s,a), s' \sim P_h(\,\cdot\,|\,s,a) \end{aligned}$

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \, \text{w/} \\ \mathscr{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\, \cdot \mid s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \text{ w/} \\ \mathscr{D}_h &= \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\; \cdot \; | \; s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \text{ w/} \\ \mathscr{D}_h &= \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\; \cdot \; | \; s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

$$\operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$$

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \, \text{w/} \\ \mathscr{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\; \cdot \; | \; s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0: $\sim \bigvee_{\theta} \bigvee_{\theta} (s')$

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s')\right)\right)^2$$
Set $V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$

Return
$$\hat{\pi}_h(s) = \arg \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$$

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \, \text{w/} \\ \mathscr{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\, \cdot \, | \, s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - (r + V_{h+1}(s')) \right)^2$$

$$\text{Set } V_h(s) := \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall s$$

Return
$$\hat{\pi}_h(s) = \arg \max_{a} \theta_h^{\top} \phi(s, a), \forall h$$

BC always ensures linear regression is realizable:

i.e., our regression target
$$r(s,a) + \mathbb{E}_{s' \sim P_h(s,a)} \max_{a'} \theta_{h+1}^{\top} \phi(s',a')$$
 is always linear:

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

- 1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property
- 2. Show that our estimators are near-bellman consistent: $\|\theta_h^\top \phi \mathcal{T}_h(\theta_{h+1}^\top \phi)\|_{\infty}$ is small

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

- 1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property
- 2. Show that our estimators are near-bellman consistent: $\|\theta_h^\top \phi \mathcal{T}_h(\theta_{h+1}^\top \phi)\|_{\infty}$ is small
- 3. Near-Bellman consistency implies near optimal performance (s.t. H error amplification)

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i \, | \, x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

with
$$|\epsilon_i| \leq \sigma$$
, assume $\Lambda = \sum_i x_i x_i^{\top}/N$ is full rank

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i \, | \, x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

OLS:
$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (\theta^{\mathsf{T}} x_i - y_i)^2$$

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^*)^T x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent

with
$$|\epsilon_i| \leq \sigma$$
, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

OLS:
$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (\theta^{\mathsf{T}} x_i - y_i)^2$$

Standard OLS guarantee: with probability at least $1 - \delta$:

$$(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^{2} d \ln(1/\delta)}{N}\right)$$

$$\Rightarrow \sum_{N \geq 1}^{\infty} (\hat{\theta} - \sigma^{\star})^{\mathsf{T}} \chi_{1}^{\mathsf{N}}$$

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
;

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^*)^{\top} \Lambda (\hat{\theta} - \theta^*) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

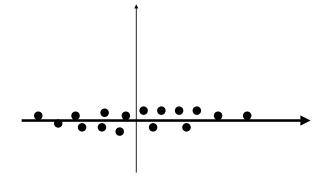
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
;

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{T}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^T x$ is close to $(\theta^*)^T x$

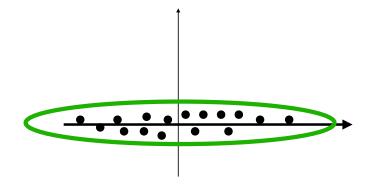
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{\top}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^{\top}x$ is close to $(\theta^{\star})^{\top}x$



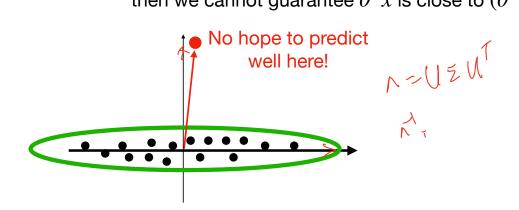
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{\mathsf{T}}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^{\mathsf{T}}x$ is close to $(\theta^{\star})^{\mathsf{T}}x$



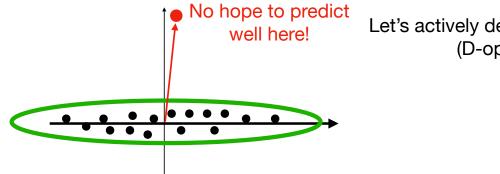
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{\mathsf{T}}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^{\mathsf{T}}x$ is close to $(\theta^{\star})^{\mathsf{T}}x$



Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{\mathsf{T}}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^{\mathsf{T}}x$ is close to $(\theta^{\star})^{\mathsf{T}}x$



Let's actively design a diverse dataset! (D-optimal Design)

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Properties of the D-optimal Design:

$$support(\rho^*) \le d(d+1)/2$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Properties of the D-optimal Design:

$$support(\rho^*) \le d(d+1)/2$$

$$\max_{y \in \mathcal{X}} y^{\mathsf{T}} \left[\mathbb{E}_{x \sim p} x x^{\mathsf{T}} \right]^{-1} y \leq d$$

$$\sum_{z \in \mathcal{Z}} \mathbb{E}_{x \sim p} x x^{\mathsf{T}}$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $[\rho(x)N]$ many copies of x

For each $x \in \mathcal{D}$, query y (noisy measure);

For each
$$x \in \mathcal{D}$$
, query y (noisy measure);
$$A = \sum_{N \times ED} \times x^{T}$$

$$= \sum_{N \times ESupport} P(x) N = \sum_{N \times ESupport}$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x For each $x \in \mathcal{D}$, query y (noisy measure);

The OLS solution $\hat{\theta}$ on ${\mathscr D}$ has the following point-wise guarantee: w/ prob $1-\delta$

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^*, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x For each $x \in \mathcal{D}$, query y (noisy measure);

The OLS solution $\hat{\theta}$ on ${\mathscr D}$ has the following point-wise guarantee: w/ prob $1-\delta$

Summary so far on OLS & D-optimal Design

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Summary so far on OLS & D-optimal Design

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

D-optimal design allows us to **actively** construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^*, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

Consider the space $\Phi = {\phi(s, a) : s, a \in S \times A}$

$$\textbf{D-optimal Design } \rho^{\,\star} \in \Delta(\Phi) \text{:} \quad \rho^{\,\star} = \arg\max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^\top \right] \right)$$

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design
$$\rho^* \in \Delta(\Phi)$$
: $\rho^* = \arg\max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s, a \sim \rho} \left[\phi(s, a) \phi(s, a)^{\top} \right] \right)$

Construct \mathcal{D}_h that contains $\lceil \overset{\times}{\rho}(s,a)N \rceil$ many copies of $\phi(s,a)$, for each $\phi(s,a)$, query $y:=r(s,a)+V_{h+1}(s'), s'\sim P_h(\,.\,|\,s,a)$

Generallie model

Consider the space $\Phi = {\phi(s, a) : s, a \in S \times A}$

D-optimal Design
$$\rho^* \in \Delta(\Phi)$$
: $\rho^* = \arg\max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^\top \right] \right)$

Construct \mathcal{D}_h that contains $\lceil \rho(s,a)N \rceil$ many copies of $\phi(s,a)$,

for each
$$\phi(s,a)$$
, query $y:=r(s,a)+V_{h+1}(s')$, $y'\sim P_h(\,.\,|\,s,a)$

What's the Bayes optimal $\mathbb{E}[y | s, a]$?

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design
$$\rho^{\star} \in \Delta(\Phi)$$
: $\rho^{\star} = \arg\max_{\rho \in \Delta(\Phi)} \ln \det \left(\mathbb{E}_{s, a \sim \rho} \left[\phi(s, a) \phi(s, a)^{\top} \right] \right)$

Construct \mathcal{D}_h that contains $\lceil \rho(s,a)N \rceil$ many copies of $\phi(s,a)$, for each $\phi(s,a)$, query $y:=r(s,a)+V_{h+1}(s')$, $y'\sim P_h(\,.\,|\,s,a)$

What's the Bayes optimal $\mathbb{E}[y \mid s, a]$?

OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \frac{\theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a)}{\mathcal{G}_h} \right| \leq \widetilde{O} \left(\frac{Hd}{\sqrt{N}} \right).$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N}\right).$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N}\right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|_{\infty} \le O\left(Hd/\sqrt{N}\right)$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N}\right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty} \le O\left(Hd/\sqrt{N}\right)$$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general)

$$\|Q_h - Q_h^{\star}\|_{\infty} \le O(H^2 d/\sqrt{N})$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N}\right).$$

2. This implies that our estimator $Q_h := \theta_h^{\mathsf{T}} \phi$ is nearly **Bellman-consistent**, i.e.,

$$\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty} \le O\left(Hd/\sqrt{N}\right)$$

3. Nearly-Bellman consistency implies Q_h is close to Q_h^{\star} (this holds in general)

$$\begin{split} \|Q_h - Q_h^\star\|_{\infty} &\leq O(H^2 d/\sqrt{N}) \\ \Rightarrow V^\star - V^{\hat{\pi}} &\leq \widetilde{O}(H^3 d/\sqrt{N}) \overset{\text{forms}}{\Rightarrow} V \overset{\text{def}}{\sim} V \overset$$

Outline for Today

2. LSVI in Offline RL

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_h = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_h = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Offline Distribution (e.g., maybe is d^{π_b} for some behavior policy π_b)

Learner cannot interact with the environment, instead, learner is given static datasets:

$$\mathcal{D}_h = \{s, a, r, s'\}, \quad s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Offline Distribution (e.g., maybe is d^{π_b} for some behavior policy π_b)

Offline RL is promising for safety critical applications (i.e., learning from logged data for health applications...)

Recall Least-Square Value Iteration

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \, \text{w/} \\ \mathscr{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\; \cdot \; | \; s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - (r + V_{h+1}(s'))\right)^T$$

$$\operatorname{Set} V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s$$

Return
$$\hat{\pi}_h(s) = \arg \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$$

Recall Least-Square Value Iteration

$$\begin{aligned} &\text{Datasets } \mathscr{D}_0, \dots, \mathscr{D}_{H-1}, \, \text{w/} \\ \mathscr{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\, \cdot \, | \, s, a) \end{aligned}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

$$\text{Set } V_h(s) := \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall s$$

Return $\hat{\pi}_h(s) = \arg\max \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

LSVI directly can directly operate in offline model!

Least-Square Value Iteration Guarantee

Recall $\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

Least-Square Value Iteration Guarantee

Recall
$$\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Assumptions

1. Full offline data coverage: $\sigma_{\min}\left(\mathbb{E}_{s,a\sim\nu}\phi(s,a)\phi(s,a)^{\top}\right) \geq \kappa$ 2. Linear Bellman completion

Least-Square Value Iteration Guarantee

Recall
$$\mathcal{D}_h = \{s, a, r, s'\}, s, a \sim \nu, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Assumptions

- 1. Full offline data coverage: $\sigma_{\min}\left(\mathbb{E}_{s,a\sim\nu}\phi(s,a)\phi(s,a)^{\top}\right) \geq \kappa$ 2. Linear Bellman completion
- Then, with probability at least 1δ , LSVI return $\hat{\pi}$ with $V^* V^{\hat{\pi}} \leq \epsilon$, using at most poly $(H, 1/\epsilon, 1/\kappa, d, \ln(1/\delta))$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot \mid s, a)$, we have

$$\mathbb{E}_{s,a\sim\nu}\left(\theta_h^{\mathsf{T}}\phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^2 \leq \mathsf{poly}(H,d,1/N)$$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot \mid s, a)$, we have

$$\mathbb{E}_{s,a\sim\nu}\left(\theta_h^{\mathsf{T}}\phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^2 \leq \mathsf{poly}(H,d,1/N)$$

Then with Cauchy-Schwartz, we get

$$\forall s, a, \left| (\theta_h - \mathcal{T}_h(\theta_{h+1}))^\top \phi(s, a) \right| \leq \|\theta_h - \mathcal{T}_h(\theta_{h+1})\|_{\Sigma} \|\phi(s, a)\|_{\Sigma^{-1}}$$

Key step:

Linear Bellman completion + Linear Regression w/ full data coverage

=> Near-Bellman consistency, i.e., $\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty}$ is small

e.g., with N training examples where $(s, a) \sim \nu$, and $r = r(s, a), s' \sim P_h(\cdot \mid s, a)$, we have

$$\mathbb{E}_{s,a\sim\nu}\left(\theta_h^{\mathsf{T}}\phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)\right)^2 \leq \mathsf{poly}(H,d,1/N)$$

Then with Cauchy-Schwartz, we get

$$\forall s, a, \left| (\theta_h - \mathcal{T}_h(\theta_{h+1}))^\top \phi(s, a) \right| \leq \|\theta_h - \mathcal{T}_h(\theta_{h+1})\|_{\Sigma} \|\phi(s, a)\|_{\Sigma^{-1}}$$

(we will give a HW question on a related topic)

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

- 1. Linear Bellman Completion definition (a strong assumption, though captures some models)
- 2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^{\mathsf{T}} \phi \approx Q_h^{\star}$ via

$$\phi(s, a) \mapsto r(s, a) + \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

- 1. Linear Bellman Completion definition (a strong assumption, though captures some models)
- 2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$\phi(s, a) \mapsto r(s, a) + \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\parallel Q_h - \mathcal{T}_h Q_{h+1} \parallel$ is small

- 1. Linear Bellman Completion definition (a strong assumption, though captures some models)
- 2. Least square value iteration: integrate Linear regression into DP, i.e., $Q_h := \theta_h^\top \phi \approx Q_h^\star$ via

$$\phi(s, a) \mapsto r(s, a) + \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

- 3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\parallel Q_h \mathcal{T}_h Q_{h+1} \parallel$ is small
 - 4. Near-Bellman consistency implies small approximation error of Q_h (holds in general)

Next week

Fitted Dynamic Programming — can we extend linear function approx to general function approx (e.g., neural network, decision tree, etc)?

Exploration: Multi-armed Bandits and Stochastic Linear Bandits (Bandits = MDP w/ H = 1)