Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning

Recap: Linear Bellman Completion

Given feature ¢, take any linear function w' (s, a):

Vh,30 € R% s .t. QT(ﬁ(s a)=r(s,a) + [ESNP s, a)mawagb(s a),Vs,a

n(}

Recap: Linear Bellman Completion

Given feature ¢, take any linear function ngl)(s, a):
Vh,30 e R% s .t ., QT(ﬁ(s, a)=r(s,a) + [Eswph(s,a) max ngb(S’, a),Vs,a
(,l/

It implies that Q)" is linear in ¢: O = (0})'¢,Vh

Recap: Linear Bellman Completion

Given feature ¢, take any linear function ngl)(s, a):
Vh,30 e R% s .t ., QT(ﬁ(s, a)=r(s,a) + [ES’NP, (5.q) MAX ngb(S’, a),Vs,a
(,l/

It implies that Q)" is linear in ¢: O = (0})'¢,Vh

Captures Tabular MDPs, and Linear Quadratic Regulators

Recap: Linear Bellman Completion

Given feature ¢, take any linear function ngl)(s, a):
Vhi,30 e R% 5.t ., QTgb(s, a)=r(s,a) + [Es’~P, (5.q) MAX ngb(S’, a),Vs,a
(,l/

It implies that Q)" is linear in ¢: O = (0})'¢,Vh
Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition

Recap: Least-Square Value lteration

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/
D, =1{s,a,r,5'},r=1r(s,a),s' ~ P,(-|s,a)

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/
D, =1{s,a,r,5'},r=1r(s,a),s' ~ P,(-|s,a)

Set Viy(s) = 0,Vs

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/
D, =1{s,a,r,5'},r=1r(s,a),s' ~ P,(-|s,a)
Set Viy(s) = 0,Vs
For h =H-11to 0:

2
0, = arg mein Z <9T¢(S, a) — (” + Vh+1(sl))>

=

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/
D, =1{s,a,r,5'},r=1r(s,a),s' ~ P,(-|s,a)
Set Viy(s) = 0,Vs
For h =H-11to 0:

2
0, = arg mein Z <9T¢(S, a) — (” + Vh+1(sl))>

2,
Set V,,(s) := max 0, ¢(s, a),NV's

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/
D, =1{s,a,r,5'},r=1r(s,a),s' ~ P,(-|s,a)
Set Viy(s) = 0,Vs
For h =H-11to 0:

2
0, = arg mein Z <9T¢(S, a) — (” + Vh+1(sl))>

=
Set V,(s) := max QhT ¢(s,a),Vs

Return 7, (s) = arg max QhT ¢(s,a),Vh

Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/

Dp=1{s,a,r,s'Y,r=r(s,a),s'~ Py(-|s,a) _
BC always ensures linear

Set V(s) = 0,Vs regression is realizable:
H — Yy

For h = H-1 to O: l.e., our regression target

2 r(S, a) + UE.Y/NPh(S,a) maX 9};:_] ¢(S /, a/)
6, = arg min Z <0T¢(s, a)— (r+ V(s . a
-y is always linear:

Set V,(s) := max 9; ¢(s,a),Vs

Return 7, (s) = arg max HhT ¢(s,a),Vh

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Theorem

Theorem: There exists a way to construct datasets { <, ZI;(}, such that
with probability at least 1 — o, we have:

VE_V*<e

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

Theorem

Theorem: There exists a way to construct datasets { <, ZI;(}, such that
with probability at least 1 — o, we have:

VE_V*<e

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

1. How to actively design / construct datasets &, via the Generative Model property

Theorem

Theorem: There exists a way to construct datasets {9;,}21:_01, such that
with probability at least 1 — o, we have:

VE_V*<e

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

1. How to actively design / construct datasets &, via the Generative Model property

2. Show that our estimators are near-bellman consistent: ||0th1) — 97h((9hT+1¢)||00 is small

Theorem

Theorem: There exists a way to construct datasets { <, ZI;(}, such that
with probability at least 1 — o, we have:

VE_V*<e

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

1. How to actively design / construct datasets &, via the Generative Model property

2. Show that our estimators are near-bellman consistent: ||0th1) — 97h((9hT+1¢)||00 is small

3. Near-Bellman consistency implies near optimal performance (s.t. H error amplification)

Detour: Ordinary Linear Squares

Consider a dataset {x;, yi}i.\il, where y: = (0*)"x; + ¢, [E[e;|x;] =0, ¢; are independent

N
with |¢€;| < o, assume A = Z xx;' /N is full rank;
i=1

Detour: Ordinary Linear Squares

Consider a dataset {x;, yi}i.\il, where y: = (0*)"x; + ¢, [E[e;|x;] =0, ¢; are independent

N
with |¢€;| < o, assume A = Z xx;' /N is full rank;
i=1
X N
OLS: 0 =arg main Z @Tx; —y)?

i=1

Detour: Ordinary Linear Squares

Consider a dataset {x;, y;}%¥ . » Where y;, = @*)'x. + €, [Ele|x]=0, e are independent
N

with |¢;| < o, assume A = Z xx;' /N is full rank;
i=1

OLS: 0= arg mm Z OTx;, — y,)?
i=1
Standard OLS guarantee: with probability at least 1 — ¢:

- 0TAG— 0" < o T/ >

>rE (”)

N

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — o:

N
Recall A = 2 X% IN; 24 1n(1/5)>
O

i=1 O—0"TAD-0%) <0 (

N

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — o:

o2d 1In(1/6)
N

N
Recall A = Z xl-xl-T/N ,
i=1 O—0"TAD-0%) <0 (

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

i

=1
A

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — o:

N
Recall A =) xx!/N; o*d ln(1/5)>

i=1 @-6"TAO-0%) <0 (
N

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — 6:

N
Recall A = 2 X% IN; 24 1n(1/5)>
O

i=1 @-6"TAO-0%)<0 <
N

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

("‘"‘o : .. .o. .o. ._.)

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — 6:

N
Recall A = 2 X% IN; 24 1n(1/5)>
O

i=1 O—0"TAO-0%) <0 < 5

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

@ No hope to predict 1

|
/ well here! . A 3 T

A
N

C_'_"'o : .. .o. .o. ._.)

Detour: Issues in Ordinary Linear Squares

With probability at least 1 — 6:

o2d 1In(1/6)
N

N
Recall A = Z xl-xl-T/N ,
i=1 O—0"TAO-0%) <0 <

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

@ No hope to predict

well here! Let’s actively design a diverse dataset !

(D-optimal Design)

("‘"‘o : .. .o. .o. ._.)

Detour: D-optimal Design

Consider a compact space & C R4 (without loss of generality, assume span(Z) = [Rd)

Detour: D-optimal Design

Consider a compact space X C R4 (without loss of generality, assume span(Z) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxTD
PEA(X) -

Detour: D-optimal Design

Consider a compact space X C R4 (without loss of generality, assume span(Z) = [Rd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxTD
PEA(X)

Properties of the D-optimal Design:

support(p™) < d(d + 1)/2

Detour: D-optimal Design

Consider a compact space X C R4 (without loss of generality, assume span(Z) = [Rd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxTD
PEA(X)

Properties of the D-optimal Design:

port(p™) < d(d+ 1)/2

-1
max y' [[EprxxT] y<d
yeX FY

Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(X)

Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(X)

¥
We actively construct a dataset &, which contains [p(x)N'] many copies of x

Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)
D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(T)
Y—
We actively construct a dataset &, which contains [p(x)N'] many copies of x

For each x € I, query y (noisy measure); -
.T
Y ~ b x<t v
. T Z =
\ ;\q . (PO N = A/
_ "xep |
= — L eoN = E kT
N)<€§u7yurf (€))</\—/F
X & ‘
/>&“Y ~\ L N I~ = 0(

Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(X)

We actively construct a dataset &, which contains [p(x)N'] many copies of x

For each x € I, query y (noisy measure);

The OLS solution § on D has the following point-wise guarantee: w/ prob 1 — 6

od In(1/6)

\/N

max | (0 — 0*, x) ‘ <

XeX

Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(T)

We actively construct a dataset &, which contains [p(x)N'] many copies of x

For each x € I, query y (noisy measure);

The OLS solution § on D has the following point-wise guarantee: w/ prob 1 — 6

od In(1/6)

< -7 max (9—9*,)6)‘ <
AN\ & xeX

Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet <[Ex~,) [xxT]>
PEA(X) '

Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ([EXN/) [xxT]>
PEA(X)

D-optimal design allows us to actively construct a dataset & = {x, y},
such that OLS solution is POINT-WISE accurate:

od In(1/6)

\/N

max
xed

(6 9*,x>‘ <

Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet (ES ap [(/)(S, a)p(s, a)T]>
PEA(D) o

Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet (ES ap [(/)(S, a)p(s, a)T]>
PEA(D) o

%
Construct 9, that contains [p(s, a)N'| many copies of ¢(s, a),
for each (s, a), query y :=r(s,a) + V. (s),s" ~ P,(.|s,a)
o
Gannatve #42]

Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet ([ES ap [d)(s, a)p(s, a)T])
pPEA(D) o

Construct 9, that contains_|pts;-e)-many copies of ¢(s, a),
for each ¢(s, a), que W '~ Py(.]s,0a)
What’s the Bayes optimal E[y|s, a]?
By
Vi) (87)= e e ?U{“/)
Qa

Goges PPt s Ti, (B) $050)

Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet ([ES ap [d)(s, a)p(s, a)T])
pPEA(D) o

Construct 9, that contains_|pts;-e)-many copies of ¢(s, a),
for each ¢(s, a), que W '~ Py(.]s,0a)

What’s the Bayes optimal E[y|s, a]?

OLS /w D-optimal design implies that 6, is point-wise accurate:

max |07 (s, a) — T (0,) (s, a)‘ < '5<Hd/\/ﬁ).
s,a - — JA
C- Goryer 4)710\‘“%4

&h o C§”Q

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:

01 p(s.@) = T yO) (s,)| <O (Hd/\/ﬁ) |

max
s,a

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:

@9; W(s.0) = T O pls.a)| <O <Hd/\/ﬁ> |

2. This implies that our estimator Qh = Hgd) is nearly Bellman-consistent, i.e.,

|| Oy — T 1041 ‘5 0 <Hd/\/ﬁ>

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:

max | 6] 4(s.a) — T (6, d(s.0)| <0 (Hd/\/ﬁ) |

s,a

2. This implies that our estimator Qh = 9;(/) is nearly Bellman-consistent, i.e.,

|| O = T 191 || =0 <Hd/\/ﬁ>
3. Nearly-Bellman consistency implies Q, is close to Q;: (this holds in general)

10, — Ol < O(H?d/+\/N)

Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:

max | 6] 4(s.a) — T (6, d(s.0)| <0 (Hd/ﬁ) |

s,a

2. This implies that our estimator Qh = 9;(/) is nearly Bellman-consistent, i.e.,

|| On = T 1l || =0 <Hd/\/ﬁ>
3. Nearly-Bellman consistency implies Q, is close to Q;: (this holds in general)

10, — OF |l < O(H?d/A\/N) O, g
. — _ ¢ J = vIL <Q“/(g)
= V¥ - Vi< 0(H3d/\/ﬁ)\ 612

Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL

Offline Reinforcement Learning

Offline Reinforcement Learning

Learner cannot interact with the environment, instead, learner is given static datasets:
9, =1{s,a,r,5'}, s,a~v,r=r(s,a),s ~P,(-]|s,a)

Offline Reinforcement Learning

Learner cannot interact with the environment, instead, learner is given static datasets:
9, =1{s,a,r,5'}, s,a~v,r=r(s,a),s ~P,(-]|s,a)

\

Offline Distribution (e.g., maybe is d™ for
some behavior policy)

Offline Reinforcement Learning

Learner cannot interact with the environment, instead, learner is given static datasets:
9, =1{s,a,r,5'}, s,a~v,r=r(s,a),s ~P,(-]|s,a)

\

Offline Distribution (e.g., maybe is d™ for
some behavior policy)

Offline RL is promising for safety critical applications
(i.e., learning from logged data for health applications...)

Recall Least-Square Value lteration

Datasets 9, ..., Dy_1, W/
gzh - {S,a,]",s/},]” = F(S’a)’S/N Ph(’ |S,Cl)

/
(
Set Vi(s) = 0,Vs e (5! o
H 2 Y W“a(Z%w\ CP)
For h =H-1to O: -

- o+
9h=argm0inz <9T¢(s,a):@ @\ALSVOJ’« @ ? (5-0\)
Dy,

Set V,(s) := max 9; ¢(s,a),Vs

Return 7, (s) = arg max HhT ¢(s,a),Vh

Recall Least-Square Value lteration

Datasets 9, ..., Dy_1, W/
gzh - {S,a,]",s/},]” = F(S’a)’S/N Ph(’ |S,Cl)

Set Viy(s) = 0,Vs

For h =H-1to O: _ ,
LSVI directly can directly

2 . .
6, = argmin Y <0T¢(s, a) - (r+ Vh+1(s’))> operate in offline model!
0
Dy,

Set V,(s) := max 9; ¢(s,a),Vs

Return 7, (s) = arg max HhT ¢(s,a),Vh

Least-Square Value lteration Guarantee

Recall 9, = {s,a,r,s'},s,a ~v,r =r(s,a),s' ~ P,(-|s,a)

Least-Square Value lteration Guarantee

Recall 9, = {s,a,r,s'},s,a ~v,r =r(s,a),s' ~ P,(-|s,a)

Assumptions
1. Full offline data coverage: o, ([Es,awgb(s, a)p(s, a)T) > K
2. Linear Bellman completion

Least-Square Value lteration Guarantee

Recall 9, = {s,a,r,s'},s,a ~v,r =r(s,a),s' ~ P,(-|s,a)

Assumptions
1. Full offline data coverage: o, ([Es,awgb(s, a)p(s, a)T) > K
2. Linear Bellman completion

Then, with probability at least 1 — 8, LSVI return # with V* — V* < ¢, using at most
poly (H,1/¢,1/x,d, In(1/5))
A

The proof for the offline set is almost identical

Key step:
Linear Bellman completion + Linear Regression w/ full data coverage
=> Near-Bellman consistency, i.e., |0, — T 1,041l is small

The proof for the offline set is almost identical

Key step:
Linear Bellman completion + Linear Regression w/ full data coverage
=> Near-Bellman consistency, i.e., |0, — T 1,041l is small

e.g., with N training examples where (s,a) ~ v,and r = (s, a), s’ ~ P,(- | s, a), we have

Ey s (0 P(s.0) = T (041 (s, a))2 < poly(H,d,1/N)

The proof for the offline set is almost identical

Key step:
Linear Bellman completion + Linear Regression w/ full data coverage
=> Near-Bellman consistency, i.e., |0, — T 1,041l is small

e.g., with N training examples where (s,a) ~ v,and r = (s, a), s’ ~ P,(- | s, a), we have

Ey s (0 P(s.0) = T (041 (s, a))2 < poly(H,d,1/N)

Then with Cauchy-Schwartz, we get

Vs,a, |0, = T 1O $s, @) | <116, = TG DIl b(s, @5

The proof for the offline set is almost identical

Key step:
Linear Bellman completion + Linear Regression w/ full data coverage
=> Near-Bellman consistency, i.e., |0, — T 1,041l is small

e.g., with N training examples where (s,a) ~ v,and r = (s, a), s’ ~ P,(- | s, a), we have

Ey s (0 P(s.0) = T (041 (s, a))2 < poly(H,d,1/N)

Then with Cauchy-Schwartz, we get

Vs, a, |(9h - 912(9/1+1))T¢(S’ a) ‘ < ||9/1 - 911(9h+1)||2||¢(5’ a)| -

(we will give a HW question on a related topic)

Summary

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)
2. Least square value iteration: integrate Linear regression into DP, i.e., Q,, := Qthb ~ Q}f via

¢(s,a) — r(s,a) + max (9hT+1q§(s’, a’)

Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)
2. Least square value iteration: integrate Linear regression into DP, i.e., Q,, := Qthb ~ Q}f via
¢(s,a) — r(s,a) + max (9hT+1q§(s’, a’)
o

3. Leverage D-optimal design, we make sure that Qh is point-wise accurate, which ensures
near Bellman consistent, i.e., ” O, — T 10441 ” is small
(0 0]

Summary

1. Linear Bellman Completion definition (a strong assumption, though captures some models)
2. Least square value iteration: integrate Linear regression into DP, i.e., Q,, := Qthb ~ Q}f via
¢(s,a) — r(s,a) + max (9hT+1q§(s’, a’)
al

3. Leverage D-optimal design, we make sure that Qh is point-wise accurate, which ensures
near Bellman consistent, i.e., ” O, — T 10441 ” is small
(0 0]

4. Near-Bellman consistency implies small approximation error of Q, (holds in general)

Next week

Fitted Dynamic Programming — can we extend linear function approx to general function
approx (e.g., neural network, decision tree, etc)?

Exploration: Multi-armed Bandits and Stochastic Linear Bandits (Bandits = MDP w/ H = 1)

