Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning
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Recap: Linear Bellman Completion

Given feature ¢, take any linear function ngl)(s, a):
Vhi,30 e R% 5.t ., QTgb(s, a)=r(s,a) + [Es’~P, (5.q) MAX ngb(S’, a),Vs,a
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It implies that Q)" is linear in ¢: O = (0})'¢,Vh
Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition
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Recap: Least-Square Value lteration

Datasets 9y, ..., Dy_;, W/

Dp=1{s,a,r,s'Y,r=r(s,a),s'~ Py(-|s,a) _
BC always ensures linear

Set V(s) = 0,Vs regression is realizable:
H — Yy

For h = H-1 to O: l.e., our regression target

2 r(S, a) + UE.Y/NPh(S,a) maX 9};:_ ] ¢(S /, a/)
6, = arg min Z <0T¢(s, a)— (r+ V(s . a
-y is always linear:

Set V,(s) := max 9; ¢(s,a),Vs

Return 7, (s) = arg max HhT ¢(s,a),Vh




Outline for Today

1. Proof Sketch of LSVI

2. LSVI in Offline RL
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Theorem: There exists a way to construct datasets { <, ZI;(}, such that
with probability at least 1 — o, we have:

VE_V*<e

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

1. How to actively design / construct datasets &, via the Generative Model property

2. Show that our estimators are near-bellman consistent: ||0th1) — 97h((9hT+1¢)||00 is small

3. Near-Bellman consistency implies near optimal performance (s.t. H error amplification)
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Detour: Ordinary Linear Squares

Consider a dataset {x;, y;}%¥ . » Where y;, = @*)'x. + €, [Ele|x]=0, e are independent
N

with |¢;| < o, assume A = Z xx;' /N is full rank;
i=1

OLS: 0= arg mm Z OTx;, — y,)?
i=1
Standard OLS guarantee: with probability at least 1 — ¢:

- 0TAG— 0" < o T/ >

>rE (” )
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Detour: Issues in Ordinary Linear Squares

With probability at least 1 — 6:

o2d 1In(1/6)
N

N
Recall A = Z xl-xl-T/N ,
i=1 O—0"TAO-0%) <0 <

If the test point x is not covered by the training data, i.e., x"Axis huge,
then we cannot guarantee 6 x is close to (8*)"x

@ No hope to predict

well here! Let’s actively design a diverse dataset !

(D-optimal Design)

("‘"‘o : .. .o. .o. ._.)
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Properties of the D-optimal Design:
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-1
max y' [[EprxxT] y<d
yeX FY
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Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(Z’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet <[EXN/) [xxT]>
PEA(T)

We actively construct a dataset &, which contains [p(x)N'] many copies of x

For each x € I, query y (noisy measure);

The OLS solution § on D has the following point-wise guarantee: w/ prob 1 — 6

od In(1/6)
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Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ([EXN/) [xxT]>
PEA(X)

D-optimal design allows us to actively construct a dataset & = {x, y},
such that OLS solution is POINT-WISE accurate:

od In(1/6)

\/N

max
xed

(6 9*,x>‘ <
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Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet ([ES ap [d)(s, a)p(s, a)T] )
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Using D-optimal design to construct &, in LSVI

Consider the space ® = {¢(s,a) : s,a € S X A}

D-optimal Design p* € A(®): p* = arg max Indet ([ES ap [d)(s, a)p(s, a)T] )
pPEA(D) o

Construct 9, that contains_|pts;-e)-many copies of ¢(s, a),
for each ¢(s, a), que W '~ Py(.]s,0a)

What’s the Bayes optimal E[y|s, a]?

OLS /w D-optimal design implies that 6, is point-wise accurate:

max |07 (s, a) — T (0, ) (s, a)‘ < '5<Hd/\/ﬁ).
s,a - — JA
C- Goryer 4)710\‘“%4

&h o C§”Q



Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:
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Concluding the proof of LSVI

1. OLS /w D-optimal design implies that 6, is point-wise accurate:

max | 6] 4(s.a) — T (6, d(s.0)| <0 (Hd/ﬁ) |

s,a

2. This implies that our estimator Qh = 9;(/) is nearly Bellman-consistent, i.e.,

|| On = T 1l || =0 <Hd/\/ﬁ>
3. Nearly-Bellman consistency implies Q, is close to Q;: (this holds in general)

10, — OF |l < O(H?d/A\/N) O, g
. — _ ¢ J = vIL <Q“/(g)
= V¥ - Vi< 0(H3d/\/ﬁ)\ 612
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Offline Reinforcement Learning

Learner cannot interact with the environment, instead, learner is given static datasets:
9, =1{s,a,r,5'}, s,a~v,r=r(s,a),s ~P,(-]|s,a)

\

Offline Distribution (e.g., maybe is d™ for
some behavior policy )

Offline RL is promising for safety critical applications
(i.e., learning from logged data for health applications...)
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Recall Least-Square Value lteration

Datasets 9, ..., Dy_1, W/
gzh - {S,a,]",s/},]” = F(S’a)’S/N Ph( ’ |S,Cl)

Set Viy(s) = 0,Vs

For h =H-1to O: _ ,
LSVI directly can directly

2 . .
6, = argmin Y <0T¢(s, a) - (r+ Vh+1(s’))> operate in offline model!
0
Dy,

Set V,(s) := max 9; ¢(s,a),Vs

Return 7, (s) = arg max HhT ¢(s,a),Vh
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Least-Square Value lteration Guarantee

Recall 9, = {s,a,r,s'},s,a ~v,r =r(s,a),s' ~ P,(-|s,a)

Assumptions
1. Full offline data coverage: o, ([Es,awgb(s, a)p(s, a)T) > K
2. Linear Bellman completion

Then, with probability at least 1 — 8, LSVI return # with V* — V* < ¢, using at most
poly (H,1/¢,1/x,d, In(1/5))
A
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The proof for the offline set is almost identical

Key step:
Linear Bellman completion + Linear Regression w/ full data coverage
=> Near-Bellman consistency, i.e., |0, — T 1,041l is small

e.g., with N training examples where (s,a) ~ v,and r = (s, a), s’ ~ P,( - | s, a), we have

Ey s (0 P(s.0) = T (041 (s, a))2 < poly(H,d,1/N)

Then with Cauchy-Schwartz, we get

Vs, a, |(9h - 912(9/1+1))T¢(S’ a) ‘ < ||9/1 - 911(9h+1)||2||¢(5’ a)| -

(we will give a HW question on a related topic)
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Summary

1. Linear Bellman Completion definition (a strong assumption, though captures some models)
2. Least square value iteration: integrate Linear regression into DP, i.e., Q,, := Qthb ~ Q}f via
¢(s,a) — r(s,a) + max (9hT+1q§(s’, a’)
al

3. Leverage D-optimal design, we make sure that Qh is point-wise accurate, which ensures
near Bellman consistent, i.e., ” O, — T 10441 ” is small
(0 0]

4. Near-Bellman consistency implies small approximation error of Q, (holds in general)



Next week

Fitted Dynamic Programming — can we extend linear function approx to general function
approx (e.g., neural network, decision tree, etc)?

Exploration: Multi-armed Bandits and Stochastic Linear Bandits (Bandits = MDP w/ H = 1)



