Planning in MDPs

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Announcements

HW0 is due Feb 1st

Recap: Value iteration

$$Q^{t+1} = \mathcal{T}Q^t$$

Recap: Value iteration

$$Q^{t+1} = \mathcal{T}Q^t$$

$$\pi^t : \pi^t(s) = \arg\max_{a} Q^t(s, a)$$

Theorem:
$$V^{\pi^t}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^{\star}\|_{\infty} \forall s \in S$$

Recap: Value iteration

$$Q^{t+1} = \mathcal{T}Q^t$$

$$\pi^t : \pi^t(s) = \arg\max_{a} Q^t(s, a)$$

Theorem:
$$V^{\pi^t}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1-\gamma} \|Q^0 - Q^{\star}\|_{\infty} \forall s \in S$$

Q: when will π^t be the optimal policy?

Outline

1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation

1. Initialization: $\pi^0: S \mapsto A$

- 1. Initialization: $\pi^0: S \mapsto A$
- 2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$

- 1. Initialization: $\pi^0: S \mapsto A$
- 2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$
- 3. Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

- 1. Initialization: $\pi^0: S \mapsto A$
- 2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$
- 3. Policy Improvement $\pi^{t+1}(s) = \arg\max_{a} Q^{\pi^t}(s, a), \forall s$

Closed-form for PE (see 1.1.3 in Monograph)

1. Initialization: $\pi^0: S \mapsto A$

2. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$

3. Policy Improvement
$$\pi^{t+1}(s) = \arg\max_{a} Q^{\pi^t}(s, a), \forall s$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

$$Q^{\pi^{t+1}}(s,a) - Q^{\pi^{t}}(s,a) = \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s',\pi^{t+1}(s')) - Q^{\pi^{t}}(s',\pi^{t}(s')) \right]$$

$$= \Gamma(40) + \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s',\pi^{t+1}(s')) - Q^{\pi^{t}}(s',\pi^{t}(s')) \right]$$

$$= \Gamma(40) + \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s',\pi^{t+1}(s')) - Q^{\pi^{t}}(s',\pi^{t}(s')) \right]$$

$$= \Gamma(40) + \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s',\pi^{t+1}(s')) - Q^{\pi^{t}}(s',\pi^{t}(s')) \right]$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

$$Q^{\pi^{t+1}}(s,a) - Q^{\pi^{t}}(s,a) = \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$= \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) + Q^{\pi^{t}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$\geq \bigcirc$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

$$Q^{\pi^{t+1}}(s,a) - Q^{\pi^{t}}(s,a) = \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$= \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) + Q^{\pi^{t}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$\geq \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) \right]$$

$$\geq \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) \right]$$

$$\geq \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) \right]$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

$$Q^{\pi^{t+1}}(s,a) - Q^{\pi^{t}}(s,a) = \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$= \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) + Q^{\pi^{t}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$\geq \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) \right] \geq \dots, \geq -\gamma^{\infty}/(1-\gamma) = 0$$

$$\leftarrow \left[-\frac{1}{1-\gamma} \right] \xrightarrow{1-\gamma}$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max_{a} Q^{\pi^t}(s, a), \forall s$

Lemma: Monotonic improvement $Q^{\pi^{t+1}}(s, a) \ge Q^{\pi^t}(s, a), \forall s, a$

$$= \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) + Q^{\pi^{t}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t}(s')) \right]$$

$$\geq \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^{t}}(s', \pi^{t+1}(s')) \right] \geq \dots, \geq -\gamma^{\infty} / (1 - \gamma) = 0$$

$$V^{\pi^{t+1}}(s) \geq V^{\pi^{t}}(s), \forall s$$

$$V^{\pi^{t+1}}(s) \geq V^{\pi^{t}}(s), \forall s$$

$$V^{\pi^{t+1}}(s) \geq V^{\pi^{t}}(s), \forall s$$

 $Q^{\pi^{t+1}}(s,a) - Q^{\pi^t}(s,a) = \gamma \mathbb{E}_{s' \sim P(s,a)} \left[Q^{\pi^{t+1}}(s', \pi^{t+1}(s')) - Q^{\pi^t}(s', \pi^t(s')) \right]$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max Q^{\pi^t}(s, a), \forall s$

Theorem: Convergence $\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max Q^{\pi^t}(s, a), \forall s$

Theorem: Convergence $\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$

$$V^{\star}(s) - V^{\pi^{t+1}}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t+1}}(s') \right]$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg\max Q^{\pi^t}(s, a), \forall s$

Theorem: Convergence
$$\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$$

$$V^{\star}(s) - V^{\pi^{t+1}}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t+1}}(s') \right]$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t}}(s') \right]$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg \max Q^{\pi^t}(s, a), \forall s$

Theorem: Convergence $\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$

$$V^{\star}(s) - V^{\pi^{t+1}}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t+1}}(s') \right]$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \underline{\pi^{t+1}(s)}) + \gamma \mathbb{E}_{s' \sim P(s, \underline{\pi^{t+1}(s)})} V^{\pi^{t}}(s') \right]$$

$$= \max_{a} (r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \gamma V^{\star}(s')) - \left(\max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^{t}}(s')) \right)$$

Recall: Policy Improvement $\pi^{t+1}(s) = \arg\max Q^{\pi^t}(s, a), \forall s$

Theorem: Convergence $\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$

$$V^{\star}(s) - V^{\pi^{t+1}}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t+1}}(s') \right]$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t}}(s') \right]$$

$$= \max_{a} \left(r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \gamma V^{\star}(s') \right) - \max_{a} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^{t}}(s') \right)$$

$$\leq \max_{a} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') - \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^{t}}(s') \right) \right)$$

Recall: Policy Improvement
$$\pi^{t+1}(s) = \arg \max Q^{\pi^t}$$

Recall: Policy Improvement
$$\pi^{t+1}(s) = \arg\max_{a} Q^{\pi^t}(s,a), \forall s$$

Theorem: Convergence $\|V^{\pi^{t+1}} - V^{\star}\|_{\infty} \leq \gamma \|V^{\pi^t} - V^{\star}\|_{\infty}$

$$V^{\star}(s) - V^{\pi^{t+1}}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t+1}}(s') \right]$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] - \left[r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^{t}}(s') \right]$$

$$= \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \gamma V^{\star}(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^{t}}(s'))$$

$$\leq \max_{a} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') - \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^{t}}(s') \right) \right)$$

$$\leq \gamma \|V^{\star} - V^{\pi^{t}}\|_{\infty}$$

$$\leq \max_{a} \sum_{s' \sim P(s, a)} \left(\sqrt{(s') - \sqrt{(s')}} \right)$$

$$\leq \max_{a} \sum_{s' \sim P(s, a)} \left(\sqrt{(s') - \sqrt{(s')}} \right)$$

Q: what happens when π^{t+1} and π^t are exactly the same?

Show that π^t is an optimal policy π^* Will terminate?

Q: does this imply that the algorithm will terminate?

Outline

1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation

Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in time polynomial wrt $S, A, 1/(1-\gamma)$?

Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in time polynomial wrt $S, A, 1/(1-\gamma)$?

No for VI (i.e.,gap between second and best)

Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in time polynomial wrt $S, A, 1/(1-\gamma)$?

No for VI (i.e.,gap between second and best)

Yes for policy iteration:

$$(S^{3} + S^{2}A) \cdot \min \left\{ \frac{A^{S}}{S}, \frac{S^{2}A \log \frac{S^{2}}{1 - \gamma}}{1 - \gamma} \right\}$$
Por Stellth

Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in time polynomial wrt $S, A, 1/(1-\gamma)$?

No for VI (i.e.,gap between second and best)

Yes for policy iteration:

$$(S^3 + S^2 A) \cdot \min \left\{ \frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1 - \gamma}}{1 - \gamma} \right\}$$

What about poly(S, A) algs?

Outline

A (50) = Q (5,0) - V (5)

1. Policy Iteration

max A (sa)

2. Computation complexity of VI and PI

3. Linear Programming formulation

Recall the Bellman consistency:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s \sim P(\cdot | s, a)} \left[V(s) \right] \right\}, \forall s$$

$$= \forall V(s) = \forall v \in \mathcal{A}, \forall s \in \mathcal{A}$$

$$V(s) \geq \Gamma(s \circ a) + \mathcal{A} = \{ v \in \mathcal{A}, \forall s \in \mathcal{A}, \forall s$$

Recall the Bellman consistency:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}, \forall s$$

We can re-write this as a linear program

Recall the Bellman consistency:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}, \forall s$$

We can re-write this as a linear program

$$\min \sum_{s} \mu(s)V(s) \qquad \qquad \mathcal{M}(s) > 0$$
s.t. $V(s) \ge r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V(s') \quad \forall s, a \in S \times A$

$$V(s) > V(s\alpha) + \partial E_{sy(s\alpha)} V(s')$$
, 45

Recall the Bellman consistency:

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V(s) \right] \right\}, \forall s$$

We can re-write this as a linear program

$$\min \sum_{s} \mu(s)V(s)$$
 s.t. $V(s) \ge r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}V(s') \quad \forall s,a \in S \times A$ (Proof in HW1)

LP Runtime

[Ye, '05]: there is an interior point algorithm (CIPA) which is ("nearly") strongly polynomial, i.e., no poly dependence on $1/(1-\gamma)$

$$S^4A^4 \ln \left(\frac{S}{1-\gamma}\right)$$

What about the Dual LP?

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

What about the Dual LP?

- Let us now consider the dual LP.
 - It is also very helpful conceptually.
 - In some cases, it also provides a reasonable algorithmic approach

Let us start by understanding the dual variables

State action occupancy measure

 $\mathbb{P}_h(s, a; s_0, \pi)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$, starting at s_0

State action occupancy measure

 $\mathbb{P}_h(s, a; s_0, \pi)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$, starting at s_0

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h(s,a;s_0,\pi) \qquad \sum_{s=0}^{\infty} d_{s_0}^{\pi}(s,s) = 1$$

State action occupancy measure

 $\mathbb{P}_h(s, a; s_0, \pi)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$, starting at s_0

$$d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h(s, a; s_0, \pi)$$

$$V^{\pi}(s_0) = \frac{1}{1 - \gamma} \sum_{s, a} d_{s_0}^{\pi}(s, a) r(s, a)$$

$$\sum_{s, a} \int_{s_0} \int_$$

A Bellman equation like property for $d_{s_0}^{\pi}(s,a)$

$$\sum_{a} d^{\pi}_{\mu}(s, a) = (1 - \gamma)\mu(s) + \gamma \sum_{\bar{s}, \bar{a}} P(s \,|\, \bar{s}, \bar{a}) d^{\pi}_{\mu}(\bar{s}, \bar{a})$$

$$A_{\mu}(sa) = (-8) \left[\frac{\mu(s)\pi(a|s)}{\mu(s)\pi(a|s)} + 8 \left[\frac{\mu(sa;\mu,\pi)}{\mu(s)\pi(a|s)} + 8 \left[\frac{\mu(sa;\mu,\pi)}{\mu(s)} + 8 \left[\frac$$

Let us define the state-action polytope K as follows:

$$K_{\mu} := \left\{ d \mid d \geq 0 \text{ and } d \in \mathbb{R}^{N} \right\} \times A$$

$$\sum_{a} d(s, a) = (1 - \gamma)\mu(s) + \gamma \sum_{s', a'} P(s \mid s', a') d(s', a') \right\}$$

Let us define the state-action polytope K as follows:

$$K_{\mu}:=\left\{d\,|\,d\geq0\text{ and}\right.$$

$$\sum_ad(s,a)=(1-\gamma)\mu(s)+\gamma\sum_{s',a'}P(s\,|\,s',a')d(s',a')\right\}$$

This set precisely characterizes all state-action visitation distributions:

Let us define the state-action polytope K as follows:

$$K_{\mu}:=\left\{d\,|\,d\geq0\text{ and}\right.$$

$$\sum_{a}d(s,a)=(1-\gamma)\mu(s)+\gamma\sum_{s',a'}P(s\,|\,s',a')d(s',a')\right\}$$

• This set precisely characterizes all state-action visitation distributions: Lemma: $d \in K_{\mu}$ if and only if there exists a (possibly randomized) policy π s.t. $d_{\mu}^{\pi} = d$

Let us define the state-action polytope K as follows:

$$K_{\mu}:=\left\{d\,|\,d\geq0\text{ and}\right.$$

$$\sum_ad(s,a)=(1-\gamma)\mu(s)+\gamma\sum_{s',a'}P(s\,|\,s',a')d(s',a')\right\}$$

• This set precisely characterizes all state-action visitation distributions: Lemma: $d \in K_\mu$ if and only if there exists a (possibly randomized) policy π s.t. $d_\mu^\pi = d$

(Proof in HW1)

The Dual LP

One can verify that this is the dual of the primal LP.

Summary

Notations: Value / Q functions, state-action occupant measures, Bellman equation / optimality

Planning algorithms: VI, PI, LP (primal and dual)