Planning in MDPs

CS 6789: Foundations of Reinforcement Learning



Announcements

HWO is due Feb 1st
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Analysis of Policy Iteration

Q: what happens when 7't and 7' are exactly the same?
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What about poly(S, A) algs?
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LP Runtime

[Ye, ’05]: there is an interior point algorithm (CIPA)
which is (“nearly”) strongly polynomial, i.e., no poly dependence on 1/(1 — )
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» Let us start by understanding the dual variables
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State action occupancy measure

P, (s, a; sy, 7r): probability of  visiting (s, @) at time step 1 € N, starting at s
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A Bellman equation like property for d;f) (s,a)

D dx(s,a) = (1 = pu(s) +7 ) P(s|5, )X, a)
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The Dual LP

max Z d(s,a)r(s,a)
s, y\/> d

s.t. dEK

e One can verify that this is the dual of the primal LP.



Summary

Notations: Value / Q functions, state-action occupant measures,
Bellman equation / optimality

Planning algorithms: VI, PI, LP (primal and dual)



