The Sample Complexity (with a Generative Model)

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Announcements

- Reading assignments (see website)
 - sign up for a chapter (signup sheep will be up today)
 - start the assignment only after the we approve the chapter.
 - requirements:
 - one page report that summarizes the chapter
 - check all mathematical steps in the chapter
- Participation/effort Bonus
 - we will give extra credit for participation (class, ED, etc)
 - extra credit for reading assignments, finding bugs, project...
- The book will be updated often.
 - Feedback/questions/finding typos appreciated!

Today:

Today:

- Recap: computational complexity
 - Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in polynomial time?

Today:

- Recap: computational complexity
 - Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute Q^* (or find π^*) in polynomial time?
- Today: statistical complexity
 - Question: Given only sampling access to an unknown MDP
 \$\mathcal{M}\$ = (S, A, P, r, γ) how many observed transitions do we need to estimate Q^{*} (or find π^{*})?
 - Two sampling models: episodic setting and generative models.

Recap

Summary Table

	Value Iteration	Policy Iteration	LP-based Algorithms
Poly.	$S^2 A \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$(S^3 + S^2 A) \frac{L(P,r,\gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$S^3AL(P,r,\gamma)$
Strongly Poly.	Х	$\left(S^3 + S^2 A\right) \cdot \min\left\{\frac{A^S}{S}, \frac{S^2 A \log \frac{S^2}{1-\gamma}}{1-\gamma}\right\}$	$S^4 A^4 \log \frac{S}{1-\gamma}$

- VI: poly time for fixed γ , not strongly poly
- PI: poly and strongly-poly time for fixed γ
- LP approach: poly and strongly-poly time (LP approach is only logarithmic in 1/(1 - γ))

Today

Two natural models for learning in an unknown MDP

- Episodic setting: in every episode, $s_0 \sim \mu$. d, $s \neq d$, $s \neq d$
 - the learner acts for some finite number of steps and observes the trajectory.
 - The state is then resets to $s_0 \sim \mu$.

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.
 - the learner acts for some finite number of steps and observes the trajectory.
 - The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (*s*, *a*)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)

Two natural models for learning in an unknown MDP

• Episodic setting:

- in every episode, $s_0 \sim \mu$.
- the learner acts for some finite number of steps and observes the trajectory.
- The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (*s*, *a*)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)
- Sample complexity of RL:

how many transitions do we need observe in order to find a near optimal policy?

- Episodic setting: we must actively explore to gather information
- Generative model setting: lets us disentangle the issue of fundamental statistical limits from exploration.

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using *any* algorithm)
 - Since *P* has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient for learning.

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using *any* algorithm)
 - Since *P* has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient for learning.
- Questions:
 - Is a naive model-based approach optimal? i.e. estimate *P* accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.
 - Is sublinear learning possible?

(i.e. learn with fewer than $\Omega(S^2A)$ samples)

How many samples do we need to learn?

- What is the minmax optimal sample complexity, with generative modeling access? (using *any* algorithm)
 - Since *P* has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient for learning.
- Questions:
 - Is a naive model-based approach optimal? i.e. estimate *P* accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.
 - Is sublinear learning possible?

(i.e. learn with fewer than $\Omega(S^2A)$ samples)

• If sublinear learning is possible, then we do not need an accurate model of the world in order to act near-optimally?

The most naive approach: model based

• Today: let us assume access to a generative model

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

we also know the rewards after one call.
 (for simplicity, we often assume r(s, a) is determinstic)

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

- we also know the rewards after one call.
 (for simplicity, we often assume *r*(*s*, *a*) is determinstic)
- The total number of calls to our generative model is SAN. Call the empirical MDP M

Attempt 1: the naive model based approach

Model accuracy

Proposition: c is an absolute constant. $\epsilon > 0$. For $N \ge \frac{c\gamma}{(1-\gamma)^4} \frac{S \log(cSA/\delta)}{\epsilon^2}$

and with probability greater than $1 - \delta$,

Model accuracy $\frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{$

Proposition: c is an absolute constant. $\epsilon > 0$. For $N \ge \frac{c\gamma}{(1-\gamma)^4} \frac{S \log(cSA/\delta)}{\epsilon^2}$

and with probability greater than $1 - \delta$,

honizon ~ 1-x Model accuracy: The transition model is ϵ has error bounded as: ٠ $\max \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \le (1 - \gamma)^2 \epsilon/2.$ s,a

Model accuracy

Proposition: c is an absolute constant. $\epsilon > 0$. For $N \ge \frac{c\gamma}{(1-\gamma)^4} \frac{S \log(cSA/\delta)}{\epsilon^2}$

Q The is vake of A in M

and with probability greater than $1 - \delta$.

- Model accuracy: The transition model is ϵ has error bounded as: $\max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \le (1 - \gamma)^2 \epsilon/2.$ MOP G
- Uniform value accuracy: For all policies π , $\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} \le \epsilon/2$

Model accuracy

Proposition: c is an absolute constant. $\epsilon > 0$. For $N \ge \frac{c\gamma}{(1-\gamma)^4} \frac{S \log(cSA/\delta)}{\epsilon^2}$

and with probability greater than $1 - \delta$,

- Model accuracy: The transition model is ϵ has error bounded as: $\max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \le (1 - \gamma)^2 \epsilon/2.$
- Uniform value accuracy: For all policies π , $\|Q^{\pi} - \widehat{Q}^{\pi}\|_{\infty} \le \epsilon/2$
- Near optimal planning: Suppose that $\widehat{\pi}$ is the optimal policy in \widehat{M} .

 $Size SA \times SA$ Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

$$P^{\pi}_{(s,a),(s',a')} := P(s' | s, a) \quad \text{if } a' = \pi(s')$$
$$0 \quad \text{if } a' \neq \pi(s')$$

Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

 $P_{(s,a),(s',a')}^{\pi} := P(s'|s,a) \quad \text{if } a' = \pi(s') \quad \overrightarrow{\gamma}_{\{5,0\}} \notin 5, 20$ $0 \quad \text{if } a' \neq \pi(s') \quad \text{sh } \searrow 5$ With this notation, $Q^{\pi} = r + \gamma P V^{\pi} \qquad \bigcirc \stackrel{\overleftarrow{\gamma}}{\in} \bigwedge^{S}$ $Q^{\pi} = r + \gamma P^{\pi} Q^{\pi} \qquad \swarrow \stackrel{\overleftarrow{\gamma}}{\in} \bigwedge^{S}$

٠

Matrix Expressions

• Define P^{π} to be the transition matrix on state-action pairs (for deterministic π):

$$P^{\pi}_{(s,a),(s',a')} := P(s' | s, a) \qquad \text{if } a' = \pi(s')$$

$$0 \qquad \text{if } a' \neq \pi(s')$$

• With this notation, $Q^{\pi} = r + \gamma P V^{\pi}$ $Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}$ \downarrow_{j}

if
$$a' \neq \pi(s')$$

 $v \in \mathbb{R}^{S,A}$
 $2^{[c]}(s_{a}) = v(s_{a})$
 $+ v \in [v^{\pi}(s')]$
 $s \sim P_{s_{n}}(v^{\pi}(s'))$

• Also, $Q^{\pi} = (I - \gamma P^{\pi})^{-1}r$

(where one can show the inverse exists)

"Simulation" Lemma

"Simulation Lemma": For all π , $Q^{\pi} - \widehat{Q}^{\pi} = \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$

"Simulation" Lemma

Proof: Using our matrix equality for Q^{π} , we have: $Q^{\pi} - \widehat{Q}^{\pi} = Q^{\pi} - (I - \gamma \widehat{P}^{\pi})^{-1}r$ $= (I - \gamma \widehat{P}^{\pi})^{-1}((I - \gamma \widehat{P}^{\pi}) - (I - \gamma P^{\pi}))Q^{\pi}$ $= \gamma (I - \gamma \widehat{P}^{\pi})^{-1}(P^{\pi} - \widehat{P}^{\pi})Q^{\pi}$ $= \gamma (I - \gamma \widehat{P}^{\pi})^{-1}(P - \widehat{P})V^{\pi}$

Proof of Claim 1

Proof of Claim 1

- Concentration of a distribution in the ℓ_1 norm:
 - For a fixed s, a. With pr greater than 1δ ,

 $\|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_{1} \le c \sqrt{\frac{S \log(1/\delta)}{N}}$ with *N* samples used to estimate $\widehat{P}(\cdot | s, a)$.

Proof of Claim 1

- Concentration of a distribution in the ℓ_1 norm:
 - For a fixed *s*, *a*. With pr greater than 1δ , $\|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \le c\sqrt{\frac{S\log(1/\delta)}{N}}$

with *N* samples used to estimate $\widehat{P}(\cdot | s, a)$.

• The first claim now follows by the union bound. $\partial v e_{a} \cup S A \quad d_{i} \in A$ $P(\cdot \mid S \in A)$

Proof of Claim 2 (&3)

Proof of Claim 2 (&3)

(why is the first inequality true?)

Proof of Claim 2 (&3)

For the second claim, $\|O^{\pi} - \widehat{O}^{\pi}\|_{\infty} = \|\gamma(I - \gamma \widehat{P}^{\pi})^{-1}(P - \widehat{P})V^{\pi}\|_{\infty}$ $\leq \frac{\gamma}{1-\gamma} \| (P - \widehat{P}) V^{\pi} \|_{\infty}$ $\leq \frac{\gamma}{1-\gamma} \left(\max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \right) \|V^{\pi}\|_{\infty}$ $\leq \frac{\gamma}{(1-\gamma)^2} \max_{s,a} \|P(\cdot \mid s, a) - \widehat{P}(\cdot \mid s, a)\|_1$

(why is the first inequality true?)

The proof for the Claim 3 immediately follows from the second claim.

Attempt 2: obtaining sublinear sample complexity idea: use concentration only on V^{\star}

 $\mathcal{L}(S^2A)$

• Remember: # samples from generative model = SAN

- Remember: # samples from generative model = SAN
- • P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' = \pi(s')$ 0 if $a' \neq \pi(s')$

- Remember: # samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' = \pi(s')$

0 if
$$a' \neq \pi(s')$$

•With this notation,

 $Q^{\pi} = r + PV^{\pi}, \quad Q^{\pi} = r + P^{\pi}Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1}r$

- Remember: # samples from generative model = SAN
- • P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s'|s,a) \quad \text{if } a' = \pi(s')$ $0 \quad \text{if } a' \neq \pi(s')$

) if
$$a' \neq \pi(s')$$

•With this notation,

$$Q^{\pi} = r + PV^{\pi}, \quad Q^{\pi} = r + P^{\pi}Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1}r$$

 $\frac{1}{1-\gamma}(I-\gamma P^{\pi})^{-1}$ is a matrix whose rows are probability distributions (why?)

- Remember: # samples from generative model = SAN
- P^{π} is the transition matrix on state-action pairs for a deterministic policy π : $P^{\pi}_{(s,a),(s',a')} := P(s' | s, a)$ if $a' = \pi(s')$

•With this notation,

$$Q^{\pi} = r + PV^{\pi}, \quad Q^{\pi} = r + P^{\pi}Q^{\pi}, \quad Q^{\pi} = (I - \gamma P^{\pi})^{-1}r$$

0 if $a' \neq \pi(s')$

 $\frac{1}{1-\gamma}(I-\gamma P^{\pi})^{-1}$ is a matrix whose rows are probability distributions (why?)

• \widehat{Q}^{\star} : optimal value in estimated model \widehat{M} . $\widehat{\pi}^{\star}$: optimal policy in \widehat{M} . $Q^{\widehat{\pi}^{\star}}$: (true) value of estimated policy.

Attempt 2: Sublinear Sample Complexity

Attempt 2: Sublinear Sample Complexity

Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) With probability greater than $1 - \delta$,

$$\begin{split} \|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} &\leq \frac{\gamma}{(1 - \gamma)^{2}} \sqrt{\frac{2 \log(2SA/\delta)}{N}} \\ \|Q^{\star} - \widehat{Q}^{\pi^{\star}}\|_{\infty} &\leq \frac{\gamma}{(1 - \gamma)^{2}} \sqrt{\frac{2 \log(2SA/\delta)}{N}} \\ \end{split}$$
What about the value of the policy?
$$\|Q^{\star} - Q^{\widehat{\pi}^{\star}}\|_{\infty} &\leq \frac{\gamma}{(1 - \gamma)^{3}} \sqrt{\frac{2 \log(2SA/\delta)}{N}} \end{split}$$

(0,0,1,1,0)

Component-wise Bounds Lemma

Lemma: we have that

$$Q^{\star} - \widehat{Q}^{\star} \leq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}$$
$$Q^{\star} - \widehat{Q}^{\star} \geq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}$$

Component-wise Bounds Lemma

X

Lemma: we have that

$$Q^{\star} - \widehat{Q}^{\star} \leq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star}$$
$$Q^{\star} - \widehat{Q}^{\star} \geq \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \wedge \widehat{\gamma}_{\downarrow}$$

Proof:

For the first claim, the optimality of π^{\star} in *M* implies:

 $Q^{\star} - \widehat{Q}^{\star} = Q^{\pi^{\star}} - \widehat{Q}^{\hat{\pi}^{\star}} \leq Q^{\pi^{\star}} - \widehat{Q}^{\pi^{\star}} = \gamma (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star},$ using the simulation lemma in the final step.

See notes for the proof of second claim.

• Proof of the first claim:

• Proof of the first claim:

• By the previous lemma:
$$\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|(P - \widehat{P})V^{\star}\|_{\infty}$$

• Proof of the first claim:

• By the previous lemma:
$$\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|(P - \widehat{P})V^{\star}\|_{\infty}$$

• Recall $||V^{\star}||_{\infty} \le 1/(1-\gamma)$.

• Proof of the first claim:

• By the previous lemma:
$$\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|(P - \widehat{P})V^{\star}\|_{\infty}$$

- Recall $||V^{\star}||_{\infty} \le 1/(1-\gamma)$.
- By Hoeffding's inequality and the union bound, $\|(P - \widehat{P})V^{\star}\|_{\infty} = \max_{s,a} \left| E_{s' \sim P(\cdot|s,a)}[V^{\star}(s')] - E_{s' \sim \widehat{P}(\cdot|s,a)}[V^{\star}(s')] \right|$ $\leq \frac{1}{1 - \gamma} \sqrt{\frac{2\log(2SA/\delta)}{N}}$

which holds with probability greater than $1 - \delta$.

• Proof of the first claim:

• By the previous lemma:
$$\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|(P - \widehat{P})V^{\star}\|_{\infty}$$

- Recall $||V^{\star}||_{\infty} \le 1/(1-\gamma)$.
- By Hoeffding's inequality and the union bound, $\|(P - \widehat{P})V^{\star}\|_{\infty} = \max_{s,a} \left| E_{s' \sim P(\cdot|s,a)}[V^{\star}(s')] - E_{s' \sim \widehat{P}(\cdot|s,a)}[V^{\star}(s')] \right|$

$$\leq \frac{1}{1-\gamma} \sqrt{\frac{2\log(2SA/\delta)}{N}}$$

which holds with probability greater than $1 - \delta$.

• Proof of second claim is similar (see the book)

Attempt 3: minimax optimal sample complexity idea: better variance control

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N}},$

where c is an absolute constant.

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N}},$

where c is an absolute constant.

Corollary: for
$$\epsilon < 1$$
, provided $N \ge \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then $\|Q^* - \widehat{Q}^*\|_{\infty} \le \epsilon$ (with prob. greater than $1 - \delta$)

("near") Minimax Optimal Sample Complexity

Theorem: (Azar et al. '13) With probability greater than $1 - \delta$,

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \gamma \sqrt{\frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N} + \frac{c\gamma}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{N}},$

where c is an absolute constant.

Corollary: for
$$\epsilon < 1$$
, provided $N \ge \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then
 $\|Q^* - \widehat{Q}^*\|_{\infty} \le \epsilon$ (with prob. greater than $1 - \delta$)

Corollary: What about the policy? Naively, need $N/(1 - \gamma)^2$ more samples. We pay another factor of $1/(1 - \gamma)^2$ samples. Is this real?

Minimax Optimal Sample Complexity (on the policy)

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $\epsilon < \sqrt{1/(1-\gamma)}$, provided $N \ge \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then with prob. greater than $1 - \delta$),

 $\|Q^{\star} - Q^{\hat{\pi}\star}\|_{\infty} \le \epsilon$

Minimax Optimal Sample Complexity (on the policy)

Theorem: (Agarwal et al. '20) For $\epsilon < \sqrt{1/(1-\gamma)}$, provided $N \ge \frac{c}{(1-\gamma)^3} \frac{\log(cSA/\delta)}{\epsilon^2}$ then with prob. greater than $1 - \delta$), $\|Q^{\star} - Q^{\hat{\pi}\star}\|_{\infty} \le \epsilon$

Lower Bound: We can't do better.

Proof sketch: part 1

• From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$
- From Bernstein's ineq, with pr. greater than 1δ , we have (component-wise): $|(P - \widehat{P})V^{\star}| \leq \sqrt{\frac{2\log(2SA/\delta)}{N}}\sqrt{\operatorname{Var}_{P}(V^{\star})} + \frac{1}{1 - \gamma}\frac{2\log(2SA/\delta)}{3N}\overrightarrow{1}$

Proof sketch: part 1

- From "Component-wise Bounds" lemma, we want to bound: $Q^{\star} - \widehat{Q}^{\star} \leq \gamma \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} (P - \widehat{P}) V^{\star} \|_{\infty} \leq ??$
- From Bernstein's ineq, with pr. greater than 1δ , we have (component-wise): $|(P - \widehat{P})V^{\star}| \leq \sqrt{\frac{2\log(2SA/\delta)}{N}}\sqrt{\operatorname{Var}_{P}(V^{\star})} + \frac{1}{1 - \gamma}\frac{2\log(2SA/\delta)}{3N}\overrightarrow{1}$
- Therefore

$$Q^{\star} - \widehat{Q}^{\star} \leq \gamma \sqrt{\frac{2\log(2SA/\delta)}{N}} \| (I - \gamma \widehat{P}^{\pi^{\star}})^{-1} \sqrt{\operatorname{Var}_{P}(V^{\star})} \|_{\infty} + \| \text{ower order term} \|$$

Bellman Equation for the Variance

• Variance: $\operatorname{Var}_P(V)(s, a) := \operatorname{Var}_{P(\cdot|s,a)}(V)$ Component wise variance: $\operatorname{Var}_P(V) := P(V)^2 - (PV)^2$

Bellman Equation for the Variance

• Variance: $\operatorname{Var}_P(V)(s, a) := \operatorname{Var}_{P(\cdot|s,a)}(V)$ Component wise variance: $\operatorname{Var}_P(V) := P(V)^2 - (PV)^2$

• Let's keep around the MDP M subscripts. Define Σ_M^{π} as the (total) variance of the discounted reward: $\Sigma_M^{\pi}(s, a) := E \left[\left(\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) - Q_M^{\pi}(s, a) \right)^2 \middle| s_0 = s, a_0 = a \right]$

Bellman Equation for the Variance

• Variance: $\operatorname{Var}_P(V)(s, a) := \operatorname{Var}_{P(\cdot|s,a)}(V)$ Component wise variance: $\operatorname{Var}_P(V) := P(V)^2 - (PV)^2$

- Let's keep around the MDP M subscripts. Define Σ_M^{π} as the (total) variance of the discounted reward: $\Sigma_M^{\pi}(s, a) := E \left[\left(\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) - Q_M^{\pi}(s, a) \right)^2 \middle| s_0 = s, a_0 = a \right]$
- Bellman equation for the total variance: $\Sigma_{M}^{\pi} = \gamma^{2} \operatorname{Var}_{P}(V_{M}^{\pi}) + \gamma^{2} P^{\pi} \Sigma_{M}^{\pi}$

Key Lemma

Lemma: For any policy π and MDP M,

$$\left\| (I - \gamma P^{\pi})^{-1} \sqrt{\operatorname{Var}_{P}(V_{M}^{\pi})} \right\|_{\infty} \leq \sqrt{\frac{2}{(1 - \gamma)^{3}}}$$

Proof idea: convexity + Bellman equations for the variance.

Putting it all together Proof sketch: we have two MDPs M and \widehat{M} . need to bound:

Proof sketch: we have two MDPs
$$M$$
 and \widehat{M} . need to bound:

$$\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}\|_{\infty}$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \text{"lower order"}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^3}} + \text{"lower order"}$$

Proof sketch: we have two MDPs
$$M$$
 and \widehat{M} . need to bound:

$$\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}\|_{\infty}$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \text{"lower order"}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^3}} + \text{"lower order"}$$

First equality above: just notation

Proof sketch: we have two MDPs
$$M$$
 and \widehat{M} . need to bound:

$$\|(I - \gamma \widehat{P}^{\pi^{\star}})^{-1} \sqrt{\operatorname{Var}_{P}(V^{\star})}\|_{\infty} = \|(I - \gamma P_{\widehat{M}}^{\pi^{\star}})^{-1} \sqrt{\operatorname{Var}_{P}(V_{M}^{\pi^{\star}})}\|_{\infty}$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^{\star}})^{-1} \sqrt{\operatorname{Var}_{P}(V_{\widehat{M}}^{\pi^{\star}})} + \text{"lower order"}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^{3}}} + \text{"lower order"}$$

 ∞

First equality above: just notation

Second step: concentration \rightarrow we need to quantify:

$$\sqrt{\operatorname{Var}_P(V_M^{\pi^*})} \approx \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})}$$

Proof sketch: we have two MDPs
$$M$$
 and \widehat{M} . need to bound:

$$\|(I - \gamma \widehat{P}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V^*)}\|_{\infty} = \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_M^{\pi^*})}\|_{\infty}$$

$$\leq \|(I - \gamma P_{\widehat{M}}^{\pi^*})^{-1} \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})} + \text{"lower order"}$$

$$\leq \sqrt{\frac{2}{(1 - \gamma)^3}} + \text{"lower order"}$$

First equality above: just notation

Second step: concentration \rightarrow we need to quantify:

$$\sqrt{\operatorname{Var}_P(V_M^{\pi^*})} \approx \sqrt{\operatorname{Var}_P(V_{\widehat{M}}^{\pi^*})}$$

Last step: previous slide