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CS 6789: Foundations of Reinforcement Learning
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RL in Real World:

this code is not working like i expect — how do i fix it?

resultWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

Training Language models
using RL, e.g., chatGPT

<-resultwWorkerErr

multierror err, <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what’s happening when it's executed. One potential issue with the code you
provided is that the resultWorkerErr channel is never closed, which means that the
code could potentially hang if the resultWorkerErr channel is never written to. This




This course focuses on RL Theory

When and Why RL works!
(Convergence, sample / computation complexity, etc)



Four main themes we will cover in this course:

Fundamentals (MDPs and Optimal planning)
Exploration (sample complexity)

Policy Gradient (global convergence)

> 0o~

Learning Partially observable models



Logistics

Four (HWO-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HWO 10%, HW1-3 15% each)

HWO is out today and due in one week



Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics
ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound



Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics
ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Check out HWO asap!



Course projects (40%)

e Team work: size 3
« Midterm report (5%), Final presentation (15%), and Final report (20%)

» Basics: survey of a set of similar RL theory papers. Reproduce

analysis and provide a coherent story

* Advanced: identify extensions of existing RL papers, formulate

theory questions, and provide proofs



Course Notes:
Reinforcement Learning Theory & Algorithms

Book website: hitps://rltheorybook.github.io/

Many lectures will correspond to chapters in Version 2.
Reading assignment (5%) is from this book and additional notes

Please let us know if you find typos/errors in the book!
We appreciate it!


https://rltheorybook.github.io/

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Supervised Learning

Given i.i.d examples at training:

Passive:
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Data Distribution
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Markov Decision Process

Learning Environment
Agent a ~ JZ'(S)
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Markov Decision Process

Learning
Agent

Environment

a~ n(s)
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Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)
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Multiple Steps

Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)

e

Policy: determine action based on state

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

So ~ Ho» Ay ~ 7(Sy), Fy, S1 ~ P(sg, ag), ay ~ n(sy), 1y...
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Infinite horizon Discounted MDP

M= {S,A,P,r, v}
P:SXA— A(S), r:SxA—-[0,1], ye]0,1)
-
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Policy z: S —» A(A)
S e

Value function V*(s) = E [Z vir(s,, ay) ‘ So = 8, @y, ~ 7(sy), Spq ~ PC- | s, ah)]
h=0

Q function Q”(s,a) = E [Z y"r(s), ah)‘ ay, ~ (), Spp1 ~ PC- | g ah)]
h=0
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Bellman Equation:
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h=0
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Bellman Equation:

Vﬂ(S) = [E [Z }/hr(Sh, ah) ‘ SO =S, ah ~ ﬂ(Sh), Sh+1 ~ P( . |Sh’ ah)]
h=0

Vi(s) = EaNﬂ(S) [r(s, a) + }/lES'NP(-|s,a)Vﬂ(S/)]

Q"(s,a) =E [Z }/hr(sh, a) | (8o, ag) = (s, a), ay, ~ 7(sy), 41 ~ P(- |5y, ah)]

h=0

Q"(s,a) = r(s,a) + YEg p 5.0V (5
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Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy
*
* S A st, VP (s) > Vi(s), Vs, n

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote V* := V7, Q* = Q”*

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S,)]
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality
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Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) + y[ES,NP(,|S,a)V*(S’)]
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) +yEg p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(S) = I”(S, 71'*(5')) + }/[ES’NP(S,R'*(S))V*(S/)
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Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) +yEg p S,a)V*(S’)]
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Theorem 1: Bellman Optimality

V*(S) = max [I’(S, a) + y[ES/NP(-ls,a)V*(S,)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, 7%(5)) + YEgps.ovisy V()
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S/)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, 7%(5)) + YEgps.ovisy V()

< max [r(s, a) + ?[Estp(s,a)V*(S')] = 1(s, T(8)) + YEypis. 205V ()
a

= }"(S, ;Z'\(S)) + yl]ES/NP(S,;Z\(S)) [F(S/, ﬂ*(S/)) + y[Es”NP(S/,ﬂ*(S/))V*(S”)]

< r(s, 7)) + Eypis 500 [r(s’, () + 1Eyps ﬁ(s,))v*(s")]
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