
Generalization in Large scale 
MDPs 

 
Wen Sun 

CS 6789: Foundations of Reinforcement Learning



Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)( ≈ Q⋆)



Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)( ≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))



Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)( ≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)



Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)( ≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)

BEV(s) = Vf(s) − r(s, πf(s)) − 𝔼s′￼∼Ph(s,πf(s))Vf(s′￼)



Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)( ≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

If , then BE(s, a) ≠ 0 f ≠ Q⋆

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)
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Notations

Probability of  visiting  at time step : π (s, a) h dπ
h (s, a)
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We have seen tabular MDP and linear MDP, is there a more general 
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efficient learning is possible?

In other words, what structural conditions permit RL generalization, provably?
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h=0 , H, s0, r, P}

State space  is extremely large: Sh
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Not acceptable: poly ( |S |)
Need to generalize via (nonlinear) function approximation
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ℱ ⊂ S × A ↦ [0,H]

Realizability assumption: 

Q⋆ ∈ ℱ

Define policy class: Π = {π : π(s) = arg max
a∈A

f(s, a), ∀s ∈ S | f ∈ ℱ}

Define value function class: 𝒱 = {Vf : Vf(s) = max
a

f(s, a) | f ∈ ℱ}
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Learning Goal: 

We will do PAC in this lecture rather than regret. 

Given approximation error  and failure prob ,   
can we learn  near optimal policy (i.e., ) in # of samples scaling 

poly with all relevant parameters (here, we need poly in ) 

ϵ δ
ϵ V ̂π ≥ V⋆ − ϵ

ln( |ℱ | )
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The Q / V-Bellman rank

πf

f

ℰf;f,hℰg;f,h∀h : ℰh ∈ ℝ|ℱ|×|ℱ|

Rank of this Matrix is defined as Bellman Rank

g



The Q / V-Bellman rank

In other words, there are two mappings  ( d = Bellman-rank)Wh : ℱ ↦ ℝd, Xh : ℱ ↦ ℝd

∀f, g ∈ ℱ : ℰ(g; f, h) = ⟨Wh(g), Xh( f )⟩

Note, we just assume the existence of , but they are unknownW, X
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h−1(s̃, ã)[Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]] d(sh)

= ⟨∫sh

μ⋆
h−1(sh)[Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]] d(sh), 𝔼s̃,ã∼dπf
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Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank…
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Given :  , s, a z ∼ ϕ⋆(s, a) s′￼ ∼ ν⋆(z)

V-Bellman rank = Number of latent states
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4. Many models (more in the book chapter) indeed have low-Q or V Bellman rank



Next week:

A general algorithm that can learn an  near optimal policy w/ # of samples ϵ

poly(H,1/ϵ, ln( |ℋ | ), b-rank)


