
Generalization in Large scale
MDPs

 
Wen Sun 

CS 6789: Foundations of Reinforcement Learning

Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)(≈ Q⋆)

Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)(≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)(≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)

Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)(≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)

BEV(s) = Vf(s) − r(s, πf(s)) − 𝔼s′￼∼Ph(s,πf(s))Vf(s′￼)

Recap on Bellman Error and Bellman Operator

Two types of Bellman error of f(s, a)(≈ Q⋆)

BEQ(s, a) = f(s, a) − (r(s, a) + 𝔼s′￼∼P(⋅|s,a) max
a′￼

f(s′￼, a′￼))

If , then BE(s, a) ≠ 0 f ≠ Q⋆

Vf(s) = arg max
a

f(s, a), πf(s) = arg max
a

f(s, a)

BEV(s) = Vf(s) − r(s, πf(s)) − 𝔼s′￼∼Ph(s,πf(s))Vf(s′￼)

Notations

Probability of visiting at time step : π (s, a) h dπ
h (s, a)

Question for Today

We have seen tabular MDP and linear MDP, is there a more general
framework that captures these two, and potentially many more, where

efficient learning is possible?

Question for Today

We have seen tabular MDP and linear MDP, is there a more general
framework that captures these two, and potentially many more, where

efficient learning is possible?

In other words, what structural conditions permit RL generalization, provably?

Outline for Today

1. Bellman rank Definitions

2. Examples that are captured by the Bellman rank framework

Setting

Finite horizon episodic MDP {{Sh}H
h=0, {Ah}H−1

h=0 , H, s0, r, P}

State space is extremely large: Sh

s =

Setting

Finite horizon episodic MDP {{Sh}H
h=0, {Ah}H−1

h=0 , H, s0, r, P}

State space is extremely large: Sh

s =

Not acceptable: poly (|S |)
Need to generalize via (nonlinear) function approximation

Let’s set up function class in RL setting

We will consider Q function class

ℱ ⊂ S × A ↦ [0,H]

Let’s set up function class in RL setting

We will consider Q function class

ℱ ⊂ S × A ↦ [0,H]

Realizability assumption:

Q⋆ ∈ ℱ

Let’s set up function class in RL setting

We will consider Q function class

ℱ ⊂ S × A ↦ [0,H]

Realizability assumption:

Q⋆ ∈ ℱ

Define policy class: Π = {π : π(s) = arg max
a∈A

f(s, a), ∀s ∈ S | f ∈ ℱ}

Let’s set up function class in RL setting

We will consider Q function class

ℱ ⊂ S × A ↦ [0,H]

Realizability assumption:

Q⋆ ∈ ℱ

Define policy class: Π = {π : π(s) = arg max
a∈A

f(s, a), ∀s ∈ S | f ∈ ℱ}

Define value function class: 𝒱 = {Vf : Vf(s) = max
a

f(s, a) | f ∈ ℱ}

Learning Goal:

We will do PAC in this lecture rather than regret.

Learning Goal:

We will do PAC in this lecture rather than regret.

Given approximation error and failure prob ,
can we learn near optimal policy (i.e.,) in # of samples scaling

poly with all relevant parameters (here, we need poly in)

ϵ δ
ϵ V ̂π ≥ V⋆ − ϵ

ln(|ℱ |)

How to check if a Q-approximator is good?

We define average Bellman error of a Q-estimate below: g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]

How to check if a Q-approximator is good?

We define average Bellman error of a Q-estimate below: g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]

: defines roll-in distribution over .f sh, ah

How to check if a Q-approximator is good?

We define average Bellman error of a Q-estimate below: g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]

: defines roll-in distribution over .f sh, ah

We know that ℰ(Q⋆; f, h) = 0,∀f

How to check if a Q-approximator is good?

We define average Bellman error of a Q-estimate below: g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]

: defines roll-in distribution over .f sh, ah

We know that ℰ(Q⋆; f, h) = 0,∀f

Hence, any such that is an incorrect approximatorg ℰ(g; f, h) ≠ 0, Q⋆

How to check if a Q-approximator is good?

We can define average Bellman error wrt the V-function induced by as well: g

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]

How to check if a Q-approximator is good?

We can define average Bellman error wrt the V-function induced by as well: g

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]

Again we have ℰ(Q⋆; f, h) = 0,∀f

How to check if a Q-approximator is good?

We can define average Bellman error wrt the V-function induced by as well: g

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]

Again we have ℰ(Q⋆; f, h) = 0,∀f

(because:)VQ⋆(s) − r(s, πQ⋆(s)) − 𝔼s′￼∼Ph(.|s,πQ⋆(s))VQ⋆(s′￼) = 0

How to check if a Q-approximator is good?

We can define average Bellman error wrt the V-function induced by as well: g

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]

Again we have ℰ(Q⋆; f, h) = 0,∀f

Hence, any such that is an incorrect approximatorg ℰ(g; π, h) ≠ 0, Q⋆

(because:)VQ⋆(s) − r(s, πQ⋆(s)) − 𝔼s′￼∼Ph(.|s,πQ⋆(s))VQ⋆(s′￼) = 0

The Q / V-Bellman rank

πf

f

ℰf;f,hℰg;f,h∀h : ℰh ∈ ℝ|ℱ|×|ℱ|

g

The Q / V-Bellman rank

πf

f

ℰf;f,hℰg;f,h∀h : ℰh ∈ ℝ|ℱ|×|ℱ|

Rank of this Matrix is defined as Bellman Rank

g

The Q / V-Bellman rank

In other words, there are two mappings (d = Bellman-rank)Wh : ℱ ↦ ℝd, Xh : ℱ ↦ ℝd

∀f, g ∈ ℱ : ℰ(g; f, h) = ⟨Wh(g), Xh(f)⟩

Note, we just assume the existence of , but they are unknownW, X

Outline for Today

1. Bellman rank Definitions

2. Examples that are captured by the Bellman rank framework

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

, we have:∀g(s, a) := θ⊤ϕ(s, a)

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

, we have:∀g(s, a) := θ⊤ϕ(s, a)

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [max

a∈𝒜
θ⊤ϕ(sh+1, a)]]

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

, we have:∀g(s, a) := θ⊤ϕ(s, a)

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [max

a∈𝒜
θ⊤ϕ(sh+1, a)]]

= 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − 𝒯h(θ)⊤ϕ(sh, ah)]

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

, we have:∀g(s, a) := θ⊤ϕ(s, a)

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [max

a∈𝒜
θ⊤ϕ(sh+1, a)]]

= 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − 𝒯h(θ)⊤ϕ(sh, ah)]

= ⟨θ − 𝒯h(θ), 𝔼sh,ah∼dπf
h
[ϕ(sh, ah)]⟩

The Linear Bellman Completion Model

Given feature , take any linear function :ϕ θ⊤ϕ(s, a)

∀h, ∃w ∈ ℝd, s . t . , w⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼Ph(s,a) max
a′￼

θ⊤ϕ(s′￼, a′￼), ∀s, a

Claim: it has Q-Bellman rank d

, we have:∀g(s, a) := θ⊤ϕ(s, a)

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [max

a∈𝒜
θ⊤ϕ(sh+1, a)]]

= 𝔼sh,ah∼dπf
h [θ⊤ϕ(sh, ah) − 𝒯h(θ)⊤ϕ(sh, ah)]

= ⟨θ − 𝒯h(θ), 𝔼sh,ah∼dπf
h
[ϕ(sh, ah)]⟩ Note linear Bell-completion captures

tabular / linear mdp already

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

ℱh = {(w, θ) : max
a

w⊤ϕ(s, a) = θ⊤ψ(s), ∀s}

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

ℱh = {(w, θ) : max
a

w⊤ϕ(s, a) = θ⊤ψ(s), ∀s}

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

ℱh = {(w, θ) : max
a

w⊤ϕ(s, a) = θ⊤ψ(s), ∀s}

= 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − (w⋆)⊤ϕ(sh, ah) + 𝔼sh+1∼Ph(⋅|sh,ah) [(θ⋆)⊤ψ(sh+1)] − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

= ⟨[w − w⋆

θ − θ⋆], 𝔼sh,ah∼dπf
h [

ϕ(sh, ah)
−𝔼s′￼∼Ph(sh,ah)[ψ(s′￼)]]⟩

ℱh = {(w, θ) : max
a

w⊤ϕ(s, a) = θ⊤ψ(s), ∀s}

= 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − (w⋆)⊤ϕ(sh, ah) + 𝔼sh+1∼Ph(⋅|sh,ah) [(θ⋆)⊤ψ(sh+1)] − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

The Linear model:Q⋆ & V⋆

Assume Q⋆(s, a) = (w⋆)⊤ϕ(s, a), V⋆(s) = (θ⋆)⊤ψ(s), ∀s, a

Claim: it has Q-Bellman rank 2d

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − r(sh, ah) − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

= ⟨[w − w⋆

θ − θ⋆], 𝔼sh,ah∼dπf
h [

ϕ(sh, ah)
−𝔼s′￼∼Ph(sh,ah)[ψ(s′￼)]]⟩ As we will see, linear Q*&V* is

learnable, and recall linear Q* is not…

ℱh = {(w, θ) : max
a

w⊤ϕ(s, a) = θ⊤ψ(s), ∀s}

= 𝔼sh,ah∼dπf
h [w⊤ϕ(sh, ah) − (w⋆)⊤ϕ(sh, ah) + 𝔼sh+1∼Ph(⋅|sh,ah) [(θ⋆)⊤ψ(sh+1)] − 𝔼sh+1∼Ph(⋅|sh,ah) [θ⊤ψ(sh+1)]]

 - state abstractionQ⋆

We have a small latent state space Z, and a known mapping from state to ξ s z

Q⋆(s1, a) = Q⋆(s2, a), ∀a, if ξ(s1) = ξ(s2)

 - state abstractionQ⋆

We have a small latent state space Z, and a known mapping from state to ξ s z

Q⋆(s1, a) = Q⋆(s2, a), ∀a, if ξ(s1) = ξ(s2)

Claim: this model has Q-Bellman rank |Z | |A | + |Z |

We can show that this model is captured by linear Q⋆ & V⋆

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a) (neither nor is known)μ⋆ ϕ⋆

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Define representation class , with Φ ϕ⋆ ∈ Φ
ℱh = {θ⊤ϕ(⋅ , ⋅) : ∥θ∥2 ≤ W, ϕ ∈ Φ}

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Define representation class , with Φ ϕ⋆ ∈ Φ
ℱh = {θ⊤ϕ(⋅ , ⋅) : ∥θ∥2 ≤ W, ϕ ∈ Φ}

𝔼sh∼dπf
h [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Define representation class , with Φ ϕ⋆ ∈ Φ
ℱh = {θ⊤ϕ(⋅ , ⋅) : ∥θ∥2 ≤ W, ϕ ∈ Φ}

𝔼sh∼dπf
h [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]

= 𝔼s̃,ã∼dπf
h−1

𝔼sh∼Ph−1(⋅|s̃,ã) [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Define representation class , with Φ ϕ⋆ ∈ Φ
ℱh = {θ⊤ϕ(⋅ , ⋅) : ∥θ∥2 ≤ W, ϕ ∈ Φ}

𝔼sh∼dπf
h [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]

= 𝔼s̃,ã∼dπf
h−1

𝔼sh∼Ph−1(⋅|s̃,ã) [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]
= 𝔼s̃,ã∼dπf

h−1 ∫sh

μ⋆
h−1(sh)⊤ϕ⋆

h−1(s̃, ã)[Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]] d(sh)

Low-rank MDP

Ph(s′￼|s, a) = μ⋆
h (s′￼)⊤ϕ⋆

h (s, a)

Claim: this model has V-Bellman rank d

(neither nor is known)μ⋆ ϕ⋆

Define representation class , with Φ ϕ⋆ ∈ Φ
ℱh = {θ⊤ϕ(⋅ , ⋅) : ∥θ∥2 ≤ W, ϕ ∈ Φ}

𝔼sh∼dπf
h [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]

= 𝔼s̃,ã∼dπf
h−1

𝔼sh∼Ph−1(⋅|s̃,ã) [Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]]
= 𝔼s̃,ã∼dπf

h−1 ∫sh

μ⋆
h−1(sh)⊤ϕ⋆

h−1(s̃, ã)[Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]] d(sh)

= ⟨∫sh

μ⋆
h−1(sh)[Vg(sh) − r(s, πg(sh)) − 𝔼sh+1∼Ph(⋅|sh,πg(sh))[Vg(sh+1)]] d(sh), 𝔼s̃,ã∼dπf

h−1
[ϕ⋆

h−1(s̃, ã)]⟩

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank…

z z z

s s s

a a

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank…

z z z

s s s

a a

Given : , s, a z ∼ ϕ⋆(s, a) s′￼ ∼ ν⋆(z)

Latent variable MDP

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank…

z z z

s s s

a a

Given : , s, a z ∼ ϕ⋆(s, a) s′￼ ∼ ν⋆(z)

V-Bellman rank = Number of latent states

Summary

1. Q-Bellman rank: related to the Bellman error of a Q function estimate :g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]ℰ(g; f, h) = 𝔼sh,ah∼dπf

h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max
a∈𝒜

g(sh+1, a)]]

Summary

1. Q-Bellman rank: related to the Bellman error of a Q function estimate :g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]ℰ(g; f, h) = 𝔼sh,ah∼dπf

h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max
a∈𝒜

g(sh+1, a)]]
2. V-Bellman rank: related to the Bellman error of a V function estimate

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]

Summary

1. Q-Bellman rank: related to the Bellman error of a Q function estimate :g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]ℰ(g; f, h) = 𝔼sh,ah∼dπf

h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max
a∈𝒜

g(sh+1, a)]]
2. V-Bellman rank: related to the Bellman error of a V function estimate

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]
3. Small Bellman rank means that:

∀f, g ∈ ℱ : ℰ(g; f, h) = ⟨Wh(g), Xh(f)⟩
where are

low-dim vectors
Xh(f), Wh(f)

Summary

1. Q-Bellman rank: related to the Bellman error of a Q function estimate :g

ℰ(g; f, h) = 𝔼sh,ah∼dπf
h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max

a∈𝒜
g(sh+1, a)]]ℰ(g; f, h) = 𝔼sh,ah∼dπf

h [g(sh, ah) − r(sh, ah) − 𝔼sh+1∼P(⋅|sh,ah) [max
a∈𝒜

g(sh+1, a)]]
2. V-Bellman rank: related to the Bellman error of a V function estimate

ℰ(g; f, h) = 𝔼sh∼dπf
h [Vg(sh) − r(sh, πg(sh)) − 𝔼sh+1∼P(⋅|sh,πg(sh)) [Vg(sh+1)]]
3. Small Bellman rank means that:

∀f, g ∈ ℱ : ℰ(g; f, h) = ⟨Wh(g), Xh(f)⟩
where are

low-dim vectors
Xh(f), Wh(f)

4. Many models (more in the book chapter) indeed have low-Q or V Bellman rank

Next week:

A general algorithm that can learn an near optimal policy w/ # of samples ϵ

poly(H,1/ϵ, ln(|ℋ |), b-rank)

