
Linear Bandits
 

CS 6789: Foundations of Reinforcement Learning

Recap on MAB
Setting:

We have K many arms: a1, …, aK

Recap on MAB
Setting:

We have K many arms: a1, …, aK

Each arm has a unknown reward distribution, i.e., ,

w/ mean

νi ∈ Δ([0,1])
μi = 𝔼r∼νi

[r]

Regret

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

μ⋆ = max
i∈[K]

μi

Regret

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we
pulled best arm over T rounds

μ⋆ = max
i∈[K]

μi

Regret

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we
pulled best arm over T rounds

Total expected reward of the
arms we pulled over T rounds

μ⋆ = max
i∈[K]

μi

Regret

More formally, we have the following learning objective:

RegretT = Tμ⋆ −
T−1

∑
t=0

μIt

Total expected reward if we
pulled best arm over T rounds

Total expected reward of the
arms we pulled over T rounds

Goal: no-regret, i.e., RegretT /T → 0, as T → ∞

μ⋆ = max
i∈[K]

μi

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

Linear Bandit Setting

We have an action set D ⊂ ℝd

Linear Bandit Setting

We have an action set D ⊂ ℝd

Expected reward of each action is linear: x ∈ D

𝔼[r |x] = (μ⋆)⊤x

Linear Bandit Setting

We have an action set D ⊂ ℝd

Expected reward of each action is linear: x ∈ D

𝔼[r |x] = (μ⋆)⊤x

Every time we pick an action , we observe a noisy rewardx ∈ D

r = μ⋆ ⋅ x + η

Linear Bandit Setting

We have an action set D ⊂ ℝd

Expected reward of each action is linear: x ∈ D

𝔼[r |x] = (μ⋆)⊤x

Every time we pick an action , we observe a noisy rewardx ∈ D

r = μ⋆ ⋅ x + η
Zero mean i.i.d noise

Learning protocol and goal:

For t = 1 to T:

Learning protocol and goal:

For t = 1 to T:

Leaner selects (based on history)xt ∈ D

Learning protocol and goal:

For t = 1 to T:

Leaner selects (based on history)xt ∈ D

Learner observes a noisy reward, i.e., rt = μ⋆ ⋅ xt + ηt

Learning protocol and goal:

For t = 1 to T:

Leaner selects (based on history)xt ∈ D

Learner observes a noisy reward, i.e., rt = μ⋆ ⋅ xt + ηt

Goal: minimize regret

Regret := Tμ⋆ ⋅ x⋆ −
T−1

∑
t=0

μ⋆ ⋅ xt

Learning protocol and goal:

For t = 1 to T:

Leaner selects (based on history)xt ∈ D

Learner observes a noisy reward, i.e., rt = μ⋆ ⋅ xt + ηt

Goal: minimize regret

Regret := Tμ⋆ ⋅ x⋆ −
T−1

∑
t=0

μ⋆ ⋅ xt

x⋆ = arg max
x∈D

μ⋆ ⋅ x

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

LinUCB algorithm

Overall idea:

Ridge linear regression for learning + design exploration bonusμ⋆

LinUCB algorithm
In iteration t:

1. Perform Ridge LR on data :{xi, ri}t−1
i=0

Set ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

LinUCB algorithm
In iteration t:

1. Perform Ridge LR on data :{xi, ri}t−1
i=0

Set ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

2: Set exploration bonus: bt(x) = β x⊤Σ−1
t x

LinUCB algorithm
In iteration t:

1. Perform Ridge LR on data :{xi, ri}t−1
i=0

Set ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

2: Set exploration bonus: bt(x) = β x⊤Σ−1
t x

3: Play optimistically, i.e., xt = arg max
x∈D

̂μ⊤
t xt + bt(x)

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

̂μt = Σ−1
t

t−1

∑
i=0

xiri

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

̂μt = Σ−1
t

t−1

∑
i=0

xiri

= Σ−1
t

t−1

∑
i=0

xi(x⊤
i μ⋆ + ηi)

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

̂μt = Σ−1
t

t−1

∑
i=0

xiri

= Σ−1
t

t−1

∑
i=0

xi(x⊤
i μ⋆ + ηi) = Σ−1

t (Σt − λI)μ⋆ + Σ−1
t

t−1

∑
i=0

xiηi

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

̂μt = Σ−1
t

t−1

∑
i=0

xiri

= Σ−1
t

t−1

∑
i=0

xi(x⊤
i μ⋆ + ηi) = Σ−1

t (Σt − λI)μ⋆ + Σ−1
t

t−1

∑
i=0

xiηi

= μ⋆ − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Analysis of Ridge Linear Regression

Recall ̂μt := arg min
μ

t−1

∑
i=0

(μ⊤xi − ri)2 + λ∥μ∥2
2

̂μt = Σ−1
t

t−1

∑
i=0

xiri

= Σ−1
t

t−1

∑
i=0

xi(x⊤
i μ⋆ + ηi) = Σ−1

t (Σt − λI)μ⋆ + Σ−1
t

t−1

∑
i=0

xiηi

= μ⋆ − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Analysis of Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆)

Analysis of Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

Analysis of Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

≤ λ∥μ⋆∥+ ???

Analysis of Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

≤ λ∥μ⋆∥+ ???
Self-normalized Martingale bound

Self-normalized Bound for Vector-valued Martingales

Suppose are mean zero random variables, and ;{ηi}∞
i=0 |ηi | ≤ σ

Let be any sequence of random vectors with , then w/
prob , for all ,

{xi}∞
i=0 ∥xi∥ ≤ 1

1 − δ t ≥ 1

Σ−1/2
t

t−1

∑
i=0

xiηi

2

≤ σ2d ⋅ (ln (t
λ

+ 1) + ln(1/δ))

Analysis of Ridge Linear Regression (Continue)

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

Let us look at the training error:

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≤ λΣ−1/2
t μ⋆ + Σ−1/2

t

t−1

∑
i=0

ηixi

≲ λ + σ d ⋅ ln(T/(λδ))

Summary for Ridge Linear Regression

̂μt − μ⋆ = − λΣ−1
t μ⋆ + Σ−1

t

t−1

∑
i=0

xiηi

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ d ln(T/(λδ))

Optimism

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x |

Optimism

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x | ≤ ∥ ̂μt − μ⋆∥Σt
⋅ ∥x∥Σ−1

t

Optimism

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x | ≤ ∥ ̂μt − μ⋆∥Σt
⋅ ∥x∥Σ−1

t

≲ (λ + σ d ln(T/(λδ))) ⋅ x Σ−1
t

Optimism

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x | ≤ ∥ ̂μt − μ⋆∥Σt
⋅ ∥x∥Σ−1

t

≲ (λ + σ d ln(T/(λδ))) ⋅ x Σ−1
t

bt(x) := β ⋅ ∥x∥Σ−1
t

Optimism

(̂μt − μ⋆)⊤Σt(̂μt − μ⋆) ≲ λ + σ2d ln(T/(λδ))

Let’s construct uncertainty quantification for each action x ∈ D

| ̂μt ⋅ x − μ⋆ ⋅ x | ≤ ∥ ̂μt − μ⋆∥Σt
⋅ ∥x∥Σ−1

t

≲ (λ + σ d ln(T/(λδ))) ⋅ x Σ−1
t

bt(x) := β ⋅ ∥x∥Σ−1
t

̂μt ⋅ x

̂μt ⋅ x − β∥x∥Σ−1
t

μ⋆ ⋅ x

̂μt ⋅ x + β∥x∥Σ−1
t

Optimism
Optimism: μ⋆ ⋅ x⋆ ≤ ̂μt ⋅ xt + β∥xt∥Σ−1

t

Proof:

̂μt ⋅ x

̂μt ⋅ x − β∥x∥Σ−1
t

μ⋆ ⋅ x

̂μt ⋅ x + β∥x∥Σ−1
t

∀x ∈ D

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Intuitively this should be convincing already:

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Intuitively this should be convincing already:

Case 1: is a bad arm, i.e., xt 2β∥xt∥Σ−1
t

≥ μ⋆ ⋅ (x⋆ − xt) ≥ δ

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Intuitively this should be convincing already:

Case 1: is a bad arm, i.e., xt 2β∥xt∥Σ−1
t

≥ μ⋆ ⋅ (x⋆ − xt) ≥ δ

 falls in the subspace where “data is sparse”, i.e., we explored!xt

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Intuitively this should be convincing already:

Case 1: is a bad arm, i.e., xt 2β∥xt∥Σ−1
t

≥ μ⋆ ⋅ (x⋆ − xt) ≥ δ

 falls in the subspace where “data is sparse”, i.e., we explored!xt

Case 2: confidence interval is small∥xt∥Σ−1
t

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

Intuitively this should be convincing already:

Case 1: is a bad arm, i.e., xt 2β∥xt∥Σ−1
t

≥ μ⋆ ⋅ (x⋆ − xt) ≥ δ

 falls in the subspace where “data is sparse”, i.e., we explored!xt

Case 2: confidence interval is small∥xt∥Σ−1
t

Then regret at this round is small too, i.e., we exploited!

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t

≤ β T ⋅
T−1

∑
t=0

∥xt∥2
Σ−1

t

Regret
Regret-at-t = μ⋆ ⋅ x⋆ − μ⋆ ⋅ xt

≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t
− μ⋆ ⋅ xt ≤ 2β∥xt∥Σ−1

t

More formally, we can show:

Regret ≤ β
T−1

∑
t=0

∥xt∥Σ−1
t

≤ β T ⋅
T−1

∑
t=0

∥xt∥2
Σ−1

t

≲ β T ⋅ d ln(T/λ + 1) ∀λ ≥ 1

Summary

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

Summary

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives us bound on on | (μ⋆ − ̂μt)⊤x |

Summary

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives us bound on on | (μ⋆ − ̂μt)⊤x |

3. Optimism in the face of uncertainty: μ⋆ ⋅ x⋆ ≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t

Summary

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives us bound on on | (μ⋆ − ̂μt)⊤x |

3. Optimism in the face of uncertainty: μ⋆ ⋅ x⋆ ≤ ̂μ⊤
t xt + β∥xt∥Σ−1

t

4. Regret is upper bounded by β∑
t

∥xt∥Σt
≤ β T ∑

t

∥xt∥2
Σ−1

t

