Linear Bandits

CS 6789: Foundations of Reinforcement Learning

We have K many arms: $a_1, ..., a_K$

Recap on MAB

Setting:

Recap on MAB

Setting:

- We have K many arms: a_1, \ldots, a_K
- Each arm has a unknown reward distribution, i.e., $\nu_i \in \Delta([0,1]),$ w / mean $\mu_i = \mathbb{E}_{r \sim \nu_i}$ [*r*]

More formally, we have the following learning objective:

 $Regret$ _{*T*} = $T\mu^*$ –

$$
= T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{I_t}
$$

$$
\mu^* = \max_{i \in [K]} \mu_i
$$

 $Regret$ _{*T*} = $T\mu^*$ – *T*−1 ∑ $t=0$ μ_{I_t}

More formally, we have the following learning objective:

 μ^{\star} = max *i*∈[*K*] *μi*

Total expected reward if we pulled best arm over T rounds

More formally, we have the following learning objective:

 $Regret$ _{*T*} = $T\mu^*$ –

T−1

∑

 μ_{I_t}

t=0

Total expected reward if we pulled best arm over T rounds

Total expected reward of the arms we pulled over T rounds

 μ^{\star} = max

i∈[*K*]

μi

More formally, we have the following learning objective:

 $Regret$ _{*T*} = $T\mu^*$ –

T−1

∑

 μ_{I_t}

t=0

Total expected reward if we pulled best arm over T rounds

Goal: no-regret, i.e., Regret $\pi/T \to 0$, as $T \to \infty$

Total expected reward of the arms we pulled over T rounds

 μ^{\star} = max

i∈[*K*]

μi

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

We have an action set D ⊂ \mathbb{R}^d

- We have an action set *D* ⊂ \mathbb{R}^d
- Expected reward of each action $x \in D$ is linear:
	- $[r | x] = (\mu^*)^T x$

- We have an action set D ⊂ \mathbb{R}^d
- Expected reward of each action $x \in D$ is linear:
	-
- Every time we pick an action $x \in D$, we observe a noisy reward
- $r = \mu^* \cdot x + \eta$
- $[r | x] = (\mu^*)^T x$

- We have an action set *D* ⊂ \mathbb{R}^d
- Expected reward of each action $x \in D$ is linear:
	-
- Every time we pick an action $x \in D$, we observe a noisy reward
	- $r = \mu^* \cdot x + \eta$

 $[r | x] = (\mu^*)^T x$

Zero mean i.i.d noise

For $t = 1$ to T:

For $t = 1$ to T:

Leaner selects $x_t \in D$ (based on history)

- For $t = 1$ to T:
	- Leaner selects $x_t \in D$ (based on history)
	- Learner observes a noisy reward, i.e., $r^t = \mu^\star \cdot x^t + \eta^t$

- For $t = 1$ to T:
	- Leaner selects $x_t \in D$ (based on history)
	- -
		- Regret := *Tμ*[⋆]

Learner observes a noisy reward, i.e., $r^t = \mu^\star \cdot x^t + \eta^t$

Goal: minimize regret

$$
x^{\star} \cdot x^{\star} - \sum_{t=0}^{T-1} \mu^{\star} \cdot x_t
$$

- For $t = 1$ to T:
	- Leaner selects $x_t \in D$ (based on history)
	- Learner observes a noisy reward, i.e., $r^t = \mu^\star \cdot x^t + \eta^t$
		-
		- $Regret := T\mu$
			- x^* = arg m

Goal: minimize regret

$$
\begin{array}{l}\n\overrightarrow{x} \\
\overrightarrow{f} \\
\overrightarrow{
$$

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

Overall idea: Ridge linear regression for learning μ^* + design exploration bonus

In iteration t:

1. Perform Ridge LR on data $\{x_i, r_i\}_{i=0}^{t-1}$. $\}^{t-1}_{i=0}$ *i*=0 Set $\hat{\mu}_t := \arg \min$ ̂ *μ t*−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$

)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

In iteration t:

1. Perform Ridge LR on data $\{x_i, r_i\}_{i=0}^{t-1}$. $\}^{t-1}_{i=0}$ *i*=0 Set $\hat{\mu}_t := \arg \min$ ̂ *μ t*−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$

2: Set exploration bonus: b_t $(x) = \beta \sqrt{x^{\top} \Sigma_t^{-1}}$

)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

 \int_t^{-1} x

In iteration t:

1. Perform Ridge LR on data $\{x_i, r_i\}_{i=0}^{t-1}$. $\}^{t-1}_{i=0}$ *i*=0 Set $\hat{\mu}_t := \arg \min$ ̂ *μ t*−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$

2: Set exploration bonus: b_t $(x) = \beta \sqrt{x^{\top} \Sigma_t^{-1}}$

)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

 \int_t^{-1} x

3: Play optimistically, i.e., $x_t = \arg \max \hat{\mu}$ *x*∈*D*

̂ ⊤ $\frac{1}{t} x_t + b_t(x)$

Outline for Today:

1. Linear Bandit Setting

2. Algorithm: LinUCB

3. Regret analysis of LinUCB

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

$$
\hat{\mu}_t = \sum_t^{-1} \sum_{i=0}^{t-1} x_i r_i
$$

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

 \sum_t ^{*t*} $(\sum_t - \lambda I)\mu^* + \sum_t^{-1}$ *t*−1 ∑ *i*=0 *xi ηi*

$$
\hat{\mu}_t = \sum_{i=0}^{-1} \sum_{i=0}^{t-1} x_i r_i
$$

= $\sum_{i=0}^{-1} \sum_{i=0}^{t-1} x_i (x_i^{\top} \mu^* + \eta_i) = \sum_{t}^{-1} (\sum_t -$

Recall $\hat{\mu}_t := \argmin$ ̂ *μ*

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

t−1 ∑ $i=0$ *xi ηi*

i=0

Recall $\hat{\mu}_t := \argmin$ ̂ *μ*

t−1 ∑ *i*=0 $(\mu^\top x_i - r_i)$)² + $λ$ || $μ$ || $\frac{2}{2}$ 2

$$
-\lambda I) \mu^{\star} + \Sigma_{t}^{-1} \sum_{i=0}^{t-1} x_{i} \eta_{i}
$$

i=0

$$
\hat{\mu}_t - \mu^{\star} = -\lambda \Sigma_t^{-1} \mu^{\star} + \Sigma_t^{-1} \sum_{i=0}^{t-1} x_i \eta_i
$$

μ ̂ $\mu^{+} = -\lambda \Sigma_{t}^{-1}$

(*μ* \overline{a} $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* \overline{a} $t - \mu^{\star}$

$$
\sum_{t} -1 \mu \star + \sum_{t} -1 \sum_{i=0}^{t-1} x_i \eta_i
$$

μ ̂ $\mu^{+} = -\lambda \Sigma_{t}^{-1}$

(*μ* \overline{a} $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* \overline{a} $\mu(t - \mu^{\star}) \leq \|\lambda \Sigma_t^{-1/2} \mu^{\star}\| + \|\Sigma_t^{-1/2}\|$

$$
\Sigma_t^{-1} \mu^{\star} + \Sigma_t^{-1} \sum_{i=0}^{t-1} x_i \eta_i
$$

$$
^{2}\mu^{\star}\parallel+\left\Vert \Sigma_{t}^{-1/2}\sum_{i=0}^{t-1}\eta_{i}x_{i}\right\Vert
$$

μ ̂ $\mu^{+} = -\lambda \Sigma_{t}^{-1}$

(*μ* \overline{a} $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* \overline{a} $\mu(t - \mu^{\star}) \leq \|\lambda \Sigma_t^{-1/2} \mu^{\star}\| + \|\Sigma_t^{-1/2}\|$

 $\leq \sqrt{\lambda} \|\mu^{\star}\| + ? ? ?$

$$
\Sigma_t^{-1} \mu^{\star} + \Sigma_t^{-1} \sum_{i=0}^{t-1} x_i \eta_i
$$

$$
2\mu \star \parallel + \parallel \Sigma_t^{-1/2} \sum_{i=0}^{t-1} \eta_i x_i \parallel
$$

μ ̂ $\mu^{+} = -\lambda \Sigma_{t}^{-1}$

Let us look at the training error:

(*μ* \overline{a} $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* \overline{a} $\mu(t - \mu^{\star}) \leq \|\lambda \Sigma_t^{-1/2} \mu^{\star}\| + (\|\Sigma_t^{-1/2})$

 $\leq \sqrt{\lambda} \|\mu^{\star}\| + ? ? ?$

$$
\Sigma_t^{-1} \mu^{\star} + \Sigma_t^{-1} \sum_{i=0}^{t-1} x_i \eta_i
$$

$$
2\mu \star \|\cdot\| \left(\sum_{t=0}^{t-1} \eta_t x_t \right)
$$

Self-normalized Martingale bound

Self-normalized Bound for Vector-valued Martingales

 ${)}_{i=}^{\infty}$ ${)}_{i=}^{\infty}$

$$
\left\| \sum_{i=0}^{t-1} x_i \eta_i \right\|^2 \le \sigma^2 d \cdot \left(\ln \left(\frac{t}{\lambda} + 1 \right) + \ln(1/\delta) \right)
$$

Suppose $\{\eta_i\}_{i=0}^\infty$ are mean zero random variables, and $\|\eta_i\|\leq \sigma;$ $\sum_{i=0}^{\infty}$ are mean zero random variables, and $|\eta_i| \leq \sigma$ Let $\{x_i\}_{i=0}^\infty$ be any sequence of random vectors with $||x_i|| \leq 1$, then w/ prob $1 - \delta$, for all $t \geq 1$, $\sum_{i=0}^{\infty}$ be any sequence of random vectors with $||x_i|| \leq 1$

Analysis of Ridge Linear Regression (Continue)

μ ̂ $\mu^{+} = -\lambda \Sigma_{t}^{-1}$

(*μ* \overline{a} $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* \overline{a} $\mu(t - \mu^{\star}) \leq \|\lambda \Sigma_t^{-1/2} \mu^{\star}\| + (\|\Sigma_t^{-1/2})$

$$
\Sigma_t^{-1} \mu^{\star} + \Sigma_t^{-1} \sum_{i=0}^{t-1} x_i \eta_i
$$

$$
2\mu \star \| + \left(\sum_{t=0}^{t-1/2} \sum_{i=0}^{t-1} \eta_i x_i \right)
$$

Summary for Ridge Linear Regression

μ ̂

 $\mu + \mu^* = -\lambda \Sigma_t^{-1} \mu^* + \Sigma_t^{-1}$ *t*−1 ∑ *i*=0 *xi ηi*

 $\lambda_t - \mu^*$) $\lesssim \sqrt{\lambda + \sigma} \sqrt{d \ln(T/(\lambda \delta))}$

(*μ* ̂ $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* ̂

 σ ⁺) $\lesssim \sqrt{\lambda} + \sqrt{\sigma^2 d \ln(T/(\lambda \delta))}$

Let's construct uncertainty quantification for each action $x \in D$

$$
\sqrt{(\hat{\mu}_t - \mu^{\star})^{\top} \Sigma_t (\hat{\mu}_t - \mu^{\star})}
$$

$$
|\hat{\mu}_t \cdot x - \mu^{\star} \cdot x|
$$

 σ ⁺) $\lesssim \sqrt{\lambda} + \sqrt{\sigma^2 d \ln(T/(\lambda \delta))}$

$$
\sqrt{(\hat{\mu}_t - \mu^{\star})^{\top} \Sigma_t (\hat{\mu}_t - \mu^{\star})}
$$

Let's construct uncertainty quantification for each action $x \in D$

$$
|\hat{\mu}_t \cdot x - \mu^{\star} \cdot x| \leq ||\hat{\mu}_t - \mu^{\star}||_{\Sigma_t} \cdot ||x||_{\Sigma_t^{-1}}
$$

Let's construct uncertainty quantification for each action $x \in D$

$$
\Sigma_t^{-1}
$$

$$
\sqrt{(\hat{\mu}_t - \mu^\star)^\top \Sigma_t (\hat{\mu}_t - \mu^\star)} \leq \sqrt{\lambda} + \sqrt{\sigma^2 d \ln(T/(\lambda \delta))}
$$

$$
|\hat{\mu}_t \cdot x - \mu^{\star} \cdot x| \leq ||\hat{\mu}_t - \mu^{\star}||_{\Sigma_t} \cdot ||x||_{\Sigma_t^{-1}}
$$

 $\lesssim \left(\sqrt{\lambda} + \sigma \sqrt{d \ln(T)}\right)$

$$
\overline{H^{\prime}(\lambda\delta))}\bigg)\cdot\parallel x\parallel_{\Sigma_{t}^{-1}}
$$

(*μ* $\ddot{}$ $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* ̂

$$
t e^{-\mu^{\star}} \leq \sqrt{\lambda} + \sqrt{\sigma^2 d \ln(T/(\lambda \delta))}
$$

Let's construct uncertainty quantification for each action $x \in D$

|*μ* ̂ *t* $\cdot x - \mu^* \cdot x$ | $\leq \|\hat{\mu}\|$ ̂ μ^{\star} ||_Σ^{*t*} || x ||_{Σ^{*t*}}¹

$$
\Sigma_t^{-1}
$$

$$
T(\lambda \delta)) \bigg) \cdot \| x \|_{\Sigma_t^{-1}}
$$

$$
b_t(x) := \beta \cdot ||x||_{\Sigma_t^{-1}}
$$

(*μ* $\ddot{}$ $(t - \mu^{\star})^{\top} \Sigma_t$ (*μ* ̂ σ ⁺) $\lesssim \sqrt{\lambda} + \sqrt{\sigma^2 d \ln(T/(\lambda \delta))}$

Let's construct uncertainty quantification for each action $x \in D$

|*μ* ̂ *t* $\cdot x - \mu^* \cdot x$ | $\leq \|\hat{\mu}\|$ ̂

̂ $\mathbf{r} \cdot \mathbf{x}_t + \beta ||\mathbf{x}_t||_{\sum_t 1}$

Optimism: *μ*[⋆] ⋅ *x*[⋆] ≤ *μ*

Proof:

Regret- at-t = $\mu^{\star} \cdot x^{\star} - \mu^{\star}$ ⋅ *xt*

Regret- at-t = $\mu^{\star} \cdot x^{\star} - \mu^{\star}$ ⋅ *xt* $\leq \hat{\mu}$ ̂ ⊤

$\int_t^T x_t + \beta ||x_t||_{\Sigma_t^{-1}} - \mu^* \cdot x_t \leq 2\beta ||x_t||_{\Sigma_t^{-1}}$

Regret- at-t = $\mu^{\star} \cdot x^{\star} - \mu^{\star}$ ⋅ *xt* $\leq \hat{\mu}$ ̂ ⊤

$\int_t^T x_t + \beta ||x_t||_{\Sigma_t^{-1}} - \mu^* \cdot x_t \leq 2\beta ||x_t||_{\Sigma_t^{-1}}$

Regret- at-t = $\mu^{\star} \cdot x^{\star} - \mu^{\star}$ ⋅ *xt* $\leq \hat{\mu}$ ̂ ⊤

Intuitively this should be convincing already:

$\sum_{t=1}^{t} -\mu^{\star} \cdot x_t \leq 2\beta ||x_t||_{\sum_{t=1}^{t}}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

Intuitively this should be convincing already:

Case 1: x_t is a bad arm, i.e., $2\beta||x_t$

$$
\|x_t\|_{\Sigma_t^{-1}} \ge \mu^\star \cdot (x^\star - x_t) \ge \delta
$$

$\sum_{t=1}^{t} -\mu^{\star} \cdot x_t \leq 2\beta ||x_t||_{\sum_{t=1}^{t}}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

Intuitively this should be convincing already:

Case 1: x_t is a bad arm, i.e., $2\beta ||x_t$ $\|\sum_t 1$ *t* \cdot $(x^* - x_t)$) ≥ *δ* x_t falls in the subspace where "data is sparse", i.e., we explored!

$$
\|x_t\|_{\Sigma_t^{-1}} \ge \mu^\star \cdot (x^\star - x_t) \ge \delta
$$

 $\sum_{t=1}^{t} -\mu^{\star} \cdot x_t \leq 2\beta ||x_t||_{\sum_{t=1}^{t}}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

Intuitively this should be convincing already:

Case 1: x_t is a bad arm, i.e., $2\beta ||x_t$

Case 2: confidence interval $||x_t||_{\sum_t 1}$ is small

$$
\|x_t\|_{\Sigma_t^{-1}} \ge \mu^\star \cdot (x^\star - x_t) \ge \delta
$$

 x_t falls in the subspace where "data is sparse", i.e., we explored!

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

Case 1: x_t is a bad arm, i.e., $2\beta||x_t$

Case 2: confidence interval $||x_t||_{\sum_t 1}$ is small

- $\sum_{t=1}^{t} -\mu^{\star} \cdot x_t \leq 2\beta ||x_t||_{\sum_{t=1}^{t}}$
- Intuitively this should be convincing already:

$$
\|x_t\|_{\Sigma_t^{-1}} \ge \mu^\star \cdot (x^\star - x_t) \ge \delta
$$

 x_t falls in the subspace where "data is sparse", i.e., we explored!

Then regret at this round is small too, i.e., we exploited!

 $\cdot x_t \leq 2\beta ||x_t||_{\sum_t 1}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} - \mu^\star \end{aligned}
$$

More formally, we can show:

$$
\text{Regret} \leq \beta \sum_{t=0}^{T-1} \|x_t\|_{\Sigma_t^{-1}}
$$

 $t_{t-1} - \mu^*$ $\cdot x_t \leq 2\beta ||x_t||_{\sum_t 1}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

T−1 ∑ *t*=0 $\|x_t\|$ $\frac{2}{5}$ $\sum_t 1$

More formally, we can show:

$$
\text{Regret} \leq \beta \sum_{t=0}^{T-1} ||x_t||_{\Sigma_t^{-1}} \leq \beta \sqrt{T} \cdot \sqrt{T}
$$

 $t_{t-1} - \mu^*$ $\cdot x_t \leq 2\beta ||x_t||_{\sum_t 1}$

$$
\begin{aligned} \text{Regret-at-t} &= \mu^\star \cdot x^\star - \mu^\star \cdot x_t \\ &\leq \hat{\mu}_t^\top x_t + \beta \|x_t\|_{\Sigma_t^{-1}} \end{aligned}
$$

More formally, we can show:

$$
\text{Regret} \leq \beta \sum_{t=0}^{T-1} ||x_t||_{\Sigma_t^{-1}} \leq \beta \sqrt{T} \cdot \text{ }
$$

$$
\lesssim \beta \sqrt{T} \cdot \gamma
$$

$$
\sum_{t=0}^{T-1} ||x_t||_{\Sigma_t^{-1}}^2
$$

 $\sqrt{d \ln(T/\lambda+1)} \quad \forall \lambda \geq 1$

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives us bound on on $\mid(\mu^{\,\star}-\hat{\mu})\mid$ ̂ *t*) [⊤]*x* |

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives

3. Optimism in the face of uncertainty: $\mu^{\star} \cdot x^{\star} \leq \hat{\mu}_t^{\top}$ ̂ $\int_t^1 x_t + \beta ||x_t||_{\sum_t^1}$

s us bound on on
$$
|(\mu^* - \hat{\mu}_t)^T x|
$$

1. To deal w/ infinitely many arms, we introduce linear structure in rewards

2. Analysis of Ridge LR gives

3. Optimism in the face of unce

4. Regret is upper bounded by

s us bound on on
$$
|(\mu^* - \hat{\mu}_t)^T x|
$$

$$
\text{ertainty: } \mu^{\star} \cdot x^{\star} \leq \hat{\mu}_t^{\top} x_t + \beta ||x_t||_{\Sigma_t^{-1}}
$$

$$
\|\beta \sum_{t} \|x_{t}\|_{\Sigma_{t}} \leq \beta \sqrt{T} \sqrt{\sum_{t} \|x_{t}\|_{\Sigma_{t}^{-1}}^{2}}
$$