Planning in MDPs

CS 6789: Foundations of Reinforcement Learning
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Analysis of Policy lteration

1

Q: what happens when 7™ and 7z’ are exactly the same?

Show that 7’ is an optimal policy 7*

Q: does this imply that the algorithm will terminate?
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The primal linear programming

Recall the Bellman consistency:

V(s) = max {r(s, a) + Yk p(is.a) [V(S’)] }, Vs

A

We can re-write this as a linear program

min 2 u(s)V(s)

s.t. V(s)>r(s,a)+y

_S/NP(°‘S,CZ)V(S/) VS, a S X A
(Proof in HW1)



LP Runtime

[Ye, '03]: there is an interior point algorithm (CIPA)
which is (“nearly”)
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What about the Dual LP?

e | et us now consider the dual LP.

* |tis also very helpful conceptually.
* |n some cases, it also provides a reasonable algorithmic approach

* |et us start by understanding the dual variables
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State action occupancy measure

(s, a; u, m): probability of 7 visiting (s, a) at time step h € N, starting at sy ~ i

di(s,a) = (1—y) ) v"Py(s,a; p, )

= V(sp) = —— Z d%(s, a)r(s, a)



A Bellman equation like property for d/ff(s, a)
D di(s.a) = (1= pu(s) +7 ) P(s|5. a)d5(s. )

Proof:
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The Dual LP

max Z d(s,a)r(s, a)
s.t. d & K,

* One can verify that this is the dual of the primal LP.



Summary

Notations: Value / Q functions, state-action occupant measures,
Bellman equation / optimality

Planning algorithms: VI, PI, LP (primal and dual)



