Learning in Generative Model

CS 6789: Foundations of Reinforcement Learning



Today:



Today:

 Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

O™ (or find 7¥) in polynomial time?



Today:

 Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

O™ (or find 7¥) in polynomial time?

* Joday: statistical complexity
* Question: Given only sampling access to an unknown MDP

M= (S,A, P, r,y) how many observed transitions do we need to
estimate O™ (or find 7%)?



Today:

 Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

O™ (or find 7¥) in polynomial time?

* Joday: statistical complexity
* Question: Given only sampling access to an unknown MDP

M= (S,A, P, r,y) how many observed transitions do we need to
estimate O™ (or find 7%)?



Two natural models for learning in an unknown MDP

e 1IN every episode, 5, ~ /L.
* the learner acts for some finite number of steps and observes the trajectory.
» T[he state Is then resets to 5, ~ /.



Two natural models for learning in an unknown MDP

In every episode, 5 ~ //.
the learner acts for some finite number of steps and observes the trajectory.
The state Is then resets to 5, ~ /1.

input: (s, a)
output: a sample s" ~ P( - |s,a) and r(s, a)



Two natural models for learning in an unknown MDP

e Episodic setting:
e IN every episode, 5, ~ /i.
* the learner acts for some finite number of steps and observes the trajectory.

» The state Is then resets to 5, ~ /1.
e Generative model setting:

 input: (s, a)
» output: asample s’ ~ P( - |s,a) and r(s, a)

e Sample complexity of RL.:
how many transitions do we need observe in order to find a near optimal policy?
* Episodic setting: we must actively explore to gather information
* (Generative model setting: lets us disentangle the issue of fundamental
statistical limits from exploration.
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How many samples do we need to learn”

 What is the minmax optimal sample complexity, with generative modeling access”?
(using any algorithm)

. Since P has S°A parameters, we may hope that O(S?A) samples are sufficient
for learning.
e Questions:

* [s a naive model-based approach optimal?
.. estimate P accurately (using O(S*A) samples) and then use P for planning.

(i.e. learn with fewer than Q(S2A) samples)

* |[f sublinear learning is possible, then we do not need an accurate model of the
world in order to act near-optimally?
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* [oday: let us assume access to a generative model
 most naive approach to learning:
» Call our simulator

N

e Let P be our empirical model:
—~ count(s’, s, a)
P(s'|s,a) =————

N
where count(s’, s, a) is the #times (s, a) transitions to state .
* we also know the rewards after one call.

(for simplicity, we often assume r(s, a) is determinstic)
« Compute 7* =PI( P, 1)
» The total number of calls to our generative model is SA/V.
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Model accuracy

Proposition: With probability greater than 1 — 0,

 Model accuracy: The transition model is € has error bounded as:

— S In(SA/0o)
max ||P(- [s,a)— P(-[s,a)|l; <0 N

(HW1 will walk you through the proof)
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“Simulation” Lemma: proof
Proposition
« Given any two transitions P and P , and any policy 7z, we have:

-y ()= 1 _Bisa)) v
VSO Vv (S()) o V?\(SO) — 1—_}/ S’aNd*éTO l(P(Sa Cl) P (Sa Cl)) Vj)\]
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Combine Model Accuracy and Simulation

V*(s9) — VZ (s)

= V=V 4 VE - VE 4 VE
P P P

|

1 —7)

<V*X_VE VYT yE
P P

/S In(SA/6)
N

Set it to €, solve for N
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Conclusion on the naive approach

| S?A SA
Given 0. If we draw ——— - In — many total samples, w/

c2(1 — y)* o)
prob at at least 1 — 0, we have V”*(S) — V”*(S) <e,Vs

Q: can we do better than a linear scaling in S*A?



Attempt 2:

obtaining sublinear sample complexity
idea: use concentration only on V*
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Model error projected on V*

e Recall [|[V*]|, < 1/(1 —=y).
By Hoeffding's inequality and the union bound,

ES’NP(-\S,a)[V*(S/)] - ES'N ﬁ(.‘s,a)[V*(Sl)] ‘

) 0( l /log(SA/(S))
1 —y N

which holds with probability greater than 1 — 0.

max
S.a
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Bounding error ||O* — O *||

Recall O* the optimal Q function in P, O * the optimal Q in P, we have (proof

next slide)
— | 210g(25A/0)
10* — 0%, < A
(1 =7 N

Recall 7*(s) = arg max QO *(S a), we immediately have (recall VI analysis):
d

1 In(SA/o
IV — VA < \/M
(1—y) N
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