Learning in Generative Model

Wen Sun CS 6789: Foundations of Reinforcement Learning

- Recap: computational complexity
 - Q^{\star} (or find π^{\star}) in polynomial time?

• Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute

- Recap: computational complexity
 - Q^{\star} (or find π^{\star}) in polynomial time?
- Today: statistical complexity
 - Question: Given only sampling access to an unknown MDP estimate Q^{\star} (or find π^{\star})?

• Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute

$\mathcal{M} = (S, A, P, r, \gamma)$ how many observed transitions do we need to

- Recap: computational complexity
 - Q^{\star} (or find π^{\star}) in polynomial time?
- Today: statistical complexity
 - Question: Given only sampling access to an unknown MDP estimate Q^{\star} (or find π^{\star})?

• Question: Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$ can we exactly compute

$\mathcal{M} = (S, A, P, r, \gamma)$ how many observed transitions do we need to

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.

• the learner acts for some finite number of steps and observes the trajectory.

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (s, a)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)

• the learner acts for some finite number of steps and observes the trajectory.

Two natural models for learning in an unknown MDP

- Episodic setting:
 - in every episode, $s_0 \sim \mu$.

 - The state is then resets to $s_0 \sim \mu$.
- Generative model setting:
 - input: (s, a)
 - output: a sample $s' \sim P(\cdot | s, a)$ and r(s, a)
- Sample complexity of RL:
 - Episodic setting: we must actively explore to gather information
 - statistical limits from exploration.

• the learner acts for some finite number of steps and observes the trajectory.

how many transitions do we need observe in order to find a near optimal policy? • Generative model setting: lets us disentangle the issue of fundamental

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.
- Questions:
 - Is a naive model-based approach optimal?
 - Is sublinear learning possible? (i.e. learn with fewer than $\Omega(S^2A)$ samples)

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

i.e. estimate P accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.

How many samples do we need to learn?

- (using *any* algorithm)
 - for learning.
- Questions:
 - Is a naive model-based approach optimal?
 - Is sublinear learning possible? (i.e. learn with fewer than $\Omega(S^2A)$ samples)
- world in order to act near-optimally?

• What is the minmax optimal sample complexity, with generative modeling access?

• Since P has S^2A parameters, we may hope that $O(S^2A)$ samples are sufficient

i.e. estimate P accurately (using $O(S^2A)$ samples) and then use \widehat{P} for planning.

• If sublinear learning is possible, then we do not need an accurate model of the

The most naive approach: model based

Today: let us assume access to a generative model

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

- we also know the rewards after one call. (for simplicity, we often assume r(s, a) is deterministic)
- Compute $\widehat{\pi}^{\star} = \operatorname{Pl}(\widehat{P}, r)$

es (s, a) transitions to state s'. one call.

The most naive approach: model based

- Today: let us assume access to a generative model
- most naive approach to learning:
 - Call our simulator N times at each state action pair.
 - Let \widehat{P} be our empirical model: $\widehat{P}(s'|s,a) = \frac{\operatorname{count}(s',s,a)}{N}$

where count(s', s, a) is the #times (s, a) transitions to state s'.

- we also know the rewards after one call. (for simplicity, we often assume r(s, a) is deterministic)
- Compute $\widehat{\pi}^{\star} = \operatorname{Pl}(\widehat{P}, r)$
- The total number of calls to our generative model is SAN.

es (s, a) transitions to state s'. one call.

Attempt 1: the naive model based approach

Model accuracy

Model accuracy: The transition model is ϵ has error bounded as: lacksquare

Model accuracy

Model accuracy: The transition model is ϵ has error bounded as: lacksquare

Model accuracy

Model accuracy: The transition model is ϵ has error bounded as: •

Model accuracy

 $\max_{s,a} \|P(\cdot | s, a) - \widehat{P}(\cdot | s, a)\|_1 \le O\left(\sqrt{\frac{S\ln(SA/\delta)}{N}}\right)$

(HW1 will walk you through the proof)

Proposition

Given policy π , does $P \approx \widehat{P}$ imply $V^{\pi} \approx V_{\widehat{P}}^{\pi}$?

Proposition

Given policy π , does $P \approx \widehat{P}$ imply $V^{\pi} \approx V_{\widehat{P}}^{\pi}$?

Proposition

$$\forall s_0 : V^{\pi}(s_0) - V^{\pi}_{\widehat{P}}(s_0) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, \alpha}$$

Given policy π , does $P \approx \widehat{P}$ imply $V^{\pi} \approx V_{\widehat{P}}^{\pi}$?

 $_{s,a \sim d_{s_0}} \left[\left(P(s,a) - \widehat{P}(s,a) \right)^{\mathsf{T}} V_{\widehat{P}}^{\pi} \right]$

Proposition

$$\forall s_0 : V^{\pi}(s_0) - V^{\pi}_{\widehat{P}}(s_0) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, \alpha}$$

Given policy π , does $P \approx \widehat{P}$ imply $V^{\pi} \approx V_{\widehat{P}}^{\pi}$?

 $_{s,a \sim d_{s_0}} \left[\left(P(s,a) - \widehat{P}(s,a) \right)^{\mathsf{T}} V_{\widehat{P}}^{\pi} \right]$

"Simulation" Lemma: proof

Proposition

$$\forall s_0 : V^{\pi}(s_0) - V^{\pi}_{\widehat{P}}(s_0) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, \alpha}$$

 $\frac{\gamma}{-\gamma} \mathbb{E}_{s,a \sim d_{s_0}^{\pi}} \left[\left(P(s,a) - \widehat{P}(s,a) \right)^{\mathsf{T}} V_{\widehat{P}}^{\pi} \right]$

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $= V^{\star} - V_{\widehat{p}}^{\pi^{\star}} + V_{\widehat{p}}^{\pi^{\star}} - V^{\widehat{\pi}^{\star}} + V_{\widehat{p}}^{\widehat{\pi}^{\star}} - V_{\widehat{p}}^{\widehat{\pi}^{\star}}$

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $= V^{\star} - V_{\widehat{p}}^{\pi^{\star}} + V_{\widehat{p}}^{\pi^{\star}} - V^{\widehat{\pi}^{\star}} + V_{\widehat{p}}^{\widehat{\pi}^{\star}} - V_{\widehat{p}}^{\widehat{\pi}^{\star}}$

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $= V^{\star} - V_{\widehat{p}}^{\pi^{\star}} + V_{\widehat{p}}^{\pi^{\star}} - V^{\widehat{\pi}^{\star}} + V_{\widehat{p}}^{\widehat{\pi}^{\star}} - V_{\widehat{p}}^{\widehat{\pi}^{\star}}$

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $= V^{\star} - V_{\widehat{p}}^{\pi^{\star}} + V_{\widehat{p}}^{\pi^{\star}} - V^{\widehat{\pi}^{\star}} + V_{\widehat{p}}^{\widehat{\pi}^{\star}} - V_{\widehat{p}}^{\widehat{\pi}^{\star}}$ $\leq V^{\star} - V_{\widehat{P}}^{\pi^{\star}} - V^{\widehat{\pi}^{\star}} + V_{\widehat{P}}^{\widehat{\pi}^{\star}} \lesssim \frac{1}{(1-\gamma)^2} \sqrt{\frac{1}{2}}$

Conclusion on the naive approach

Given δ . If we draw $\frac{S^2 A}{\epsilon^2 (1-\gamma)^4} \cdot \ln \frac{SA}{\delta}$ many total samples, w/ prob at at least $1 - \delta$, we have $V^{\pi^*}(s) - V^{\hat{\pi}^*}(s) \le \epsilon, \forall s$

Conclusion on the naive approach

Given δ . If we draw $\frac{S^2 A}{\epsilon^2 (1-\gamma)^4} \cdot \ln \frac{SA}{\delta}$ many total samples, w/ prob at at least $1 - \delta$, we have $V^{\pi^*}(s) - V^{\hat{\pi}^*}(s) \le \epsilon, \forall s$

Q: can we do better than a linear scaling in S^2A ?

Attempt 2: obtaining sublinear sample complexity idea: use concentration only on V^{\star}

Model error projected on V^{\star}

Model error projected on V^{\star}

- Recall $||V^{\star}||_{\infty} \le 1/(1-\gamma)$.

Model error projected on V^{\star}

- Recall $||V^*||_{\infty} \le 1/(1-\gamma)$.

$$\leq O\left(\frac{1}{1-\gamma}\sqrt{\frac{1}{1-\gamma}}\right)$$

which holds with probability greater than $1 - \delta$.

• By Hoeffding's inequality and the union bound, $\max_{s,a} \left| E_{s' \sim P(\cdot|s,a)} [V^{\star}(s')] - E_{s' \sim \widehat{P}(\cdot|s,a)} [V^{\star}(s')] \right|$

 $\frac{\log(SA/\delta)}{N}$

next slide)

$\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{1}{(1)}$

Bounding error $\|Q^{\star} - Q^{\star}\|_{\infty}$

Recall Q^{\star} the optimal Q function in P, \widehat{Q}^{\star} the optimal Q in \widehat{P} , we have (proof

$$\frac{1}{(1-\gamma)^2}\sqrt{\frac{2\log(2SA/\delta)}{N}}$$

next slide)

 $\|Q^{\star} - \widehat{Q}^{\star}\|_{\infty} \leq \frac{1}{(1-\gamma)^2} \sqrt{\frac{2\log(2SA/\delta)}{N}}$ Recall $\hat{\pi}^{\star}(s) = \arg \max \widehat{Q}^{\star}(s, a)$, we immediately have (recall VI analysis): $\|V^{\star} - V^{\widehat{\pi}^{\star}}\|_{\infty} \leq$

Bounding error $\|Q^* - Q^*\|_{\infty}$ Recall Q^{\star} the optimal Q function in P, \widehat{Q}^{\star} the optimal Q in \widehat{P} , we have (proof

$$\frac{1}{(1-\gamma)^3}\sqrt{\frac{\ln(SA/\delta)}{N}}$$

$V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$

Bounding error $||V^{\star} - \widehat{V}^{\star}||_{\infty}$

 $V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$

 $\leq Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \pi^{\star}(s_0))$

Bounding error $||V^{\star} - \widehat{V^{\star}}||_{\infty}$

 $V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$

Bounding error $||V^{\star} - \hat{V}^{\star}||_{\infty}$

 $\leq Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \pi^{\star}(s_0)) = \gamma \mathbb{E}_{s_1 \sim P(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \widehat{V}^{\star}(s_1)$

 $V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$

 $\leq Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \pi^{\star}(s_0)) = \gamma \mathbb{E}_{s_1 \sim P(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \widehat{V}^{\star}(s_1)$

 $= \gamma \mathbb{E}_{s_1 \sim P(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) + \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \widehat{V}^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \widehat{V}^{\star}(s_1) + \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \widehat{V}^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_1 \sim \widehat{P}(s_1))} \widehat{V}^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_1 \sim \widehat{P}(s_1))} \widehat{V}^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_1 \sim \widehat{P}(s_1))} \widehat{V}^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_1)} \widehat{V}^{\star}(s_1) -$

Bounding error $||V^{\star} - V^{\star}||_{\infty}$

 $V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$

 $\leq Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \pi^{\star}(s_0)) = \gamma \mathbb{E}_s$

 $= \gamma \mathbb{E}_{s_1 \sim P(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} V^{\star}(s_1)$

 $= \gamma \left(P(s_0, \pi^*(s_0)) - \widehat{P}(s_0, \pi^*(s_0)) \right)^{\top} V^* + \gamma \mathbb{E}$

Bounding error $||V^{\star} - V^{\star}||_{\infty}$

$$V_{1} \sim P(s_{0}, \pi^{\star}(s_{0})) V^{\star}(s_{1}) - \gamma \mathbb{E}_{s_{1}} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0})) \widehat{V}^{\star}(s_{1})$$

$$_{1}) + \gamma \mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0}))} V^{\star}(s_{1}) - \gamma \mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0}))} \widetilde{V}$$

$$\mathsf{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \left(V^{\star}(s_1) - \widehat{V}^{\star}(s_1) \right)$$

 $V^{\star}(s_0) - \widehat{V}^{\star}(s_0) = Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \widehat{\pi}^{\star}(s_0))$ $\leq Q^{\star}(s_0, \pi^{\star}(s_0)) - \widehat{Q}^{\star}(s_0, \pi^{\star}(s_0)) = \gamma \mathbb{E}_{s_0}$ $= \gamma \mathbb{E}_{s_1 \sim P(s_0, \pi^{\star}(s_0))} V^{\star}(s_1) - \gamma \mathbb{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} V^{\star}(s_1)$

 $= \gamma \left(P(s_0, \pi^{\star}(s_0)) - \widehat{P}(s_0, \pi^{\star}(s_0)) \right)^{\dagger} V^{\star} + \gamma \mathbb{E}$

 $\leq \frac{\gamma}{1-\gamma} \mathbb{E}_{s,a \sim d_{\widehat{P}}^{\pi^{\star}}} \left(P(s,a) - \widehat{P}(s,a) \right)^{\top} V^{\star}$

Bounding error $||V^{\star} - V^{\star}||_{\infty}$

$$V_{1} \sim P(s_{0}, \pi^{\star}(s_{0})) V^{\star}(s_{1}) - \gamma \mathbb{E}_{s_{1}} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0})) \widehat{V}^{\star}(s_{1})$$

$$_{1}) + \gamma \mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0}))} V^{\star}(s_{1}) - \gamma \mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, \pi^{\star}(s_{0}))} \widetilde{V}$$

$$\mathsf{E}_{s_1 \sim \widehat{P}(s_0, \pi^{\star}(s_0))} \left(V^{\star}(s_1) - \widehat{V}^{\star}(s_1) \right)$$

