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• input: 

• output: a sample   and  

(s, a)
s′ ∼ P( ⋅ |s, a) r(s, a)

• Sample complexity of RL:  
how many transitions do we need observe in order to find a near optimal policy?

• Episodic setting: we must actively explore to gather information  

• Generative model setting: lets us disentangle the issue of fundamental 

statistical limits from exploration.
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• If sublinear learning is possible, then we do not need an accurate model of the 

world in order to act near-optimally?
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where  is the #times  transitions to state . 

• we also know the rewards after one call. 

(for simplicity, we often assume  is determinstic)

• Compute 

̂P
̂P (s′ |s, a) = count(s′ , s, a)

N
count(s′ , s, a) (s, a) s′ 

r(s, a)
̂π ⋆ = PI( ̂P , r)

• The total number of calls to our generative model is .SAN



Attempt 1:

the naive model based approach
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Model accuracy

Proposition: With probability greater than , 1 − δ

• Model accuracy: The transition model is  has error bounded as:ϵ

max
s,a

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ O ( S ln(SA/δ)
N )

(HW1 will walk you through the proof)
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“Simulation” Lemma: proof
Proposition

• Given any two transitions  and , and any policy , we have: 





P ̂P π
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Conclusion on the naive approach

Given . If we draw  many total samples, w/ 

prob at at least , we have 

δ
S2A

ϵ2(1 − γ)4 ⋅ ln SA
δ

1 − δ Vπ⋆(s) − V ̂π ⋆(s) ≤ ϵ, ∀s

Q: can we do better than a linear scaling in ?S2A



Attempt 2: 
obtaining sublinear sample complexity  
  idea: use concentration only on V⋆
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Model error projected on V⋆

• Recall .∥V⋆∥∞ ≤ 1/(1 − γ)
• By Hoeffding's inequality and the union bound, 

 

which holds with probability greater than . 

max
s,a

Es′ ∼P(⋅|s,a)[V⋆(s′ )] − Es′ ∼ ̂P (⋅|s,a)[V⋆(s′ )]

≤ O ( 1
1 − γ

log(SA/δ)
N )

1 − δ
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Recall , we immediately have (recall VI analysis):̂π ⋆(s) = arg max
a

̂Q ⋆(s, a)

∥V⋆ − V ̂π ⋆∥∞ ≤ 1
(1 − γ)3

ln(SA/δ)
N
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