
Exploration in MAB and Tabular 
MDPs 

 
CS 6789: Foundations of Reinforcement Learning

 



Recap: 

Multi-armed Bandits and UCB Algorithm

Arm 1 Arm 2 Arm 3
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Case 1:  is small 

(i.e., uncertainty about  is large); 


We pay regret, BUT we explore here, 
as we just tried  at iter !
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Let’s formalize the intuition

Regret-at-t = μ⋆ − μIt

≤ ̂μ t(It) + ln(TK/δ)
Nt(It)

− μIt

≤ 2 ln(TK/δ)
Nt(It)

Case 2:  is large, i.e., conf-interval of 
 is small, 


Then we exploit here, as  is pretty good 
(the gap between  &  is small)!

Nt(It)
It

It
μ⋆ μIt

Denote the optimal arm ; recall I⋆ = arg max
i∈[K]

μi It = arg max
i∈[K]

̂μt(i) + ln(KT/δ)
Nt(i)



Let’s formalize the intuition
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Let’s formalize the intuition
Finally, let’s add all per-iter regret together:

RegretT =
T−1

∑
t=0

(μ⋆ − μIt)

≤ 2 ln(TK/δ) ⋅
T−1

∑
t=0

1
Nt(It)

Lemma: 
T−1

∑
t=0

1
Nt(It)

≤ O ( KT)
≤

T−1

∑
t=0

2 ln(TK/δ)
Nt(It)
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Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ℳ = {{rh}H−1
h=0 , {Ph}H

h=0, H, μ, S, A}

Only reset from : we assume it’s a delta distribution, all mass at a fixed μ s0

Unknown Transition  (for simplicity assume reward is known)P
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Learning Protocol 

1. Learner initializes a policy π1

2. At episode n, learner executes : πn

{sn
h , an

h , rn
h}H−1

h=0 , with an
h = πn(sn

h), rn
h = r(sn

h , an
h), sn

h+1 ∼ P( ⋅ |sn
h , an

h)

3. Learner updates policy to  using all prior informationπn+1

Performance measure: REGRET

𝔼 [
N

∑
n=1

(V⋆ − Vπn)] = poly(S, A, H) N



Notations for Today

𝔼s′ ∼P(⋅|s,a) [f(s′ )] := P( ⋅ |s, a) ⋅ f

: state-action distribution induced by  at time step h

(i.e., probability of  visiting  at time step  starting from )

dπ
h (s, a) π

π (s, a) h s0

π = {π0, …, πH−1}



Outline for Today

1. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB
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Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?

(AS)H

So treating each policy as an “arm”, and runn UCB gives us O( ASHK)

Key lesson: shouldn’t treat policies as independent arms — they do share information
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2. UCB-VI’s regret bound and the analysis

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB
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UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions  ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1 )

Collect a new trajectory by executing  in the real world  starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h
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Let’s also maintain some statistics using these datasets: 

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, h

Estimate model  :̂P n
h(s′ |s, a), ∀s, a, s′ , h

̂P n
h(s′ |s, a) = Nn

h(s, a, s′ )
Nn

h(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h( ⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h( ⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
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̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h( ⋅ |s, a) ⋅ ̂V n
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UCBVI: Put All Together

For n = 1 → N :

3. Estimate  ̂P n : ̂P n
h(s′ |s, a) = Nn

h(s, a, s′ )
Nn

h(s, a) , ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

ln(SAHN/δ)
Nn

h(s, a)
5. Execute  πn : {sn

0 , an
0 , rn

0 , …, sn
H−1, an

H−1, rn
H−1, sn

H}
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1. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB



Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)
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Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)

Dependency on H and S are suboptimal; but the same algorithm can achieve  in the 
leading term [Azar et.al 17 ICML, and the book Chapter 7]


H2 SAN

Note that we consider expected regret here (policy  is a random quantity). 

High probability version is not hard to get (need to do a martingale argument)

πn

Remarks:
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Outline of Proof

Bonus  is related to bn
h(s, a) (( ̂P n

h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ V⋆
h+1)

VI with bonus inside the learned model gives optimism, i.e., ̂V n
h(s) ≥ V⋆

h (s), ∀h, n, s, a

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Apply simulation lemma: ̂V n
0(s0) − Vπn(s0)
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1. Model Error using Hoeffing’s inequality & Union Bound

̂P n
h(s′ |s, a) = Nn

h(s, a, s′ )
Nn

h(s, a) , ∀h, s, a, s′ 

Given a fixed function , w/ prob 
f : S ↦ [0,H] 1 − δ :

( ̂P n
h( ⋅ |s, a) − Ph( ⋅ |s, a))

⊤
f ≤ O(H ln(SAHN/δ)/Nn

h(s, a)), ∀s, a, h, N

Bonus bn
h(s, a)


