Exploration in MAB and Tabular
MDPs

CS 6789: Foundations of Reinforcement Learning
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Let’s formalize the intuition

In(KT/6
Denote the optimal arm /™ = arg max ; recall [, = arg max /(i) + ( : )
i€[K] i€[K] N(i)

Regret-at-t = u™ — iy

Q:why? In(TK/5)
S /’tt(lt) + _
N(1)

In(TK/d) We pay regre.t, BUT we ex!olore here,
= as we just tried [, at iter #!
N(I,)
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Let’s formalize the intuition

In(KT/6

Denote the optimal arm /* = arg max y; recall /, = arg max /i (i) + ( , )
g i t g t

i€[K] i€[K] N(i)

Regret-at-t = u™ — iy

In(TK/5) Case 2: N(I)) is large, i.e., conf-interval of
N(I) —H, L, is small,
I\t

< p(l)+

Then we exploit here, as [, is pretty good

(the gap between u™ & p; is small)



Let’s formalize the intuition

Finally, let’s add all per-iter regret together:
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Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ./ = {{rh ZI_OI, {Ph o H 1 S,A}
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Today: Efficient Learning in Finite Horizon tabular MDPs

Finite horizon episode (time-dependent) discrete MDP ./ = {{rh le_ol, {Ph}f=£, H, )t, S,A}
/

Only reset from u: we assume it’s a delta distribution, all mass at a fjked s,

Unknown Transition P (for simplicity assume reward is known)
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1. Learner initializes a policy x!

2. At episode n, learner executes 7'
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Learning Protocol

1. Learner initializes a policy x!

2. At episode n, learner executes 7'

is),a),r) I};Iz_ol, with a)) = 7"(s)), ry) = r(s;, a;)), s, ~ P(- | s, a;)

1

3. Learner updates policy to z"*" using all prior information

Performance measure: REGRET

E | — V™) | = poly(S,A, Hn/N



Notations for Toda

state-action distribution induced by 7 at time step h

Ey. (Isa)

bility of z visiting (s, a) at time step A starting from s,)



Outline for Today

1. Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

1. Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis
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Attempt 1: Convert it to MAB and Run UCB

Q: given a discrete MDP, how many unique policies we have?
H
(4°)
So treating each policy as an “arm”, and runn UCB gives us 0(\/ASHK)

Key lesson: shouldn’t treat policies as independent arms — they do share information
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2. UCB-VI’s regret bound and the analysis
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UCBVI: Model-based Learning

Inside iteration n :

Use all previous data to estimate transition

Design reward bonu

Optimistic planning with learned model:
7 C——m

Collect a new trajectory by executing z”" in the real world { P, f;()l starting from s,



UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode 7:
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Dy = Sy W Sy Vimy > VI

Let’s also maintain some statistics using these datasets:
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UCBVI—Part 1: Model Estimation
Let us consider the very beginning of episode 7:
Dy = {5 S;L+1}?;1lth

Let’s also maintain some statistics using these datasets:

n—1 n—1

Z 1 (s}il, a,fl) =(s,a)},Vs,a,h, Nj(s,a,s’)= Z 1{(5;;, a,f;, S;;H) =(s,a,s)},Vs,a,h
i=1 i=1

N, (s, a)

Estimate model P 7(s'|s,a),Vs,a,s’,h:
n

N, (sa.s 2

;uk ? ', /\Lufia)
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Let us consider the very beginning of episode n:
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Let us consider the very beginning of episode n:
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UCBVI—Part 2: Reward Bonus Design and Value lteration

Let us consider the very beginning of episode n:

n—1
D! = {s,,al,si Y=V, Nj(s,a)= Z 1{(s;,a}) = (s,a)},Vs,a, h,
=1

) In (SAHN/6) Encourage to explore
bh (s,a) =cH N new state-actions
(s, a)

¢ (o,

/V\”H(S) =0,Vs /Q\Z(s, a) = min {rh ,a) + b)(s,a) + j’\Z( - |s,a) - Vo ,Vs,a
e

Vi(s) = max Q'(s,a), #'(s) =argmax Q(s,a),Vs

Value Iteration (aka DP) at episo‘djn using { ?Z} pand {r, + b/},

HNh,n



UCBYVI: Put All Together

Forn=1-—-> N_:

n—1
1. Set Nj/(s,a) = 2 1{(5;'1, a;'l) =(s,a)},Vs,a,h

i=1
n—1
2.Set Nj(s,a,s") = Z 1{(5;;, a,’;, S;;H) =(s,a,s)},Vs,a,a’,h
i=1

L Ni(s,a, s
3. Estimate P": P (s'|s,a) = JVs,a,s', h
Ni(s,a)
— | In(SAHN/6)
4. Plan: 7" = VI ({ P r + b,’f}h>, with b)(s,a) = cH
Nj(s,a)

5. Execute " : {5, ay, 1> s Spy_1> Qpy_1> TH_1» S}
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1 4Attempt 2: The Upper Confidence Bound Value Iteration Algorithm (UCB-VI)

2. UCB-VI’s regret bound and the analysis



Theorem: UCBVI Regret Bound
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E [RegretN] = [
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N
E [RegretN] = Z (V*=Vv™)| < 5<H2\/ SzAN>

n=1

Remarks:

Note that we consider expected regret here (policy 7" is a random quantity).
High probability version is not hard to get (need to do a martingale argument)



Theorem: UCBVI Regret Bound

N
F |Regret,| =F | ) (v* = V)| <O (H/s?nN)

n=1

Remarks:

Note that we consider expected regret here (policy 7" is a random quantity).
High probability version is not hard to get (need to do a martingale argument)

Dependency on H and S are suboptimal; but the same algorithm can achieve Hz\/ SAN in the
leading term [Azar et.al 17 ICML, and the book Chapter 7] D
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Outline of Proof

Bonus b)'(s, a) is related to <<f’\’;l( |s,a) = Py |s, a)) : V,f+1>

VI with bonus inside the learned model gives optimism, ie. h,n,s,a

sM'sh

Upper bound per-episode regret: Vg( (Sg) — Vgn(so) < ?g(so) — V(’fn(so)
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Outline of Proof

Bonus b)'(s, a) is related to <<f’\’;l( |s,a) = Py |s, a)) : V,f+1>

VI with bonus inside the learned model gives optimism, i.e., T/\Z(s) > V,f(s), Vh,n,s,a

Upper bound per-episode regret: Vg( (Sg) — Vgn( < ?g(so) — V(’fn(so)

Apply simulation lemma: /V\’S(SO) — V”n(so)
—

(P ren) (19"')
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1. Model Error using Hoeffing’s inequality & Union Bound

Given a fixed func m. — [0,H], w/ prob 1 —96:

(7’\’2( | s,a) = Py(- s, a))Tf < O(H,/In(SAHN/6)IN,(s,a)),Vs,a, h, N
3
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1. Model Error using Hoeffing’s inequality & Union Bound

£ O(H\/ In(SAHN/5)/N!(s,a)).Y's, a, h, N

/‘ﬂ Bonus b;/(s, a)
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