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Recap: UCBVI

For n = 1 → N :

3. Estimate  ̂P n : ̂P n
h(s′ |s, a) = Nn

h(s, a, s′ )
Nn

h(s, a) , ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

ln(SAHN/δ)
Nn

h(s, a)
5. Execute  πn : {sn

0 , an
0 , rn

0 , …, sn
H−1, an

H−1, rn
H−1, sn

H}
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Bonus  is related to bn
h(s, a) (( ̂P n

h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ V⋆
h+1)

VI with bonus inside the learned model gives optimism, i.e., ̂V n
h(s) ≥ V⋆

h (s), ∀h, n, s, a

Upper bound per-episode regret: V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Apply simulation lemma: ̂V n
0(s0) − Vπn(s0)
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Bonus bn
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Intuition: 
1. Assume for some i, , then  is an unbiased estimate of si

h = s, ai
h = a f(si

h+1) 𝔼s′ ∼Ph(⋅|s,a) f(s′ )

2. Note ̂P n
h( ⋅ |s, a) ⋅ f = 1

Nn
h(s, a)

n−1

∑
i=1

1[(si
h, ai

h) = (s, a)]f(si
h+1)

From now on, assume this event being true
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3. Upper Bounding Regret using Optimism

per-episode regret := V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)
This is something 
we can control!


And this is related 
to our policy πn
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Summary of the Proof of UCB-VI

Bonus  is related to bn(s, a) (( ̂P n
h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ V⋆

h+1)
Prove Optimism via Induction: it allows us to focus  rather than  which is unknown)πn π⋆

Bound per-episode regret via Simulation Lemma (Perf diff of  under )πn ̂P n & P

Bounding conf-term along traces: ∑
n

∑
h

1
Nn

h(sn
h , an

h)


