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The very successful stories of ML are based on RL…
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RL in Real World:

Training Language models 
using RL, e.g., chatGPT



RL in Real World:

Genearting creative images that would never appeared in real world



This course mostly focuses on RL Theory

When and Why RL works!

(Convergence, sample / computation complexity, etc)



Four main themes we will cover in this course: 

1. Fundamentals (MDPs and Optimal planning) 


2. Exploration (sample complexity)


3. Policy Gradient (global convergence)


4. Learning from human feedback



Logistics

Four (HW0-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

HW0 is out today and due in one week

(HW0 10%, HW1-3 15% each)



Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound



Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Undergrad & MEng students: I need to see your HW0 performance



Course projects (40%)

• Team work: size 3


• Midterm report (5%), Final presentation (15%), and Final report (20%)

• Basics: survey of a set of similar RL theory papers. Reproduce 

analysis and provide a coherent story


• Advanced: identify extensions of existing RL papers, formulate 

theory questions, and provide proofs



Course Notes: 
Reinforcement Learning Theory & Algorithms

• Book website: https://rltheorybook.github.io/


• Many lectures will correspond to chapters in Version 3.

• Reading assignment (5%) is from this book and additional papers  


• Please let us know if you find typos/errors in the book!  
We appreciate it!

https://rltheorybook.github.io/


Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Passive:

Prediction 

Data Distribution 

Supervised Learning

,cat ,cat ,dog( )( )

Given i.i.d examples at training:
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Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a 
Markovian transition dynamics

r(s, a), s′ ∼ P( ⋅ |s, a)

Learning 
Agent Environment

a ∼ π(s)

s0 ∼ μ0, a0 ∼ π(s0), r0, s1 ∼ P(s0, a0), a1 ∼ π(s1), r1…
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ℳ = {S, A, P, r, μ0, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ Δ(A)

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Q function Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
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Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]

Bellman Equation:

Vπ(s) = 𝔼a∼π(s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )]
Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )
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Denote we just proved ̂π (s) := arg max
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Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s
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a

Q⋆(s, a)
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Q: what is the probability of  generating trajectory ?π τ = {s0, a0, s1, a1, …, sh, ah}

a1

s0 s1 s2

a0

…

… = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(s0, a0, …, sh, ah)

Q: what’s the probability of  visiting state ( ,a) at time step h?π s

ℙπ
h(s, a) = ∑

s0,a0,s1,a1,…,sh−1,ah−1

ℙπ(s0, a0, …, sh−1, ah−1, sh = s, ah = a)
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State action occupancy measure

: probability of  visiting  at time step ℙπ
h(s, a) π (s, a) h ∈ ℕ

dπ(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a)

𝔼s0∼μVπ(s0) =
1

1 − γ ∑
s,a

dπ(s, a)r(s, a)



Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)


