Introduction and Basics of Markov Decision Process

Wen Sun CS 6789: Foundations of Reinforcement Learning

The very successful stories of ML are based on RL...

TD GAMMON [Tesauro 95]

[OpenAl Five, 18]

this code is not working like i expect — how do i fix it? USER resultWorkerErr := make(chan error) (resultWorkerErr) go func() { defer cancel() resultWorkerErr <- b.resultWorker(ctx)</pre> 30 err := b.worker(ctx) err == <-resultWorkerErr (err, <-resultWorkerErr) multierror. It's difficult to say what's wrong with the code without more context. Can you provide CHATGPT more information about what the code is supposed to do and what isn't working as expected? Also, is this the entire code or just a part of it? just part of it — the error never surfaces. I think there is something wrong with USER the channel It's difficult to say without more information about what the code is supposed to do CHATGPT and what's happening when it's executed. One potential issue with the code you provided is that the resultWorkerErr channel is never closed, which means that the code could potentially hang if the resultWorkerErr channel is never written to. This

Training Language models using RL, e.g., chatGPT

Genearting creative images that would never appeared in real world

This course mostly focuses on RL Theory

When and Why RL works! (Convergence, sample / computation complexity, etc)

Four main themes we will cover in this course:

- 1. Fundamentals (MDPs and Optimal planning)
- 2. Exploration (sample complexity)
- 3. Policy Gradient (global convergence)
- 4. Learning from human feedback

(HW0 10%, HW1-3 15% each)

HW0 is out today and due in one week

Logistics

Four (HW0-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding's), tricks such as union bound

Undergrad & MEng students: I need to see your HW0 performance

Course projects (40%)

- Team work: size 3
- Midterm report (5%), Final presentation (15%), and Final report (20%)
- Basics: **survey** of a set of similar RL theory papers. Reproduce analysis and provide a coherent story
- Advanced: identify extensions of existing RL papers, formulate theory questions, and provide proofs

Course Notes: Reinforcement Learning Theory & Algorithms

- Book website: <u>https://rltheorybook.github.io/</u>
- Many lectures will correspond to chapters in Version 3. Reading assignment (5%) is from this book and additional papers
- Please let us know if you find typos/errors in the book! We appreciate it!

2. Bellman Optimality

3. State-action distribution

Outline

1. Definition of infinite horizon discounted MDPs

Given i.i.d examples at training:

Given i.i.d examples at training:

Given i.i.d examples at training:

,cat

Passive:

Selected Actions:

RIGHT

Selected Actions:

RIGHT

Selected Actions:

RIGHT

Learning Agent

2019,364 29,364 2 12199,364 29,364

$a \sim \pi(s)$

Policy: determine action based on state

Environment

Send **reward** and **next state** from a Markovian transition dynamics

r(s,a), s'

Environment

$$\sim P(\cdot | s, a)$$

r(s,a), s'

Environment

Send **reward** and **next state** from a Markovian transition dynamics

$$\sim P(\cdot | s, a)$$

r(s,a), s'

Environment

Policy: determine **action** based on **state**

Send **reward** and **next state** from a Markovian transition dynamics

$$\sim P(\cdot | s, a)$$

r(s,a), s'

Send **reward** and **next state** from a Markovian transition dynamics

$$\sim P(\cdot | s, a)$$

Environment

 $s_0 \sim \mu_0, a_0 \sim \pi(s_0), r_0, s_1 \sim P(s_0, a_0), a_1 \sim \pi(s_1), r_1 \dots$

Send **reward** and **next state** from a Markovian transition dynamics

Environment

 $r(s,a), s' \sim P(\cdot \mid s,a)$

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Reinforcement Learning					

Infinite horizon Discounted MDP

 $\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$ $P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1)$

Infinite horizon Discounted MDP

 $\mathcal{M} = \{S, A, P, r, \mu_0, \gamma\}$ $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Policy $\pi : S \mapsto \Delta(A)$

Infinite horizon Discounted MDP

- $\mathscr{M} = \{S, A, P, r, \mu_0, \gamma\}$
- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$
 - Policy $\pi : S \mapsto \Delta(A)$

$$(s_h, a_h) | s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)$$

Infinite horizon Discounted MDP

$$\{S, A, P, r, \mu_0, \gamma\}$$

 $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Policy $\pi : S \mapsto \Delta(A)$

$$\left| (s_{0}, a_{0}) \right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h}) \right|$$
$$\left| (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h}) \right|$$

 $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0}\right]$$

 $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right]$

 $= s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)$

$$V^{\pi}(s) = \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

 $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s) \right]$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| (s_{0}, a_{0}) = (s, a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h}) \right]\right]$$

$$(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$$

$$V^{\pi}(s) = \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot \mid s_{h}, a_{h})\right]$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h},a_{h}) \middle| (s_{0},a_{0}) = (s,a), a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h},a_{h}) \right]$$
$$Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s,a)} V^{\pi}(s')$$

2. Bellman Optimality

3. State-action distribution

Outline

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy $\pi^{\star}: S \mapsto A, \text{ s.t., } V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall s, \pi$ [Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy $\pi^{\star}: S \mapsto A, \text{ s.t., } V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall s, \pi$ [Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote $V^{\star} := V^{\pi^{\star}}, Q^{\star} := Q^{\pi^{\star}}$

Optimal Policy

We denote V^{\star}

 $V^{\star}(s) = \max_{\sigma} \left| r(s, \cdot) \right|^{\sigma}$

For infinite horizon discounted MDP, there exists a deterministic stationary policy $\pi^{\star}: S \mapsto A$, s.t., $V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall s, \pi$ [Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

$$:= V^{\pi^*}, Q^* := Q^{\pi^*}$$

Theorem 1: Bellman Optimality

$$a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \bigg]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

Theorem 1: Bellman Optimality

 $V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$

Denote $\widehat{\pi}(s) := \arg \max Q^{\star}(s, a)$, we will prove $V^{\widehat{\pi}}(s) = V^{\star}(s), \forall s$ a

Theorem 1: Bellman Optimality

 $V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$

U

 $V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$

Theorem 1: Bellman Optimality

Denote $\widehat{\pi}(s) := \arg \max Q^*(s, a)$, we will prove $V^{\widehat{\pi}}(s) = V^*(s), \forall s$

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

 \boldsymbol{a}

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s))$$

Theorem 1: Bellman Optimality

 $(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s')$

Denote $\hat{\pi}(s) := \arg \max Q^*(s, a)$, we will prove $V^{\hat{\pi}}(s) = V^*(s), \forall s$

 $+ \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

Denote $\hat{\pi}(s) := \arg \max Q^*(s, a)$, we will prove $V^{\hat{\pi}}(s) = V^*(s), \forall s$ \mathcal{A}

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

$$= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$

Theorem 1: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

Denote $\hat{\pi}(s) := \arg \max Q^*(s, a)$, we will prove $V^{\hat{\pi}}(s) = V^*(s), \forall s$ \mathcal{A}

$$V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$$

$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

$$= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$

$$\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right]$$

Theorem 1: Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

Denote $\hat{\pi}(s) := \arg \max Q^{\star}(s, a)$, we will prove $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$ U $V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$

$$\leq \max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{\star}(s') \right] = r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$
$$= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$$
$$\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \hat{\pi}(s'))} V^{\star}(s'') \right]$$

 $\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s, \hat{\pi}(s))} \right]$

Theorem 1: Bellman Optimality

$$P(s',\widehat{\pi}(s'))\left[r(s'',\widehat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s'',\widehat{\pi}(s''))}V^{\star}(s''')\right]$$

$$V^{\star}(s) = \max_{a} \left[r(s, a) \right]$$

Denote $\widehat{\pi}(s) := \arg \max Q^*(s, a)$, we will prove $V^{\widehat{\pi}}(s) = V^*(s), \forall s$ $V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$ $\leq \max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{\star}(s') \right] = r(s, \,\widehat{\pi}(s))$ $= r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s, \hat{\pi}(s))} \right]$ $\leq r(s, \hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} \left[r(s', \hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim F(s, \hat{\pi}(s))} \right]$ $\leq r(s, \,\widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \,\widehat{\pi}(s))} \left| r(s', \,\widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s, \,\widehat{\pi}(s))} \right|$ $\leq \mathbb{E}\left[r(s,\,\widehat{\pi}(s)) + \gamma r(s',\,\widehat{\pi}(s')) + \ldots\right] = V^{\widehat{\pi}}(s)$

Theorem 1: Bellman Optimality

$$+ \gamma \mathbb{E}_{s' \sim P(s, \hat{\pi}(s))} V^{\star}(s')$$

$$\sim P(s', \pi^{\star}(s')) V^{\star}(s'')]$$

$$P(s', \hat{\pi}(s')) V^{\star}(s'')]$$

$$P(s',\widehat{\pi}(s'))\left[r(s'',\widehat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s'',\widehat{\pi}(s''))}V^{\star}(s''')\right]$$

Denote $\hat{\pi}(s) := \arg \max Q^{\star}(s, a)$, we just proved $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$ \boldsymbol{a}

Theorem 1: Bellman Optimality $V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$

Denote
$$\widehat{\pi}(s) := \arg \max_{a} Q^{\star}(s)$$

 \mathcal{A}

Theorem 1: Bellman Optimality $V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\star}(s') \right]$

a), we just proved $V^{\hat{\pi}}(s) = V^{\star}(s), \forall s$

This implies that $\arg \max Q^*(s, a)$ is an optimal policy

For any $V: S \to \mathbb{R}$, if $V(s) = \max$ \mathcal{A} then V(s)

$$\begin{bmatrix} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \end{bmatrix} \text{ for all } s,$$
$$= V^{\star}(s), \forall s$$

For any $V: S \to \mathbb{R}$, if $V(s) = \max$ \mathcal{A} then V(s)

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\begin{bmatrix} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \end{bmatrix} \text{ for all } s,$$
$$= V^{\star}(s), \forall s$$

For any
$$V: S \to \mathbb{R}$$
, if $V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$ for all s ,
then $V(s) = V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$
$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

For any
$$V: S \to \mathbb{R}$$
, if $V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$ for all s ,
then $V(s) = V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

For any
$$V: S \to \mathbb{R}$$
, if $V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$ for all s ,
then $V(s) = V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s', a')} \left| V(s'') - V^{\star}(s'') \right| \right)$$

For any
$$V: S \to \mathbb{R}$$
, if $V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V(s') \right]$ for all s ,
then $V(s) = V^{\star}(s), \forall s$

$$|V(s) - V^{\star}(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \left| (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left| V(s') - V^{\star}(s') \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s, a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s', a')} \left| V(s'') - V^{\star}(s'') \right| \right)$$

$$\leq \max_{a_{1}, a_{2}, \dots, a_{k-1}} \gamma^{k} \mathbb{E}_{s_{k}} \left| V(s_{k}) - V^{\star}(s_{k}) \right|$$

3. State-action distribution

Outline

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$?

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$?

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$?

 $\dots = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)P(s_2 | s_1, a_1)\dots P(s_h | s_{h-1}, a_{h-1})\pi(a_h | s_h)$

Q: what's the probability of π visiting state (s,a) at time step h?

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$?

Q: what's the probability of π visiting state (s,a) at time step h?

$$\mathbb{P}_{h}^{\pi}(s,a) = \sum_{s_{0},a_{0},s_{1},a_{1},\ldots,s_{h-1},a_{h-1}} \mathbb{P}^{\pi}(s_{0},a_{0},\ldots,s_{h-1},a_{h-1},s_{h}=s,a_{h}=a)$$

Q: what is the probability of π generating trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_h, a_h\}$?

 $= \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)P(s_2 | s_1, a_1)\dots P(s_h | s_{h-1}, a_{h-1})\pi(a_h | s_h)$

State action occupancy measure

 $\mathbb{P}_{h}^{\pi}(s, a)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$

 $d^{\pi}(s,a) = (1-\gamma) \sum \gamma^{h} \mathbb{P}_{h}^{\pi}(s,a)$ h=0

State action occupancy measure

 $\mathbb{P}_{h}^{\pi}(s, a)$: probability of π visiting (s, a) at time step $h \in \mathbb{N}$

 $d^{\pi}(s,a) = (1$

 $\mathbb{E}_{s_0 \sim \mu} V^{\pi}(s_0) = \frac{1}{1}$

$$(-\gamma)\sum_{h=0}^{\infty}\gamma^{h}\mathbb{P}_{h}^{\pi}(s,a)$$

$$\frac{1}{-\gamma} \sum_{s,a} d^{\pi}(s,a) r(s,a)$$

Summary for today

Key property: Bellman optimality (the two theorems and their proofs)

Key definitions: MDPs, Value / Q functions, State-action distribution