Introduction and Basics of
Markov Decision Process

CS 6789: Foundations of Reinforcement Learning



The very successful stories of ML are based on RL...
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RL in Real World:

this code is not working like i expect — how do i fix it?

resultWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

Training Language models
using RL, e.g., chatGPT

<-resultWorkerErr

multierror err., <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what’s happening when it's executed. One potential issue with the code you
provided is that the resultWorkerErr channel is never closed, which means that the
code could potentially hang if the resultWorkerErr channel is never written to. This




RL in Real World:

Genearting creative images that would never appeared in real world




This course mostly focuses on RL Theory

When and Why RL works!
(Convergence, sample / computation complexity, etc)



Four main themes we will cover In this course:

Fundamentals (MDPs and Optimal planning)
Exploration (sample complexity)

Policy Gradient (global convergence)

> W o=

Learning from human feedback



Logistics

Four (HWO-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HWO 10%, HW1-3 15% each)

HWO is out today and due in one week



Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound



Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Undergrad & MEng students: | need to see your HWO performance



Course projects (40%)

 Jeam work: size 3
 Midterm report (5%), Final presentation (15%), and Final report (20%)

 Basics: survey of a set of similar RL theory papers. Reproduce

analysis and provide a coherent story

* Advanced: identify extensions of existing RL papers, formulate

theory questions, and provide proofs



Course Notes:
Reinforcement Learning Theory & Algorithms

 Book website: https://rltheorybook.github.io/

 Many lectures will correspond to chapters in Version 3.
* Reading assignment (5%) is from this book and additional papers

* Please let us know if you find typos/errors in the book!
We appreciate it!


https://rltheorybook.github.io/

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)
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Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)

Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

SO ~ //t(), Clo ~ ﬂ(So), r(), Sl ~ P(So, ao), Cll ~ ﬂ(Sl), 7‘1...
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Infinite horizon Discounted MDP

%: {S,A,P,F,/Jlo,}/}
P:SXA- AWN), r:S5xA-|[0,1], ye€]0,1)

Policy 7: S — A(A)



Infinite horizon Discounted MDP

P:SXA— A(S),

Value function V7(s) =

% — {S9A9P9 r’ll/tO’}/}

r:SxA—-10,1], ye][0,1)

Policy z: S — A(A)

= Z y'r(sy, ay)
h=0

S = 5,4y ~ ﬂ(Sh),Sh_l_l ~ P( ) |Sh9ah)



Infinite horizon Discounted MDP

%: {S,A,P,F,/Jlo,}/}
P:SXA- AWN), r:S5xA-|[0,1], ye€]0,1)

Policy 7: S — A(A)

Value function V#(s) = E lz y'r(s, a,) | sy = s, ay, ~ 7w(s;), sj1 ~ PC+ | ), ah)]
h=0

Q function O%(s,a) = E lz yhr(sh, a,) | (g, ag) = (s, a), aj, ~ 7(sy), Sp1 ~ P(C- |5, ah)]
h=0



VZi(s)

Bellman Equation:

S sy
h=0

So = S, ay ~ 7(sy), .1 ~ P(- |5, ap)



VZi(s)

Bellman Equation:

Vﬂ(S) — = gon(s) lF(S, Cl) + vy

_ lz 7h’”(5h, ay) | So = S, @y, ~ 7(Sp), Spyq ~ PC- |5, ah)]
h=0

_S’NP('\SaCZ)Vﬂ(S,)]



Bellman Equation:

Vi(s) = [ lz yhr(sh, a,) | so =S, a, ~ 7(sy), .1 ~ P(- |5y, ah)]
h=0

VA(S) = Bty 105 @) + VB p g VS

O”"(s,a) = E [2 yhr(sh, a,) | (89, ap) = (s, a), a, ~ 7(sy), 0.1 ~ PC- | s, ap)
h=0

|



Bellman Equation:

Vi(s) = [ lz yhr(sh, a,) | so =S, a, ~ 7(sy), .1 ~ P(- |5y, ah)]
h=0

Vﬂ(s) — _arv]z'(s) lr(sa Cl) + }/ _S’NP(.‘S,CZ)V]T(S,)]

O”"(s,a) = E [2 yhr(sh, a,) | (89, ap) = (s, a), a, ~ 7(sy), 0.1 ~ PC- | s, ap)
h=0

Q*(s,a) = r(s,a) + yEy _p. 5.0V ($)

|
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2. Bellman Optimality

3. State-action distribution
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For infinite horizon discounted MDP, there exists a deterministic stationary policy
*
¥ S A, st, V7 (s) > V¥s),Vs, x

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]
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Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy
*
7*: S A st, VP (s) > Vis),Vs, x

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]
* X Nk T*
We denote V™ :=V* , 0™ := QO

Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) + YEy pj5.a)V ()
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Theorem 1: Bellman Optimality

V*(s) = max |r(s,a) + yE P S,a)V*(S,)]

a

Denote 7(s) := arg max Q*(s, a), we will prove % (s) = V*(s), Vs

V*(S) — T(S, 71'*(5)) —+ 14 _S’NP(S,E*(S))V*(S,)
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Theorem 1: Bellman Optimality

V*(s) = max |r(s,a) + yE P S,a)V*(S,)]

a

Denote 7(s) := arg max Q*(s, a), we will prove % (s) = V*(s), Vs

V*(S) — T(S, 71'*(5)) —+ 14 _S’NP(S,E*(S))V*(S,)

< max [F(S, Cl) + 14 _S'NP(S,CZ)V*(S,) — I”(S, ;T\(S)) + 4 _S'NP(S,E(S))V*(S/)

a

= r(s, ;T\(S)) T —s'~P(s,7(5)) r(s’, ﬂ*(sl)) TV _s”NP(S’,Jz*(S’))V*(S”)
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<F [r(s, 7(s)) + yr(s’, 7(s) + ] = V7 (s)




Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max |r(s,a) + yEg_p, S,a)V*(S/)]

Denote 7(s) := arg max Q™ (s, a), we just proved %4 (s) = V*(s), Vs
a



Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max |r(s,a) + yEg_p, S,a)V*(S/)]

Denote 7(s) := arg max Q™ (s, a), we just proved %4 (s) = V*(s), Vs
a

This implies that arg max Q*(s, a) is an optimal policy
a



Proof of Bellman Optimality
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Proof of Bellman Optimality

Forany V:§ — |

| V(s) = V*(s)| =

,if V(s) = max [r(s, a)+vy

Theorem 2:

then V(s) = V*(s), Vs

max(r(s,a) + vy
a

= op(s.ay) V() — max(r(s,a) +y

_S’NP(°‘S,CZ)V(S,)] for all s,

—s'~P(s,a) V*(S /))




Proof of Bellman Optimality

Forany V:§ — R, if V(s) = max |r(s,a) + vy

Theorem 2:

then V(s) = V*(s), Vs

| V(s) — V*(s)| = |max(r(s,a) +y

a

S max (r(Sa CZ) + 4 _S’NP(S,a)V(S,)) T (I"(S, Cl) T 4 _S’NP(S,CZ)V*(S,))

a

= op(s.ay) V() — max(r(s,a) +y

_S’NP(°‘S,CZ)V(S,)] for all s,

—s'~P(s5,0) V*(S /))




Proof of Bellman Optimality

Theorem 2:

Forany V:§ — R, if V(s) = max |r(s,a) + vy

then V(s) = V*(s), Vs

_S'NP(°‘S,CZ)V(S,)] for all s,

[ V(s) = V*(s)| = |max(r(s, @) + YEg. p(;,q) V(s)) — max(r(s, a) + yE;pi o)V (5)

a

<max |[(r(s,a) + vy

a

Cyp(s,a)V () = (r(s,a) +y

< maxy —s'~P(s,a) V(S ,) — V*(S /)

a

_S’NP(S,a) V*(S ,))




Proof of Bellman Optimality

Theorem 2:

Forany V: S — R, if V(s) = max |r(s,a) + }/_S'NP(-‘S,LZ)V(S,)] for all s,
then V(s) = V*(s), Vs

[ V(s) = V*(s)| = |max(r(s, @) + YEg. p(;,q) V(s)) — max(r(s, a) + yE;pi o)V (5)

a

S max (r(Sa CZ) + 4 _S’NP(S,a)V(S,)) T (I"(S, Cl) T 4 _S’NP(S,CZ)V*(S,))

a

V(s") — V*(s)

< max Y —s'~P(s,a)
a

V(s") = V*(s")] )

S maX }/ _S/NP(S,CZ) (ma,X }/ _S”NP(S,,CZ,)
a a




Proof of Bellman Optimality

Forany V:§ — R, if V(s) = max |r(s,a) + vy

| V(s) — V*(s)| = |max(r(s,a) +y

a

< max
da

< maxy
a

< maxy
a

< max yk

Theorem 2:

then V(s) = V*(s), Vs

(r(s,a) +v

—s'~P(s5,0)

a1,0y,. . .Ay_q

V(s") — V*(s)

_S’NP(S,CZ) (ma’X }/ _S”NP(S,,CZ,)

Cyp(s,a)V () = (r(s,a) +y

a

= | Vs = V(sp) |

'S'NP(-\s,a)V(S,)] for all s,

E oops.a)V(8) — max(r(s, a) + yE, . P(S,a)V*(s’))

_S’NP(S,a) V*(S /))

V(s") = V*(s"), )
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Trajectory distribution and state-action distribution

Q: what is the probabillity of 7 generating trajectory 7 = {SO, Aoy S15 A1y« -5 Sp ah}?

Q O @ . P*(sp, ags, ---» 8y, ap)

— /4(5())77(61() | So)P(S1 ‘So, do)ﬂ(% ‘51)P(Sz | S15 a1) P(Sh | Sp_1-4)_ 1)”(% | Sh)

Q: what’s the probability of 7 visiting state (s,a) at time step h?

P (s, a) = Z P*(S0, Ay -5 Sp_15Ajy_1, S, = S, aj, = )

30:A0s51:UA 15+ - -5, 1441



State action occupancy measure

P7(s, a): probability of 7 visiting (s, a) at time step 7 € N

d*(s,a) = (1 =7) ), 7"Pi(s, a)
h=0



State action occupancy measure

P7(s, a): probability of 7 visiting (s, a) at time step 7 € N

d*(s,a) = (1 =7) ), 7"Pi(s, a)
h=0

SON#V”(SO) = — Z d”(s,a)r(s, a)



Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)



