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TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAI Five, 18]

The very successful stories of ML are based on RL…
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RL in Real World:

Training Language models 
using RL, e.g., chatGPT



RL in Real World:
Genearting creative images that would never appeared in real world



This course mostly focuses on RL Theory

When and Why RL works!

(Convergence, sample / computation complexity, etc)



Four main themes we will cover in this course: 

1. Fundamentals (MDPs and Optimal planning) 

2. Exploration (sample complexity)

3. Policy Gradient (global convergence)

4. Learning from human feedback



Logistics

Four (HW0-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

HW0 is out today and due in one week

(HW0 10%, HW1-3 15% each)



Prerequisites (HW0)

Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound
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Deep understanding of Machine Learning, Optimization, Statistics

ML: sample complexity analysis for supervised learning (PAC)

Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Undergrad & MEng students: I need to see your HW0 performance



Course projects (40%)

• Team work: size 3

• Midterm report (5%), Final presentation (15%), and Final report (20%)

• Basics: survey of a set of similar RL theory papers. Reproduce 
analysis and provide a coherent story


• Advanced: identify extensions of existing RL papers, formulate 

theory questions, and provide proofs



Course Notes: 
Reinforcement Learning Theory & Algorithms

• Book website: https://rltheorybook.github.io/


• Many lectures will correspond to chapters in Version 3.

• Reading assignment (5%) is from this book and additional papers  


• Please let us know if you find typos/errors in the book!  
We appreciate it!

https://rltheorybook.github.io/


Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Passive:

Prediction 

Data Distribution 

Supervised Learning
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Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a 
Markovian transition dynamics

r(s, a), s′ ∼ P( ⋅ |s, a)

Learning 
Agent Environment

a ∼ π(s)

s0 ∼ μ0, a0 ∼ π(s0), r0, s1 ∼ P(s0, a0), a1 ∼ π(s1), r1…
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P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ Δ(A)

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Q function Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
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Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]

Bellman Equation:

Vπ(s) = 𝔼a∼π(s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )]
Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P( ⋅ |sh, ah)]
Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )
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Denote we just proved ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

This implies that  is an optimal policyarg max
a

Q⋆(s, a)


