Introduction and Basics of
Markov Decision Process

CS 6789: Foundations of Reinforcement Learning



The very successful stories of ML are based on RL...
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RL in Real World:

this code is not working like i expect — how do i fix it?

resultWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

<-resultWorkerErr

multierror err, <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what's happening when it's executed. One potential issue with the code you
provided is that the resultWorkerErr channel is never closed, which means that the
code could potentially hang if the resultwWorkerErr channel is never written to. This

Training Language models
using RL, e.g., chatGPT



RL in Real World:

Genearting creative images that would never appeared in real world




This course mostly focuses on RL Theory

When and Why RL works!
(Convergence, sample / computation complexity, etc)



Four main themes we will cover in this course:

Fundamentals (MDPs and Optimal planning)
Exploration (sample complexity)

Policy Gradient (global convergence)
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Learning from human feedback



Logistics

Four (HWO-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HWO 10%, HW1-3 15% each)

HWO is out today and due in one week



Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics
ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound
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Undergrad & MEng students: | need to see your HWO performance



Course projects (40%)

 Team work: size 3
« Midterm report (5%), Final presentation (15%), and Final report (20%)

e Basics: survey of a set of similar RL theory papers. Reproduce

analysis and provide a coherent story

* Advanced: identify extensions of existing RL papers, formulate

theory questions, and provide proofs



Course Notes:
Reinforcement Learning Theory & Algorithms

Book website: hitps://rltheorybook.qgithub.io/

Many lectures will correspond to chapters in Version 3.
Reading assignment (5%) is from this book and additional papers

Please let us know if you find typos/errors in the book!
We appreciate it!


https://rltheorybook.github.io/

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Supervised Learning

Given i.i.d examples at training:
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Markov Decision Process

Learning Environment

a ~ 7(s)

Policy: determine action based on state




Markov Decision Process

Learnin .
g Environment

a ~ 7(s)

Policy: determine action based on state

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)



Markov Decision Process

Learnin .
g Environment

a ~ 7(s)

Policy: determine action based on state

N\

Multiple Steps

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)



Markov Decision Process

Learning

Aaent Environment
9 a ~ n(s)
,Ml;_.".\ Policy: determine action based on state
e
E 1 » q /\
ri';z.-;ép‘;;_,..“ S 1
;"?55 Fas il & Multiple Steps
T LW T IR
Bh) == | Y

A Ay - ; P
iy S P Y s
rs 4 €\
Lot f 4 \ A
- 3 L
y .

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)



Learning
Agent
oo

R S

Markov Decision Process

a ~ 7(s)

Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)
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Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)

g

Policy: determine action based on state

f * Multiple Steps

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

So ~ Ko, Ao ~ ﬂ(So), o, §1 ~ P(So, ao), a; ~ ﬂ(Sl), ry...
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Infinite horizon Discounted MDP
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Value function V*(s) = E [Z vr(s,, ay) ‘ So = S, a, ~ 7(sy), Sp ~ PC- | s, ah)]
h=0

Q function Q%(s,a) = E [Z yir(s,, a,) ‘ (50> ag) = (8, @), aj, ~ 7w(sy), S ~ PC- |8, ah)]
h=0
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Bellman Equation:

Vi(s) =E [Z vir(s,, ay) ‘ So = S, a ~ 1(sy), .1 ~ P(- |y, ah)]
h=08
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Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy

75 S A st, VE(s) > VAs),Vs,

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote V* := V7' O* := 0%

Theorem 1: Bellman Optimality

V*(s) =(max ir(s, a) + y[Es’NP(-|s,a)V*(S/)]
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, £%(8)) + YEg ps.or(syV (5"

4\

el B4



Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-ls,a)V*(S,)]

Derfotel 7(s) := atg max Q*(s, @), we will prove VZ(s) = V*(s), Vs

‘ @ + 7E sV ()
< max r(s a) + yEy _pg, a)V*(S )] = r(s, 7(s)) + yE, '~P(s, (s w
/




Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S,)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

VX(s) = 1(s, 7%()) + YE o pis o) V(5 & M‘/ %
< max [I’(S, a) + }/[Es’~P(s,a)V*(S/) = (s, 7(s)) + Y[ES'NP(S’;;AE;)V-*(S'J

= (5, 7()) + Eyps 501 [r(s’, + y[ES,,NP(S@V*(S")]



Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs
a
= r(s, 7(8)) + YE g p(snx(s) V()
< max [r(s, a) + }’[EstP(S,a)V*(S')] = 1(5, (8)) + YEgps. 26 V()
= (5, 7(5)) + 7Eps 260 [r(s’, 7*(s) + y[ES,,NP(S/,,,*(S/))V*(S”)]

< (s, 7)) + YE s 200 [r(s/, 2(5)) + YErpis 2o W)
— .



Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, £%(8)) + YEg ps.or(syV (5"

< max [r(s, a) + }’[EstP(S,a)V*(S')] = 1(5, (8)) + YEgps. 26 V()
a

= }"(S, ;Z'\(S)) + }/lESINP(S,;T\(S)) [}"(S/’ ][*(S’)) -+ }/[ES"NP(S/,R'*(S/))V*(S/’)]

S r(S, ;T\(S)) + y[ES/NP(S,i/T\(S)) [l’(S', ;T\(S,)> + }/[ESNNP(S/,;Z'\(S'))V*(SH)

< 1(s, () +£[E P (s) [’"(S" D)+ VEgnpi | 1S YEgp iV ("

i D



Proof of Bellman Optimality

Theorem 1: Bellman Optimality
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + YEy p(s.a)V (s ')]
a

Denote 7(s) := arg max Q*(s, a), we just proved 1% (s) = V*(5),Vs
a

This implies that arg max Q* (s, a) is an optimal policy
a




