Introduction and Basics of
Markov Decision Process

CS 6789: Foundations of Reinforcement Learning

The very successful stories of ML are based on RL...

\rlr— 1(1:;{[1
bt]p(pl\

ALL SYSTEMS GO

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAl Five, 18]

RL in Real World:

o b

RL in Real World:

0~ ¢ | Pl News - man

& msn news v

Headlines

300,000'kvacuated'as
Strong Cyclone Hits
Eastern India

Microsoft

te: Kurds hal jinadi

Second US Ebola diagnosis ‘deeply concerning’,
admits CDC chief

2 g
it 3t & Lo Toenage Girl Dies In ‘Haunted
Hayride’ Crash
post & sty News

in urges ground troops b

Some Mormons pushing church = get rare

8racing for Cyclone Hudhud
hey'ro winning, and.

alk of town after ddier f

from ents

RL in Real World:

T
2 - & | DI tews - man

300,000'kvacuated'as
Strong Cyclone Hits

Second US Ebola diagnos
admits CDC chief

B

sit-in 2t St Louiz US daath row exaneroes got rare

chance to mect

round troops to

! N . 're winning, and.
e winning, 3
- A%

< i R—

Investigation Into Missing rac
Cash Endied in Lebanon Bunker

alk of town after
. Hawaii Public

H
=
W e
Teenige G Dies i Hisunind Some Mormors pusing church
Vot Crch ppmrst i

RL in Real World:

this code is not working like i expect — how do i fix it?

resultWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

<-resultWorkerErr

multierror err, <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what's happening when it's executed. One potential issue with the code you
provided is that the resultWorkerErr channel is never closed, which means that the
code could potentially hang if the resultwWorkerErr channel is never written to. This

Training Language models
using RL, e.g., chatGPT

RL in Real World:

Genearting creative images that would never appeared in real world

This course mostly focuses on RL Theory

When and Why RL works!
(Convergence, sample / computation complexity, etc)

Four main themes we will cover in this course:

Fundamentals (MDPs and Optimal planning)
Exploration (sample complexity)

Policy Gradient (global convergence)

> W b~

Learning from human feedback

Logistics

Four (HWO-HW3) assignments (total 55%), Course Project (40%), Reading (5%)

(HWO 10%, HW1-3 15% each)

HWO is out today and due in one week

Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics
ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Prerequisites (HWO)

Deep understanding of Machine Learning, Optimization, Statistics
ML: sample complexity analysis for supervised learning (PAC)
Opt: Convex (linear) optimization, e.g., gradient decent for convex functions

Stats: basics of concentration (e.g., Hoeffding’s), tricks such as union bound

Undergrad & MEng students: | need to see your HWO performance

Course projects (40%)

 Team work: size 3
« Midterm report (5%), Final presentation (15%), and Final report (20%)

e Basics: survey of a set of similar RL theory papers. Reproduce

analysis and provide a coherent story

* Advanced: identify extensions of existing RL papers, formulate

theory questions, and provide proofs

Course Notes:
Reinforcement Learning Theory & Algorithms

Book website: hitps://rltheorybook.qgithub.io/

Many lectures will correspond to chapters in Version 3.
Reading assignment (5%) is from this book and additional papers

Please let us know if you find typos/errors in the book!
We appreciate it!

https://rltheorybook.github.io/

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution

Supervised Learning

13

Supervised Learning

Given i.i.d examples at training:

13

Supervised Learning

Given i.i.d examples at training:

13

Supervised Learning

Given i.i.d examples at training:

Passive:

¥

Data Distribution

13

HgenTL.inear
Selected Actions.:

RIGHT SPEED

Active: [Decisions == [DataDistribution

HgenTL.inear
Selected Actions.:

RIGHT SPEED

Active: [Decisions == [DataDistribution

HgenTL.inear
Selected Actions.:

RIGHT SPEED

Active: [Decisions == [DataDistribution

Markov Decision Process

Learning Environment

a ~ 7(s)

Policy: determine action based on state

Markov Decision Process

Learnin .
g Environment

a ~ 7(s)

Policy: determine action based on state

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

Markov Decision Process

Learnin .
g Environment

a ~ 7(s)

Policy: determine action based on state

N\

Multiple Steps

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

Markov Decision Process

Learning

Aaent Environment
9 a ~ n(s)
,Ml;_.".\ Policy: determine action based on state
e
E 1 » q /\
ri';z.-;ép‘;;_,..“ S 1
;"?55 Fas il & Multiple Steps
T LW T IR
Bh) == | Y

A Ay - ; P
iy S P Y s
rs 4 €\
Lot f 4 \ A
- 3 L
y .

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

Learning
Agent
oo

R S

Markov Decision Process

a ~ 7(s)

Policy: determine action based on state

O\

Multiple Steps

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

Environment

£
R
~~ 4 4
o

ary”

15t :

: Npir-r——.y

-l N
i s

Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)

g

Policy: determine action based on state

f * Multiple Steps

~_ _—

Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

So ~ Ko, Ao ~ ﬂ(So), o, §1 ~ P(So, ao), a; ~ ﬂ(Sl), ry...

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Learn from . . . Credit
. Generalize | Interactive | Exploration .
Experience assignment

Supervised
Learning

Reinforcement
Learning

Table content based on slides from Emma Brunskill

Infinite horizon Discounted MDP

4‘“’“/ Acrbns

={S,A,P,r,pio, ¥}
P:SXA- AS), r:SxA-|[0,1],{ y€[0,1)

Pl \s>)

Infinite horizon Discounted MDP

M= {S,A,P,r, puy, v}
P:SxXA— A(S), r:SxA-[0,1], yel0,1)

Policy #: S » A(A)

< (+9)

Infinite horizon Discounted MDP

— {S7A7P7r’/’t07y}
P:SXArH AS), r:SxA-[0,1], ye]l0,l])

Policy #: S » A(A)
P
i} 5 cs0')
Value function @g) =E [2 Y'r(sy, ay) | s¢= s, a, ~ n(s,))55, ~ P(- | s a
of
c1s%a")

J

v

\ul /

Infinite horizon Discounted MDP

ﬂz{SaAapar’ﬂ()ay}
P:SXxAm AWNS), r:SxA-][01], re[0,)~ ——

)
Policy #: S » A(A) (_— -
k/,_

Value function V*(s) = E [Z vr(s,, ay) ‘ So = S, a, ~ 7(sy), Sp ~ PC- | s, ah)]
h=0

Q function Q%(s,a) = E [Z yir(s,, a,) ‘ (50> ag) = (8, @), aj, ~ 7w(sy), S ~ PC- |8, ah)]
h=0

Bellman Equation:

Vis) = Z yhr(sh, a) ‘ So = S, ay ~ 7(sy), .1 ~ PC- |5y, a)
h=0

Bellman Equation:

Vis) = [Z yhr(sh, a) ‘ So = S, a ~ 1(sy), .1 ~ P(- |y, ah)]
h=0

V() = Epongs) lr(s, a)+ yE,.. p(_|s,a)V”(S’)]

Bellman Equation:

Vis) = [Z yhr(sh, a) ‘ So = S, a ~ 1(sy), .1 ~ P(- |y, ah)]
h=0

VAS) = Epons) [r(s, a) + y[ES/NP(-|S,a)Vﬂ(S,)]

Q%(s,a) =E [Z yhr(sh, a) | (8o, ag) = (s, a),a;, ~ 7(sy), o1 ~ P(- |5y, ah)]

h=0

Bellman Equation:

Vi(s) =E [Z vir(s,, ay) ‘ So = S, a ~ 1(sy), .1 ~ P(- |y, ah)]
h=08

VAS) = Epons) [r(s, a)+ yE,.. p(,ls’a)V”(s’)]

Q"(s,a) = E [Z J/h’”(sh’ a) | (80> ap) = (8, @), aj, ~ 7(sp,), Spyq ~ PC- |5, ah)]

h=0

Q"(s,a) = r(s,a) + YEgp 5.0V (5)

& op g —> T
e

Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy
¥ : S A st, VT (s) > Vi), Vs, n

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy
¥ : S A st, VT (s) > Vi), Vs, n

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote V* := V7', 0* := Q"

Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy

75 S A st, VE(s) > VAs),Vs,

[Puterman 94 chapter 6, also see theorem 1.4 in the RL monograph]

We denote V* := V7' O* := 0%

Theorem 1: Bellman Optimality

V*(s) =(max ir(s, a) + y[Es’NP(-|s,a)V*(S/)]

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S,)]

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S,)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

Se
o, \/01
p

« 4

/

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, £%(8)) + YEg ps.or(syV (5"

4\

el B4

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-ls,a)V*(S,)]

Derfotel 7(s) := atg max Q*(s, @), we will prove VZ(s) = V*(s), Vs

‘ @ + 7E sV ()
< max r(s a) + yEy _pg, a)V*(S)] = r(s, 7(s)) + yE, '~P(s, (s w
/

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + y[Es’NP(-|s,a)V*(S,)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

VX(s) = 1(s, 7%()) + YE o pis o) V(5 & M‘/ %
< max [I’(S, a) + }/[Es’~P(s,a)V*(S/) = (s, 7(s)) + Y[ES'NP(S’;;AE;)V-*(S'J

= (5, 7()) + Eyps 501 [r(s’, + y[ES,,NP(S@V*(S")]

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs
a
= r(s, 7(8)) + YE g p(snx(s) V()
< max [r(s, a) + }’[EstP(S,a)V*(S')] = 1(5, (8)) + YEgps. 26 V()
= (5, 7(5)) + 7Eps 260 [r(s’, 7*(s) + y[ES,,NP(S/,,,*(S/))V*(S”)]

< (s, 7)) + YE s 200 [r(s/, 2(5)) + YErpis 2o W)
— .

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(S’)]

Denote 7(s) := arg max Q*(s, a), we will prove VZ(s) = V*(s), Vs

V*(s) = (s, £%(8)) + YEg ps.or(syV (5"

< max [r(s, a) + }’[EstP(S,a)V*(S')] = 1(5, (8)) + YEgps. 26 V()
a

= }"(S, ;Z'\(S)) + }/lESINP(S,;T\(S)) [}"(S/’][*(S’)) -+ }/[ES"NP(S/,R'*(S/))V*(S/’)]

S r(S, ;T\(S)) + y[ES/NP(S,i/T\(S)) [l’(S', ;T\(S,)> + }/[ESNNP(S/,;Z'\(S'))V*(SH)

< 1(s, () +£[E P (s) [’"(S" D)+ VEgnpi | 1S YEgp iV ("

i D

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) +yEy p S,a)V*(s’)

a

V*(s) = (s, £%(8)) + YEg ps.or(syV (5"

A
< max [r(s, a) + y[Es’~P(s,a)V*(S/)] = 1(s, Z($) + YEy < p(s, 25V (5 \f ($) *W[S)
= (s, 7(5)) + YEgp(s. 20 [r(S’, 7%(s)) + YEgp(sarisry V(S ")]
< (s, B + Py |16 R+ P o V()] Visl 2\)

S r(S’ ;T\(S)) + }/ES/NP(S,jT\(S)) [r(s,a ;Z'\(S/)) + }/[ESHNP(S/,;[\(S/)) [I”(S”, ;T\(S”)) + }/[ESWNP(S”,;[\(S”))V*(S”/)]]

E [r(s, 7 () + yr(s’, 7(s") +] = V(s)

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + ¥Ey p(is.a)V (s ')]
a

Denote 7(s) := arg max Q*(s, a), we just proved 1% (s) = V*(5),Vs
a

Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max [r(s, a) + YEy p(s.a)V (s ')]
a

Denote 7(s) := arg max Q*(s, a), we just proved 1% (s) = V*(5),Vs
a

This implies that arg max Q* (s, a) is an optimal policy
a

