Contextual Bandits

Owen Oertell

CS 6789: Foundations of Reinforcement Learning

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_{t} \sim \nu_{I_{t}}$ of arm I_{t}

Learning metric:

$$Regret_T = T\mu^* - \sum_{t=0}^{T-1} \mu_{I_t}$$

Recap: MAB

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(# based on historical information)

- 1. Learner pulls arm $I_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{I_t}$ of arm I_t

Learning metric:

$$\mathsf{Regret}_T = T\mu^* - \sum_{I=1}^{T-1} \mu_{I_t}$$

Arm distributions are fixed across learning. t=0

Question for Today:

Incorporate contexts into the interactive learning framework

Outline for today:

1. Introduction of the model

2. A general framework and its guarantees

3. Two instantiations from the general framework

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

1. A new context $x_t \in \mathcal{X}$ appears

Interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

- 1. A new context $x_t \in \mathcal{X}$ appears
- 2. Learner picks action $a_t \in \mathcal{A}$

(# based on context x_t and historical information)

Interactive learning process:

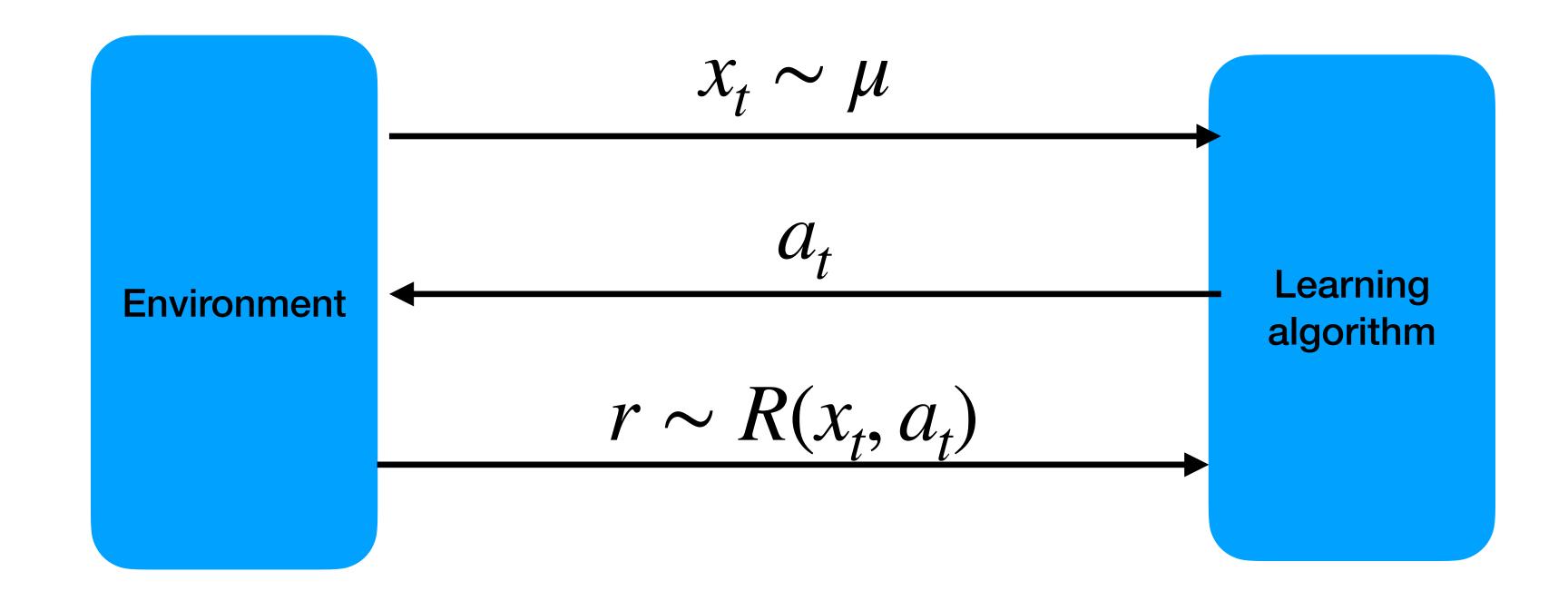
For
$$t = 0 \rightarrow T - 1$$

- 1. A new context $x_t \in \mathcal{X}$ appears
- 2. Learner picks action $a_t \in \mathcal{A}$

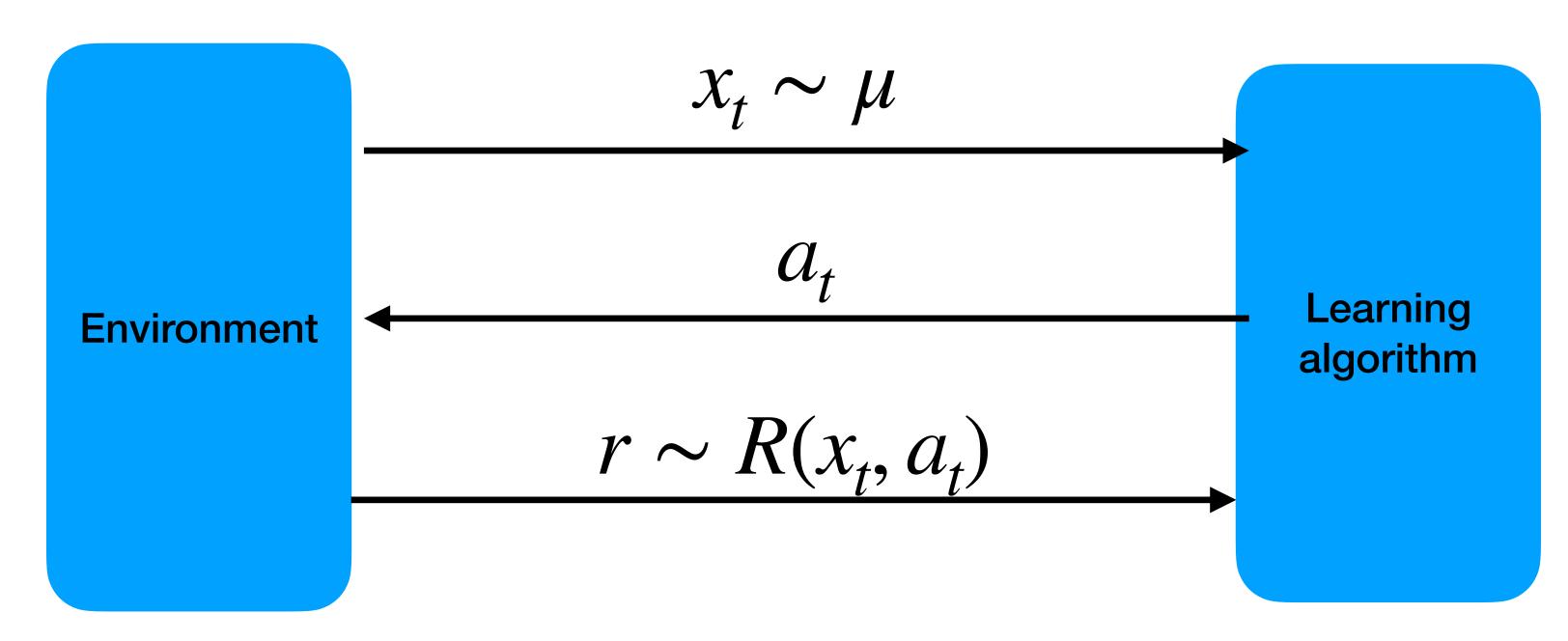
- (# based on context x_t and historical information)
- 3. Learner observes an reward $r_t \sim R(x_t, a_t)$

Reward is context and arm dependent now!

Interactive learning process:

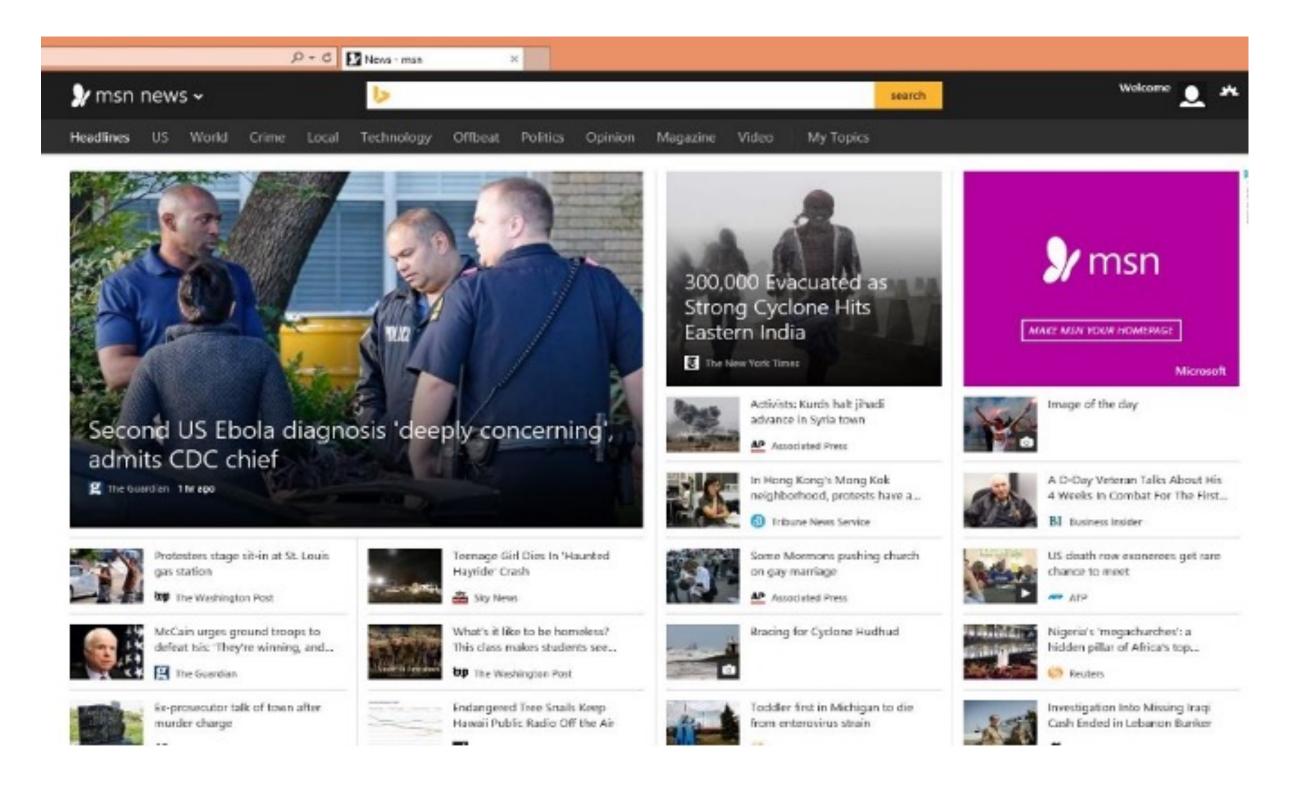


Interactive learning process:

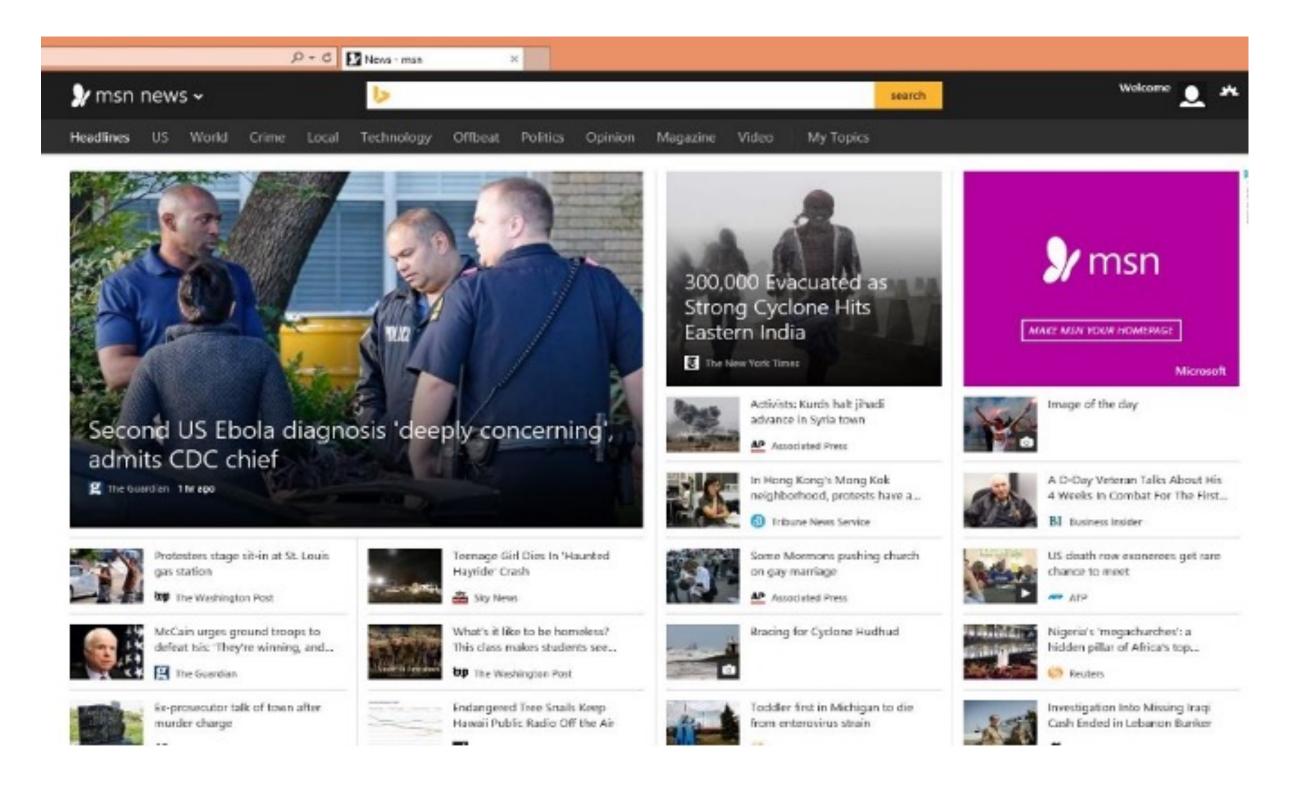


$$\operatorname{Reg}_{cb}(T) = \max_{\pi \in \Pi} \sum_{t=0}^{T-1} \mathbb{E}[R(x_t, \pi(x_t))] - \sum_{t=0}^{T-1} \mathbb{E}_{a \sim \pi(\cdot \mid x_t)} R(x_t, a)$$

Personalize recommendation system

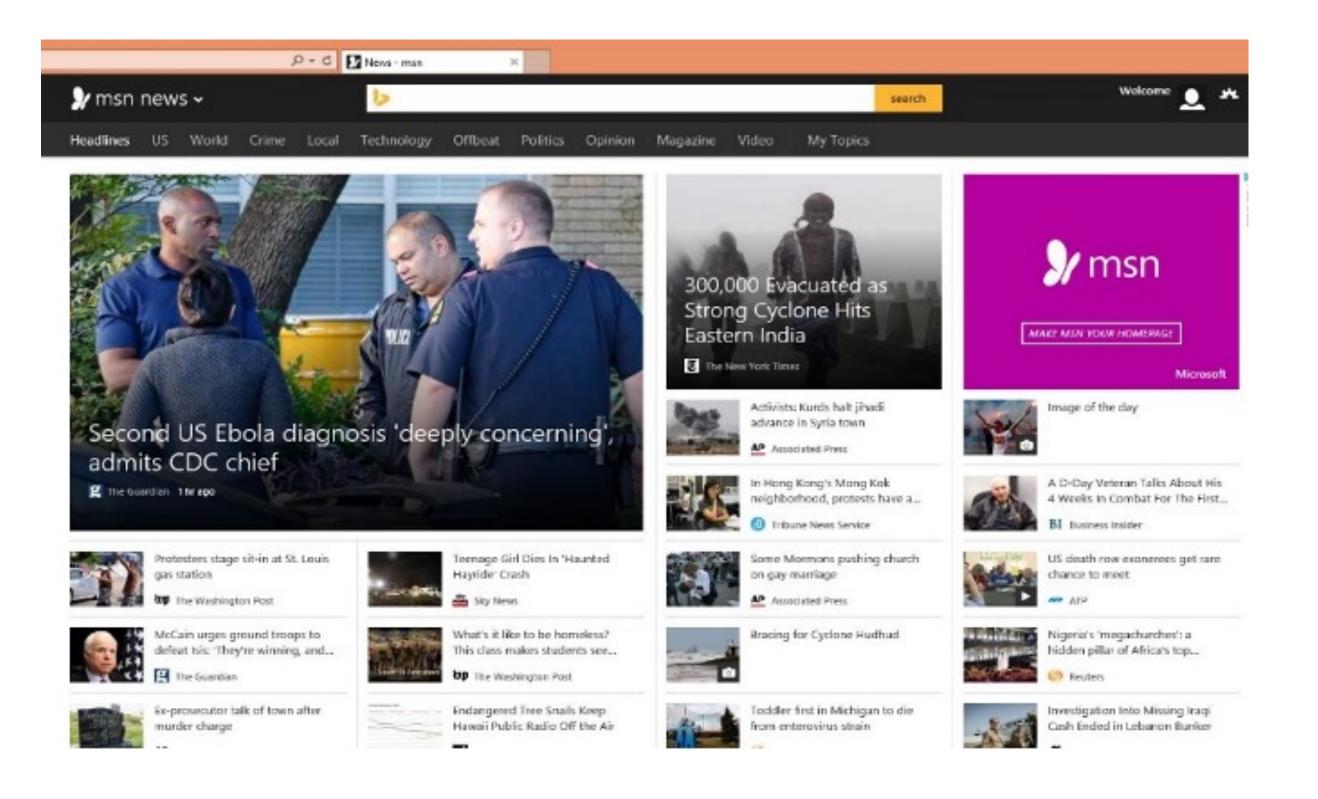


Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

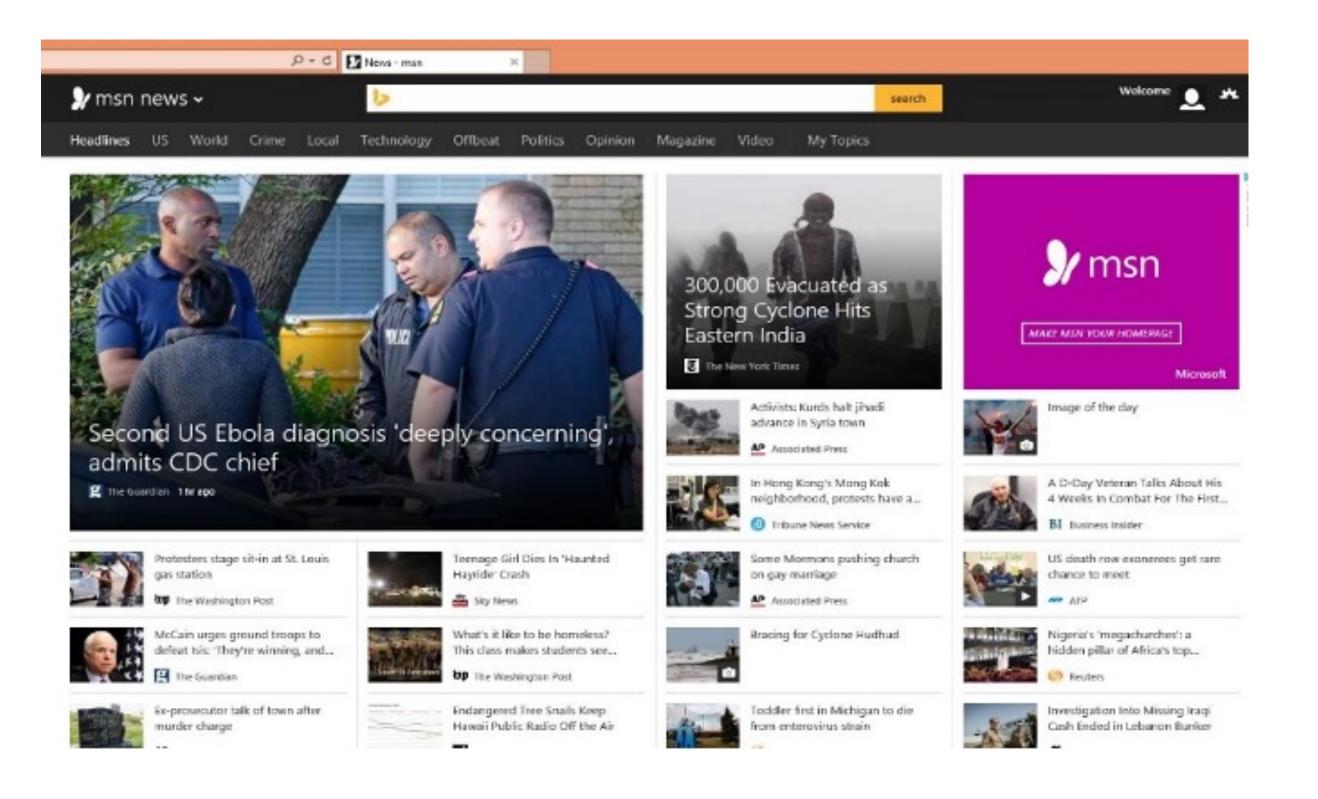
Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Personalize recommendation system

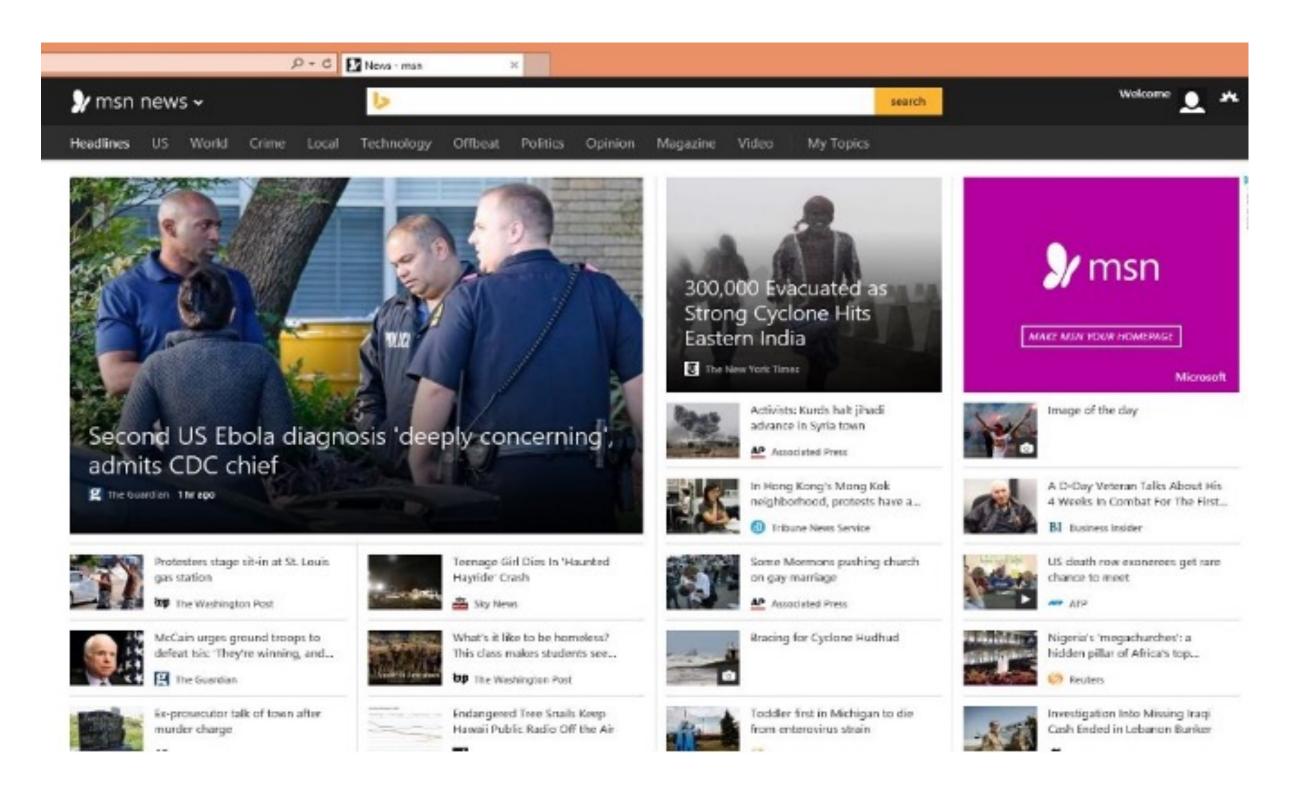


Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes user click rate

Personalize recommendation system



Context: user's information (e.g., history health conditions, age, height, weight, job type, etc)

Decisions (arms): news articles

Goal: learn to maximizes user click rate

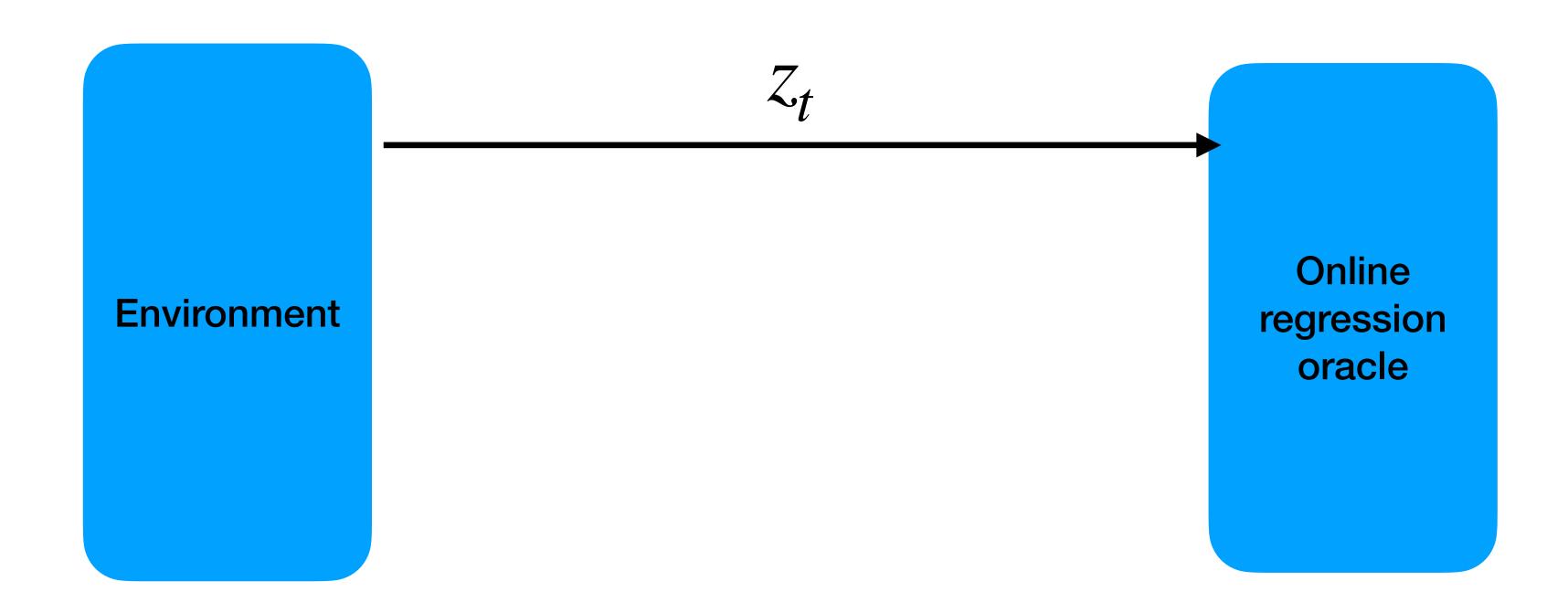
Different users have different preferences on news, so need to personalize

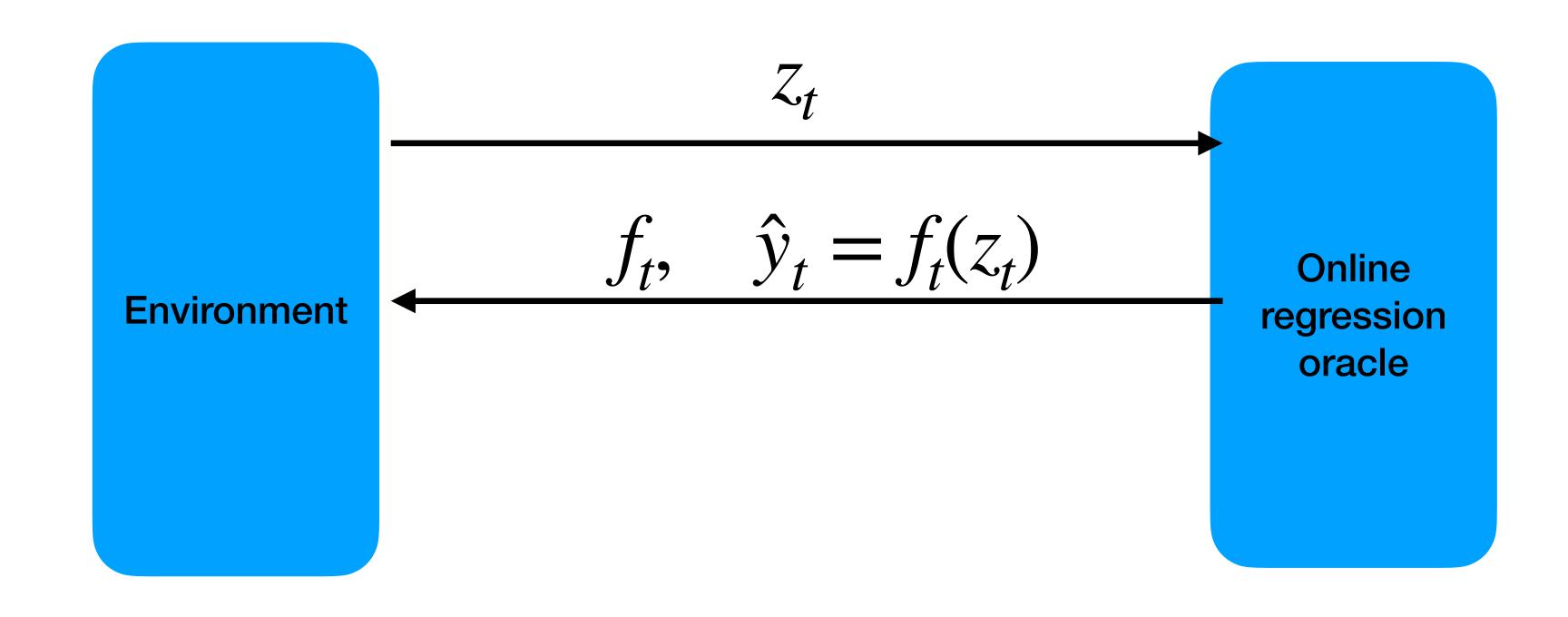
Outline for today:

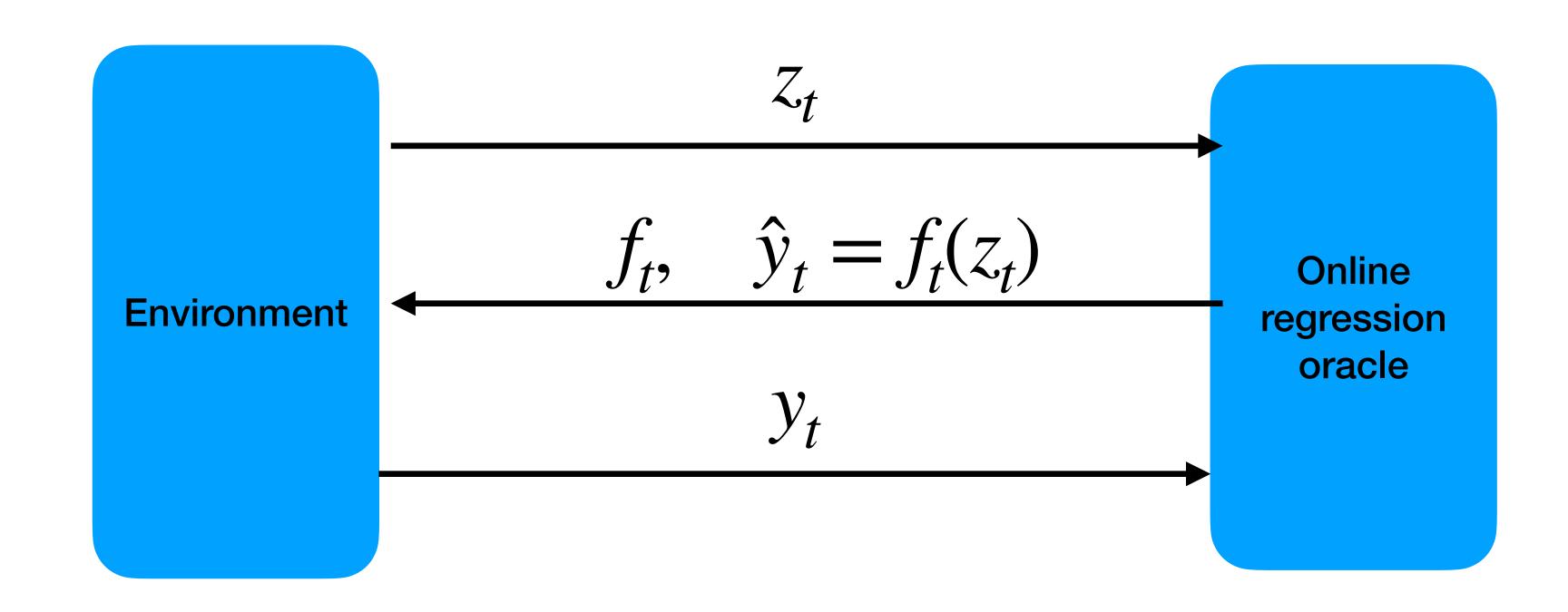
1. Introduction of the model

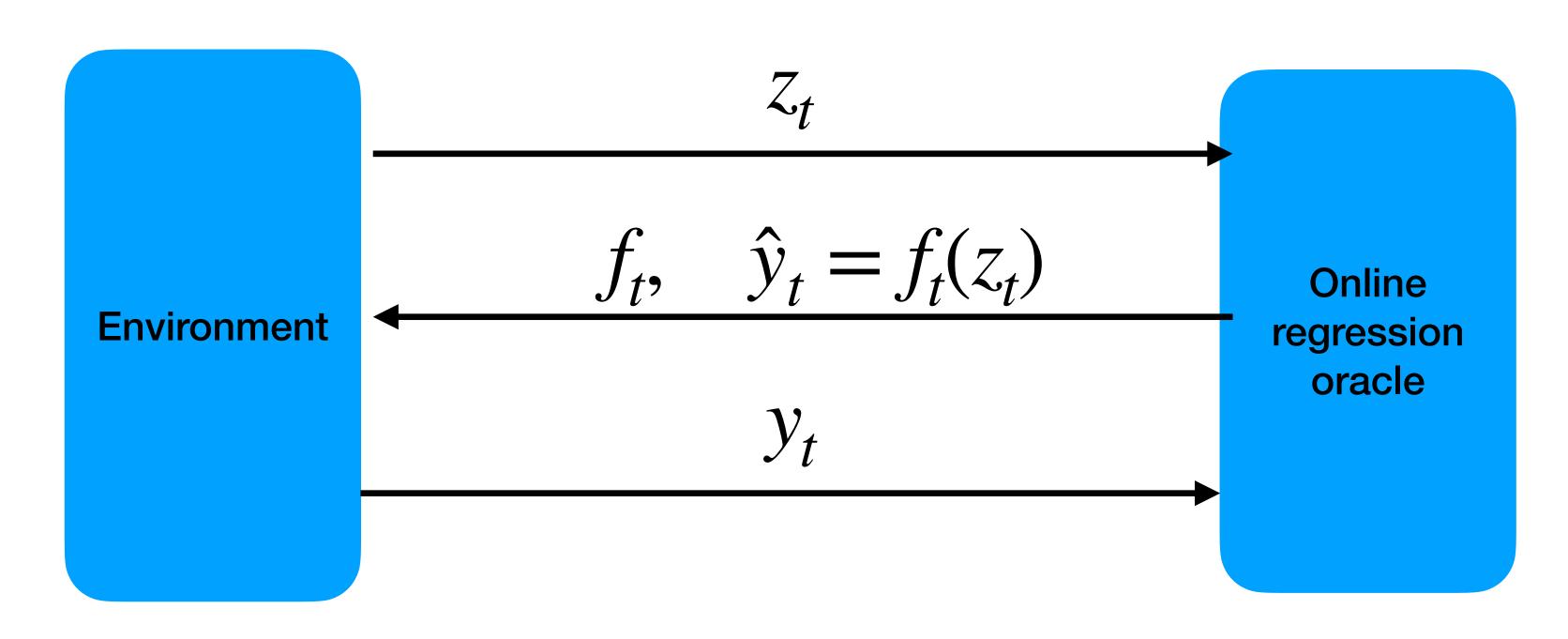
2. A general framework and its guarantees

3. Two instantiations from the general framework









$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(z_t) - y_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(z_t) - y_t)^2$$

Some examples of regret bounds in theory:

When
$$\mathcal{F}$$
 is linear, $\operatorname{Reg}_{ls}(T) = \tilde{O}(d\ln(T))$

When
$$\mathscr{F}$$
 is discrete, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(|\mathscr{F}|))$

When
$$\mathscr{F}$$
 is convex, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(T))$

Some examples of regret bounds in theory:

When
$$\mathcal{F}$$
 is linear, $\operatorname{Reg}_{ls}(T) = \tilde{O}(d\ln(T))$

When
$$\mathscr{F}$$
 is discrete, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(|\mathscr{F}|))$

When
$$\mathcal{F}$$
 is convex, $\operatorname{Reg}_{ls}(T) = \tilde{O}(\ln(T))$

In practice, simple gradient descent often works quite well

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

A reduction to online regression

Initialize
$$f_0 \in \mathcal{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

Observe reward $r_t \sim R(x_t, a_t)$

A reduction to online regression

$$\text{Initialize} f_0 \in \mathscr{F}$$

For
$$t = 0 \rightarrow T - 1$$

Receive context x_t Learner recommends a_t

Observe reward $r_t \sim R(x_t, a_t)$

 $\mathsf{Update}\,f_{t+1} = \mathsf{Online}\,\,\mathsf{Regression}(\hat{r}_t := f_t(x_t, a_t), r_t)$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

Learner then samples $a_t \sim p_t$

How learner recommends a_t ?

we use f_t to construct a distribution $p_t \in \Delta(A)$

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathscr{F}} \left[\underbrace{\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right)}_{\text{"regret"}} - \underbrace{\lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2}}_{\text{regularization}} \right]$$

Learner then samples $a_t \sim p_t$

Why use this p_t distribution?

$$\max_{f_t \in \mathcal{F}, x_t \in \mathcal{X}} \min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^*} f(x_t, a^*) - \mathbb{E}_{a \sim p} f(x_t, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_t, a) - f_t(x_t, a) \right)^2 \right] \leq \beta / \lambda$$

For every prediction, there exists p_t such that the immediate regret with respect to f^{*} is bounded

Why use this p_t distribution?

For every prediction, there exists p_t such that the immediate regret with respect to f^* is bounded

General theorem

Assume there exists $\beta \in \mathbb{R}^+$, such that:

$$\forall x, g \in \mathcal{F} : \min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^*} f(x, a^*) - \mathbb{E}_{a \sim p} f(x, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x, a) - g(x, a) \right)^2 \right] \leq \beta / \lambda$$

and realizability holds, i.e., $\mathbb{E}_{r\sim R(x,a)}[r]\in \mathscr{F}$, then, the regret of the algorithm is

$$\widetilde{O}\left(\sqrt{Teta\cdot \mathsf{Reg}_{ls}(T)}\right)$$

Proof

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathcal{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

$$\sum_{t=0}^{T-1} \mathbb{E}_{a_t \sim p_t} \left(f_t(x_t, a_t) - f^*(x_t, a_t) \right)^2 \lesssim \text{Reg}_{ls}(T) + \ln(1/\delta)$$

Step 1: reason about regression performance

$$\operatorname{Reg}_{ls}(T) = \sum_{t=0}^{T-1} (f_t(x_t, a_t) - r_t)^2 - \min_{f \in \mathscr{F}} \sum_{t=0}^{T-1} (f(x_t, a_t) - r_t)^2$$

Online regression regret implies that w/ prob $1-\delta$,

$$\sum_{t=0}^{T-1} \mathbb{E}_{a_t \sim p_t} \left(f_t(x_t, a_t) - f^{\star}(x_t, a_t) \right)^2 \lesssim \text{Reg}_{ls}(T) + \ln(1/\delta)$$
Bayes opt $f^{\star}(x, a) := \mathbb{E}[r \mid x, a]$

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{*}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{*}(x_{t}, a_{t})$$

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{*}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{*}(x_{t}, a_{t})$$

$$= \sum_{t=0}^{T-1} \left[\max_{a} f^{\star}(x, a) - \mathbb{E}_{a_{t} \sim p_{t}} f^{\star}(x_{t}, a_{t}) - \lambda \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a_{t}) - f_{t}(x_{t}, a_{t}))^{2} \right] + \lambda \sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a) - f_{t}(x_{t}, a))^{2}$$

Step 2:

Regret =
$$\sum_{t=0}^{T-1} \max_{a} f^{*}(x, a) - \sum_{t=0}^{T-1} \mathbb{E}_{a_{t} \sim p_{t}} f^{*}(x_{t}, a_{t})$$

$$= \sum_{t=0}^{T-1} \left[\max_{a} f^{\star}(x, a) - \mathbb{E}_{a_{t} \sim p_{t}} f^{\star}(x_{t}, a_{t}) - \lambda \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a_{t}) - f_{t}(x_{t}, a_{t}))^{2} \right] + \lambda \sum_{t=0}^{T-1} \mathbb{E}_{a \sim p_{t}} (f^{\star}(x_{t}, a) - f_{t}(x_{t}, a))^{2}$$

$$\leq T\beta/\lambda + \lambda(\text{Reg}_{ls}(T) + \ln(1/\delta))$$

Outline for today:

1. Introduction of the model

- 2. A general framework and its guarantees
- 3. An instantiation from the general framework

Instantiation of the general framework

How to efficiently compute p_t ?

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

Instantiation of the general framework

How to efficiently compute p_t ?

$$p_{t} = \arg\min_{p \in \Delta(A)} \max_{f \in \mathcal{F}} \left[\left(\max_{a^{*}} f(x_{t}, a^{*}) - \mathbb{E}_{a \sim p} f(x_{t}, a) \right) - \lambda \mathbb{E}_{a \sim p} \left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right]$$

For finite action spaces, there is a simple trick that finds an approximate minimizer

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

Given f_t , construct p_t as follows:

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Lemma

For p_t computed from IGW using f_t , we must have:

$$\forall x: \max_{f \in \mathscr{F}} \left[(\max_{a^*} f(x, a) - \mathbb{E}_{a_t \sim p_t} f(x, a_t)) - \lambda \mathbb{E}_{a \sim p_t} (f(x, a) - f_t(x, a))^2 \right] \leq \frac{A}{\lambda}$$

(See lecture notes for proof)

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

When prediction difference is large, downweight action

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Case 1: when f_t is a good predictor under x_t

When prediction difference is large, downweight action

Intuitively explanation of IGW

$$\tilde{a} = \arg\max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{1}{A + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$



Case 1: when f_t is a good predictor under x_t

Case 2: when f_t is a bad predictor under x_t ,

When prediction difference is large, downweight action

Square CB Algorithm

For
$$t = 0 \rightarrow T - 1$$
:

- 1. A new context $x_t \in \mathcal{X}$ appears
- // compute online regression predictor f
- 2. Use IGW to compute action probabilities
- 3. Sample $a \sim p_t$ with IGW and observe reward r
- 4. Update regression with example $((x_t, a), r)$

Applying Our Bound

Theorem

For appropriate γ , SquareCB guarantees

Regret
$$\leq 4\sqrt{AT \cdot \text{Reg}_{ls}(T)} + 8\sqrt{AT \log(2/\delta)}$$

Note that for $\mathcal{O}(\log T)$ online regression regret, we have a sublinear dependence on T

Instance Dependent Bounds

Until now, the bound we derived doesn't depend on the reward or environment

Our new aim is to bound based on the reward R^{\star} of the optimal policy

(Equivalently we could bound loss, but for now we stick with rewards)

Fast CB Algorithm

For
$$t = 0 \rightarrow T - 1$$
:

- 1. A new context $x_t \in \mathcal{X}$ appears
- // compute online regression predictor f
- 2. Use Reweighted IGW to compute action probabilities
- 3. Sample $a \sim p_t$ with IGW and observe reward r
- 4. Update regression with example $((x_t, a), r)$

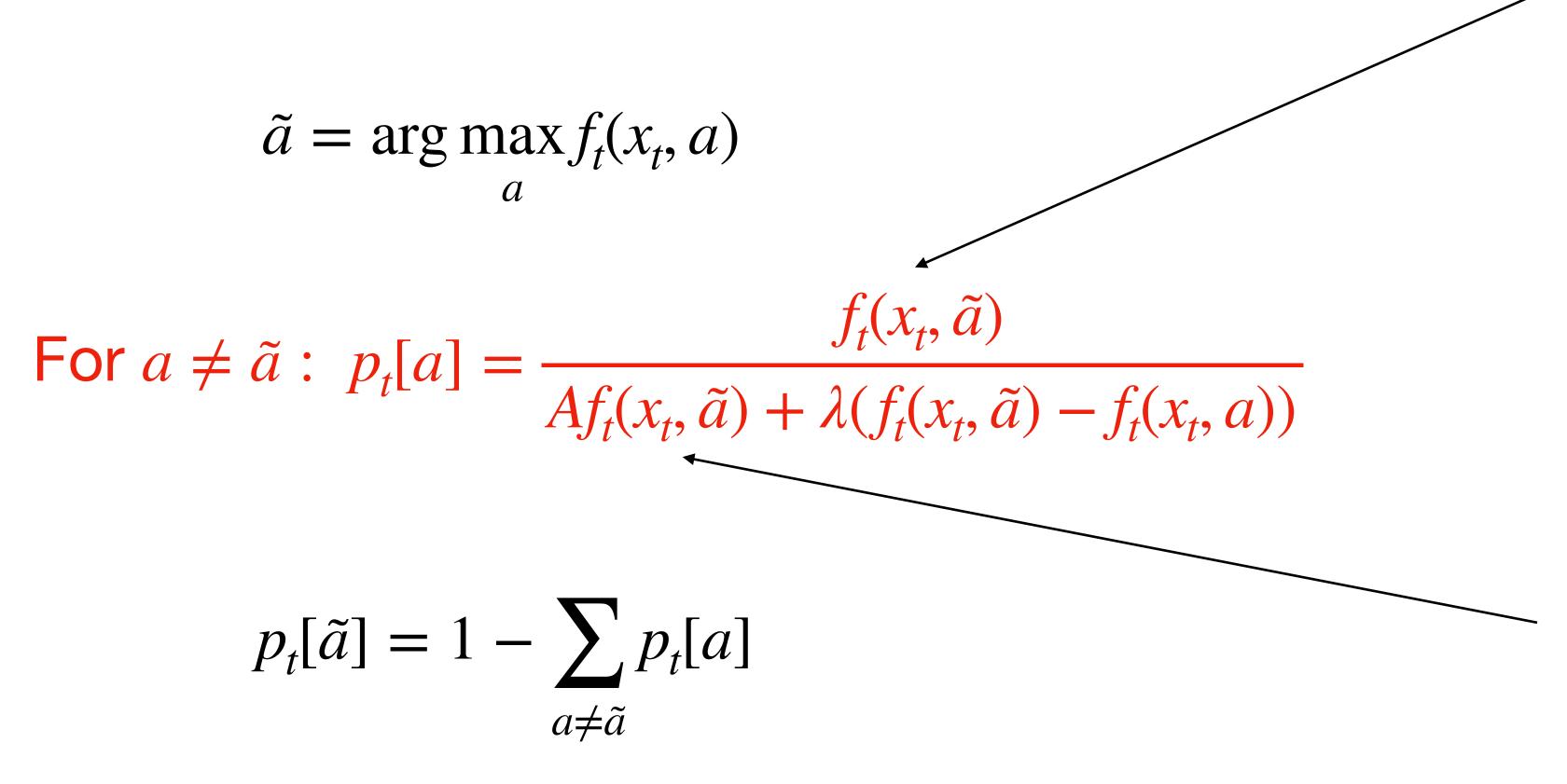
Reweighted IGW

$$\tilde{a} = \arg \max_{a} f_t(x_t, a)$$

For
$$a \neq \tilde{a}$$
: $p_t[a] = \frac{f_t(x_t, \tilde{a})}{Af_t(x_t, \tilde{a}) + \lambda(f_t(x_t, \tilde{a}) - f_t(x_t, a))}$

$$p_t[\tilde{a}] = 1 - \sum_{a \neq \tilde{a}} p_t[a]$$

Reweighted IGW



Notice the reweighting by the max predicted reward

Fast CB Bound

Theorem

For appropriate γ , FastCB guarantees

$$\mathbb{E}[\mathsf{Regret}] \leq \mathcal{O}\left(\sqrt{R^* \cdot A\mathsf{Reg}_{\mathit{KL}}(T)} + A\mathsf{Reg}_{\mathit{KL}}\right)$$

Note that Reg_{KL} is an online regressor that minimizes log loss:

$$\mathcal{E}_{\log}(\hat{y}, y) := y \log(1/\hat{y}) + (1 - y) \log(1/(1 - \hat{y}))$$

The analogous lemma to the minimax inequality is the following per round regret bound...

First-Order Per Round Inequality

Let $a^* := \arg\max_a f^*(x_t, a)$, and choosing p_a according to reweighted inverse gap weighting then we have for every round

$$\sum_{a} p_{a}(f^{*}(x_{t}, a^{*}) - f^{*}(x, a)) \leq \underbrace{\frac{9A}{\gamma} \sum_{a} p_{a} f^{*}(x_{t}, a)}_{a} + 10\gamma \sum_{a} p_{a} \frac{(f_{t}(x, a) - f^{*}(x_{t}, a))^{2}}{f_{t}(x, a) + f^{*}(x_{t}, a)}$$
CB Regret bias from exploring error from exploiting

(Proof in Foster et al, 2021)

Applying this theorem, we are guaranteed that

$$\mathbb{E}[\mathsf{Regret}] \le \frac{9A}{\gamma} \sum_{t=1}^{T} \sum_{a} p_{t,a} f^*(x_t, a) + 10\gamma \sum_{t=1}^{T} \sum_{a} p_{t,a} \frac{(f_t(x, a) - f^*(x_t, a))^2}{(f_t(x, a) + f^*(x_t, a))^2}$$

Applying this theorem, we are guaranteed that

$$\mathbb{E}[\mathsf{Regret}] \le \frac{9A}{\gamma} \sum_{t=1}^{T} \sum_{a} p_{t,a} f^*(x_t, a) + 10\gamma \sum_{t=1}^{T} \sum_{a} p_{t,a} \frac{(f_t(x, a) - f^*(x_t, a))^2}{(f_t(x, a) + f^*(x_t, a))}$$

$$= \frac{9A}{\gamma} \mathbb{E}[R_T] + 10\gamma \mathbb{E}[\mathsf{Err}]$$

Where R_T is the reward from the algorithm, and $\mathbb{E}[\mathsf{Err}]$ is

$$\sum_{t=1}^{T} \sum_{a} p_{t,a} \frac{(f_t(x,a) - f^*(x_t,a))^2}{(f_t(x,a) + f^*(x_t,a))^2}$$

For a random variable $y \in [0,1]$ with mean μ then for any \hat{y}

$$\mathbb{E}[\ell_{\log}(\hat{y}, y) - \ell_{\log}(\mu, y)] = d_{KL}(\mu || \hat{y}) \ge \frac{1}{2} \cdot \frac{(\hat{y} - \mu)^2}{\hat{y} + \mu}$$

Lets now rewrite $\mathbb{E}[Err]$ in terms of log loss:

For a random variable $y \in [0,1]$ with mean μ then for any \hat{y}

$$\mathbb{E}[\ell_{\log}(\hat{y}, y) - \ell_{\log}(\mu, y)] = d_{KL}(\mu || \hat{y}) \ge \frac{1}{2} \cdot \frac{(\hat{y} - \mu)^2}{\hat{y} + \mu}$$

Lets now rewrite E[Err] in terms of log loss:

$$\mathbb{E}[Err] = \sum_{t=1}^{T} \sum_{a} p_{t,a} \frac{(f_t(x,a) - f^*(x_t,a))^2}{(f_t(x,a) + f^*(x_t,a))} \le 2 \sum_{t=1}^{T} \sum_{a} p_{t,a} d_{KL}(f^*(x_t,a) || f_t(x_t,a)) = 2 \mathbb{E}[\mathsf{Reg}_{KL}]$$

For a random variable $y \in [0,1]$ with mean μ then for any \hat{y}

$$\mathbb{E}[\ell_{\log}(\hat{y}, y) - \ell_{\log}(\mu, y)] = d_{KL}(\mu || \hat{y}) \ge \frac{1}{2} \cdot \frac{(\hat{y} - \mu)^2}{\hat{y} + \mu}$$

Lets now rewrite E[Err] in terms of log loss:

$$\mathbb{E}[Err] = \sum_{t=1}^{T} \sum_{a} p_{t,a} \frac{(f_t(x,a) - f^*(x_t,a))^2}{(f_t(x,a) + f^*(x_t,a))} \le 2 \sum_{t=1}^{T} \sum_{a} p_{t,a} d_{KL}(f^*(x_t,a) || f_t(x_t,a)) = 2 \mathbb{E}[\mathsf{Reg}_{KL}]$$

Thus, we have

$$\mathbb{E}[Regret] \le \frac{9A}{\gamma} \mathbb{E}[R_T] + 20\gamma \mathbb{E}[\mathsf{Reg}_{KL}]$$

$$\mathbb{E}[Regret] \leq \frac{9A}{\gamma} \mathbb{E}[R_T] + 20\gamma \mathbb{E}[\mathsf{Reg}_{KL}]$$

$$\mathbb{E}[Regret] \le \frac{9A}{\gamma} \mathbb{E}[R^*] + 20\gamma \mathbb{E}[\text{Reg}_{KL}]$$

 R^{\star} is the sum of rewards from π^{*}

Appropriate choice for γ yields the final bound