Offline RL: Fitted Q Iteration

CS 6789: Foundations of Reinforcement Learning
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1. We have point-wise accuracy (via the contraction property):
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2. Turn f’s point-wise approximation error to policy’s performance (error amplification):
7'(s) = arg max f{(s, a), Vs
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Recap: Linear Bellman Completion

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,d0 € | d,s.t.,HTqb(S,a) = r(s,a) +

) Max qub(S’, a’),Vs,a
d

(It implies that Q" is linear in ¢: QX = (6;) ',V h

—s'~P,(s,a

Theorem: There exists a way to construct datasets { I f:_ol, such that
with probability at least 1 — 0, we have:

VEi—V* <e¢

w/ total number of samples in these datasets scaling 5 (d2 + H6d2/€2)



Recap: Least-Square Value Iteration

Using D-optimal design, we construct a linear regression dataset such that at all h:

O p(s.@) — T 0 ds.a)| <O (Hd/\/N)

max
S.d
Which implies that Q, := 0,' ¢ is point-wise accurate:

10, — O*|l, < H?d/\/N
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Today’s Question:

what happens when we do nonlinear function regression??
Point-wise prediction error guarantee is not possible anymore

Instead of aiming for point-wise guarantee,
We will focus on the average case (i.e., average over some distributions)
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Setting

1. Infinite horizon Discounted MDPs y € (0,1)

2. A given offline distribution v € A(S X A) from which we sample offline data

3. Functionclass & = {f: SXA — [0,1/(1 — y)]}
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Key Assumptions

1. offline distribution v has full coverage (i.e., diverse):

d”(s,a)
Necessary for max max <(C<o
today’s Alg r sa U(S,a)

2. Small inherent Bellman error, 1.e., near Bellman

Completion (note it’s averaged over v): Necessary in

2
maxmink,  _ s.a)— I o(s,a)) <e€ general (we saw
oeF feF T F (f (s, ) 8( )) approxv realizability itself
IS not enough)
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The FQI Algorithm

1. offline data points obtained from v:

9 ={s,a,r,s'}, (s,a)~v,r=r(s,a),s ~P(-|s,a)

2. Initialize f, € #, and iterate:

2
fio1 = argmin Z (f(s, a)—r — yme}xft(s’, a’)>

ceF
Y s.a,r,s' €

3. After K iterations, return z(s) = arg max fr(s, a), Vs
a

(Note: the algorithmic idea here is similar to DQNs [Deepmind 15]
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Why we could expect it to work...

2
fio1 =argmin ) (f(s, a)€ r—y maxf(s’,a)
feF , a
s.a,r,s' €Y

y :=r(s,a) +ymaxf(s,a’)
o

Bayes optimal: r(s, a) + Y. p(.is.q Max f{s’, a’)
a

) - - 4

(TF)(s.a)

1. Near Bellman completion means regression target J f, nearly belongs to F#

2
—S,a~U <ft+1(S ,a) — gﬁ(S ’ Cl)) ~ N T Capprox,v

2. f,..1 = T [, (under the diverse 1), i.e., it’s like Value lteration,
we could hope for a convergence
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Theorem

Theorem: Fix iteration number K, w/ probability at least 1 — 0,

N | CIn(|F |K/d) | 2y K
V - Vﬂ: S 0 4 + 3 \/CGCZPPI"OXU + 2
(1 =y N (1 =y ’ (1 =y

/TN

Statistical error related to Inherent Bellman error Vl-style
regression Convergence rate
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Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over L)

Standard Generalization Bound for regression:

| N
Given {xi, y,-}.= ) (Xi, y,-) ~U,Y; =f*(xl-) + €;, where \y,-\ <Y, Hf*Hoo <

afunctionclass & = {f: X — [=Y, Y]}, whereminE__ (f(x) — *(x))* < €
fes

Denotef ;= arg min Z (fx) — yl-)2 as the least square minimizer, then w/ prob 1 — ¢:
feF =

=/, 2 (V| F |/
= (fo0 -1 w) < 0( Sl g)




Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over 1)

1. Recall FQI’s regression problem:

2
] = arg min 2 (f(s, a) — — }/ma/Xft(S/, Cl,))

eF
/ s.a,r,s'€J



Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over 1)

1. Recall FQI’s regression problem:

>
f;_l_l = arg min Z (f(S, Cl) — 7 — }/maXﬁ(S” Cl’))
fesF a’
s.a,r,s'€J
2. Here Bayes optimal is f* := J°f,



Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over 1)

1. Recall FQI’s regression problem:

>
f,.1 = argmin Z (f(s, a) —r—ymaxf(s’ a/)>
fesF a’
s.a,r,s'€J
2. Here Bayes optimal is f* := J°f,

3. Via small inherent BE, we know that min E, ,_, (f(s, @) — T£,(s, @))* < €,prons
feF 7 ’




Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over 1)

1. Recall FQI’s regression problem:

>
ﬁ+1 = arg min Z (f(S, Cl) — I — }/maXﬁ(S” Cl’))
fesF a’
s.a,r,s'€J
2. Here Bayes optimal is f* := J°f,

3. Via small inherent BE, we know that min E, ,_, (f(s, @) — T£,(s, @))* < €,prons
feF 7 ’

| In(|F |/6)

B _ g 2 =
14243 => E, ., (fi;1(s,a) — Tf(s,a))” < A2 N T Capprox.y




Step 1:
Least Squares regression ensure near Bellman
consistency (averaged over 1)

1. Recall FQI’s regression problem:

>
ﬁ+1 = arg min Z (f(S, Cl) — I — }/maXﬁ(S” d’))
fesF a’
s.a,r,s'€J
2. Here Bayes optimal is f* := J°f,

3. Via small inherent BE, we know that min E, ,_, (f(s, @) — T£,(s, @))* < €,prons
feF 7 ’

| In(|F |/6)

B _ g 2 =
14243 =>E, . (fi11(5,a) — Tf(s,a))” < A2 N T Capprox.y

|
' Gappmx,v

1 In(|F|/5)
N

—s,a~U ‘ft+l(s’ CZ) o gﬁ(S, Cl) ‘ < \/(1 _ },)2

—

y _Gregress
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Step 2:

Near Bellman consistency implies convergence

Consider ANY state-action distribution f(s, a) (induced by some policy)

_S,aNﬁ(ft(Sa a) — Q™ (s, a))” = 1y — Q*Hﬁ,z < \/Eeregress +7llfi-1 — Q*Hz,ﬁ’
< ﬁeregress TY lﬁgregress T nyt—Z o Q*HZ,,B”

< \Fce,,eg,,ess (L+y+ ... +75) + 716 — 0% oy

ﬁeregress

<———+9M(1 =y)
1 —vy
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Step 3:

Turn in error ||f, — Q*||2ﬁ to policy 7~ performance

Denote 74(s) = arg max f,(s, a)

A

We know f; is close to Q™ (averaged over any distribution):

V* — Vﬂ — = oo dnk [Q*(Sa ﬂ*(S)) — Q*(Sa Cl)]

IN

< = e | Q7 (5, () = £ils, 7(5)) + fils, 7(s)) — Q7 (5, @)

\/ = e (Q7(5, () — fis. Jr*(s)))2 T \/
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To conclude:

2 [V Cerpress X vk L (| F|/5)
1 _ regress (1 B }’)2 N ' approx,v

where ¢
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To conclude:

. 2 [ VCeregress A \/ I In(|F|/8)
V-V~ T,

S Where Creoress — = €approx,u
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To conclude:

< + where €regress =
I —y 1 —y I —y

F €
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V * Vﬂ'k 2 ﬁeregress ]/k \/ | In(| F | /o)

1. Least square ensures we have near Bellman consistency under v:
C/
”ft o L/ft—l Hz,y < €regress

2. Near Bellman consistency under v + v covers all other possible distributions f:

If; = Ol 5 < <\/ Cerogress + 7 ) . poly(1/(1 — 7))

3. Like what we did in VI, turn f.’s approximation error to its policy’s
performance (1/(1 — y) amplification):



