Offline RL: Fitted Q Iteration

Wen Sun

CS 6789: Foundations of Reinforcement Learning

Recap: Value Iteration (Planning)

$$f_{t+1} = \mathcal{I}f_t$$

Recap: Value Iteration (Planning)

$$f_{t+1} = \mathcal{I}f_t$$

1. We have point-wise accuracy (via the contraction property):

$$||f_t - Q^*||_{\infty} \le \gamma^k / (1 - \gamma)$$

Recap: Value Iteration (Planning)

$$f_{t+1} = \mathcal{I}f_t$$

1. We have point-wise accuracy (via the contraction property):

$$||f_t - Q^*||_{\infty} \le \gamma^k / (1 - \gamma)$$

2. Turn f_t 's point-wise approximation error to policy's performance (error amplification):

$$\pi^{t}(s) = \arg\max_{a} f_{t}(s, a), \forall s$$

$$V^{\star} - V^{\pi^{t}} \leq \frac{2}{1 - \gamma} \frac{\gamma^{k}}{1 - \gamma}$$

Recap: Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\top}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$$
 (It implies that Q_h^\star is linear in ϕ : $Q_h^\star = (\theta_h^\star)^\top \phi, \forall h$

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \leq \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Recap: Least-Square Value Iteration

Using D-optimal design, we construct a linear regression dataset such that at all h:

$$\max_{s,a} \left| \theta_h^{\mathsf{T}} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s,a) \right| \leq O\left(Hd/\sqrt{N}\right)$$

Which implies that $Q_t := \theta_t^\mathsf{T} \phi$ is point-wise accurate:

$$\|Q_t - Q^*\|_{\infty} \le H^2 d/\sqrt{N}$$

Today's Question:

what happens when we do nonlinear function regression?

Point-wise prediction error guarantee is not possible anymore

Today's Question:

what happens when we do nonlinear function regression?

Point-wise prediction error guarantee is not possible anymore

Instead of aiming for point-wise guarantee, We will focus on the average case (i.e., average over some distributions)

Outline

1. Setting: Assumptions

2. Algorithm: Fitted Q Iteration

2. Guarantee and Proof sketch

Setting

1. Infinite horizon Discounted MDPs $\gamma \in (0,1)$

2. A given offline distribution $\nu \in \Delta(S \times A)$ from which we sample offline data

3. Function class $\mathcal{F} = \{f : S \times A \mapsto [0, 1/(1 - \gamma)]\}$

1. offline distribution ν has full coverage (i.e., diverse):

$$\max_{\pi} \max_{s,a} \frac{d^{\pi}(s,a)}{\nu(s,a)} \le C < \infty$$

1. offline distribution ν has full coverage (i.e., diverse):

Necessary for
$$\max \max \frac{d^{\pi}(s, a)}{\nu(s, a)} \leq C < \infty$$
 today's Alg π s, a $\nu(s, a)$

1. offline distribution ν has full coverage (i.e., diverse):

Necessary for
$$\max \max \frac{d^{\pi}(s, a)}{\nu(s, a)} \leq C < \infty$$
 today's Alg π s, a $\nu(s, a)$

2. Small inherent Bellman error, i.e., near Bellman Completion (note it's averaged over ν):

$$\max_{g \in \mathcal{F}} \min_{f \in \mathcal{F}} \mathbb{E}_{s, a \sim \nu} \left(f(s, a) - \mathcal{T}g(s, a) \right)^2 \leq \epsilon_{approx, \nu}$$

1. offline distribution ν has full coverage (i.e., diverse):

$$\max_{\pi} \max_{s,a} \frac{d^{\pi}(s,a)}{\nu(s,a)} \leq C < \infty$$

2. Small inherent Bellman error, i.e., near Bellman Completion (note it's averaged over ν):

$$\max_{g \in \mathcal{F}} \min_{f \in \mathcal{F}} \mathbb{E}_{s, a \sim \nu} \left(f(s, a) - \mathcal{T}g(s, a) \right)^2 \leq \epsilon_{approx, \nu}$$

Necessary in general (we saw realizability itself is not enough)

Outline

1. Setting: Assumptions

2. Algorithm: Fitted Q Iteration

2. Guarantee and Proof sketch

1. offline data points obtained from ν :

$$\mathcal{D} = \{s, a, r, s'\}, \quad (s, a) \sim \nu, r = r(s, a), s' \sim P(\cdot \mid s, a)$$

1. offline data points obtained from ν :

$$\mathcal{D} = \{s, a, r, s'\}, \quad (s, a) \sim \nu, r = r(s, a), s' \sim P(\cdot \mid s, a)$$

2. Initialize $f_0 \in \mathcal{F}$, and iterate:

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

1. offline data points obtained from ν :

$$\mathcal{D} = \{s, a, r, s'\}, \quad (s, a) \sim \nu, r = r(s, a), s' \sim P(\cdot \mid s, a)$$

2. Initialize $f_0 \in \mathcal{F}$, and iterate:

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

3. After K iterations, return $\pi(s) = \arg\max_{a} f_K(s, a), \forall s$

1. offline data points obtained from ν :

$$\mathcal{D} = \{s, a, r, s'\}, \quad (s, a) \sim \nu, r = r(s, a), s' \sim P(\cdot \mid s, a)$$

2. Initialize $f_0 \in \mathcal{F}$, and iterate:

$$f_{t+1} = \arg\min_{f \in \mathscr{F}} \sum_{s,a,r,s' \in \mathscr{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

3. After K iterations, return $\pi(s) = \arg\max_{a} f_K(s, a), \forall s$

(Note: the algorithmic idea here is similar to DQNs [Deepmind 15]

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) \left(-r - \gamma \max_{a'} f_t(s',a') \right)^2 \right)$$
$$y := r(s,a) + \gamma \max_{a'} f_t(s',a')$$

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) \left(-r - \gamma \max_{a'} f_t(s',a') \right)^2 \right)$$

$$y := r(s,a) + \gamma \max_{a'} f_t(s',a')$$
Bayes optimal: $r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \max_{a} f_t(s',a')$

$$(\mathcal{T}_t)(s,a)$$

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) \left(r - \gamma \max_{a'} f_t(s',a') \right)^2 \right)$$

$$y := r(s,a) + \gamma \max_{a'} f_t(s',a')$$
Bayes optimal: $r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a} f_t(s',a')$

$$(\mathcal{F}_t)(s,a)$$

1. Near Bellman completion means regression target \mathcal{I}_t nearly belongs to \mathcal{F}_t

$$\mathbb{E}_{s,a\sim\nu}\left(f_{t+1}(s,a)-\mathcal{T}f_t(s,a)\right)^2\approx\frac{1}{N}+\epsilon_{approx,\nu}$$

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) \left(r - \gamma \max_{a'} f_t(s',a') \right)^2 \right)$$

$$y := r(s,a) + \gamma \max_{a'} f_t(s',a')$$
Bayes optimal: $r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a} f_t(s',a')$

$$(\mathcal{T}_t)(s,a)$$

1. Near Bellman completion means regression target $\mathcal{T}f_t$ nearly belongs to \mathcal{F}

$$\mathbb{E}_{s,a\sim\nu}\left(f_{t+1}(s,a)-\mathcal{T}f_t(s,a)\right)^2\approx\frac{1}{N}+\epsilon_{approx,\nu}$$

 $2.f_{t+1} \approx \mathcal{T}f_t$ (under the diverse ν), i.e., it's like Value Iteration, we could hope for a convergence

Outline

1. Setting: Assumptions

2. Algorithm: Fitted Q Iteration

2. Guarantee and Proof sketch

Theorem: Fix iteration number K, w/ probability at least $1-\delta$,

$$V^{\star} - V^{\pi} \leq O\left(\frac{1}{(1-\gamma)^4} \sqrt{\frac{C \ln(|\mathcal{F}|K/\delta)}{N}} + \frac{1}{(1-\gamma)^3} \sqrt{C\epsilon_{approx,\nu}}\right) + \frac{2\gamma^K}{(1-\gamma)^2}$$

Theorem: Fix iteration number K, w/ probability at least $1-\delta$,

$$V^{\star} - V^{\pi} \leq O\left(\frac{1}{(1-\gamma)^4} \sqrt{\frac{C \ln(|\mathcal{F}|K/\delta)}{N}} + \frac{1}{(1-\gamma)^3} \sqrt{C\epsilon_{approx,\nu}}\right) + \frac{2\gamma^K}{(1-\gamma)^2}$$

Statistical error related to regression

Theorem: Fix iteration number K, w/ probability at least $1-\delta$,

$$V^* - V^{\pi} \le O\left(\frac{1}{(1 - \gamma)^4} \sqrt{\frac{C \ln(|\mathcal{F}| K/\delta)}{N}} + \frac{1}{(1 - \gamma)^3} \sqrt{C\epsilon_{approx,\nu}}\right) + \frac{2\gamma^K}{(1 - \gamma)^2}$$

Statistical error related to regression

Inherent Bellman error

Theorem: Fix iteration number K, w/ probability at least $1-\delta$,

$$V^{\star} - V^{\pi} \leq O\left(\frac{1}{(1 - \gamma)^4} \sqrt{\frac{C \ln(|\mathcal{F}| K/\delta)}{N}} + \frac{1}{(1 - \gamma)^3} \sqrt{C\epsilon_{approx,\nu}}\right) + \frac{2\gamma^K}{(1 - \gamma)^2}$$

Statistical error related to regression

Inherent Bellman error

VI-style Convergence rate

Least Squares regression ensure near Bellman consistency (averaged over ν)

Least Squares regression ensure near Bellman consistency (averaged over ν)

Given
$$\{x_i, y_i\}_{i=1}^N$$
, $(x_i, y_i) \sim \nu$, $y_i = f^*(x_i) + \epsilon_i$, where $\|y_i\| \leq Y$, $\|f^*\|_{\infty} \leq Y$,

Least Squares regression ensure near Bellman consistency (averaged over ν)

Given
$$\left\{x_i,y_i\right\}_{i=1}^N$$
, $(x_i,y_i) \sim \nu$, $y_i = f^\star(x_i) + \epsilon_i$, where $\|y_i\| \leq Y$, $\|f^\star\|_\infty \leq Y$, a function class $\mathscr{F} = \{f : \mathscr{X} \mapsto [-Y,Y]\}$, where $\min_{f \in \mathscr{F}} \mathbb{E}_{x \sim \nu} (f(x) - f^\star(x))^2 \leq \varepsilon$

Least Squares regression ensure near Bellman consistency (averaged over ν)

Given
$$\left\{x_i,y_i\right\}_{i=1}^N$$
, $(x_i,y_i) \sim \nu$, $y_i = f^*(x_i) + \varepsilon_i$, where $\|y_i\| \leq Y$, $\|f^*\|_{\infty} \leq Y$, a function class $\mathscr{F} = \{f : \mathscr{X} \mapsto [-Y,Y]\}$, where $\min_{f \in \mathscr{F}} \mathbb{E}_{x \sim \nu} (f(x) - f^*(x))^2 \leq \varepsilon$ Denote $\hat{f} := \arg\min_{f \in \mathscr{F}} \sum_{i=1}^N (f(x_i) - y_i)^2$ as the least square minimizer, then w/ prob $1 - \delta$:
$$\mathbb{E}_{x \sim \nu} \left(\hat{f}(x) - f^*(x)\right)^2 \leq O\left(\frac{Y^2 \ln(|\mathscr{F}|/\delta)}{N} + \varepsilon\right)$$

Least Squares regression ensure near Bellman consistency (averaged over ν)

1. Recall FQI's regression problem:
$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

Least Squares regression ensure near Bellman consistency (averaged over ν)

1. Recall FQI's regression problem:
$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

2. Here Bayes optimal is $f^* := \mathcal{I} f_t$,

Least Squares regression ensure near Bellman consistency (averaged over ν)

1. Recall FQI's regression problem:
$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

- 2. Here Bayes optimal is $f^* := \mathcal{I} f_t$,
- 3. Via small inherent BE, we know that $\min_{f \in \mathscr{F}} \mathbb{E}_{s,a \sim \nu} (f(s,a) \mathscr{T} f_t(s,a))^2 \leq \epsilon_{approx,\nu}$

Step 1:

Least Squares regression ensure near Bellman consistency (averaged over ν)

1. Recall FQI's regression problem:
$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{s,a,r,s' \in \mathcal{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

- 2. Here Bayes optimal is $f^* := \mathcal{I} f_t$,
- 3. Via small inherent BE, we know that $\min_{f \in \mathscr{F}} \mathbb{E}_{s,a \sim \nu} (f(s,a) \mathscr{T} f_t(s,a))^2 \leq \epsilon_{approx,\nu}$

$$1 + 2 + 3 => \mathbb{E}_{s,a \sim \nu} (f_{t+1}(s,a) - \mathcal{T}f_t(s,a))^2 \le \frac{1}{(1-\gamma)^2} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx,\nu}$$

Step 1:

Least Squares regression ensure near Bellman consistency (averaged over ν)

1. Recall FQI's regression problem:
$$f_{t+1} = \arg\min_{f \in \mathscr{F}} \sum_{s,a,r,s' \in \mathscr{D}} \left(f(s,a) - r - \gamma \max_{a'} f_t(s',a') \right)^2$$

- 2. Here Bayes optimal is $f^* := \mathcal{I} f_t$,
- 3. Via small inherent BE, we know that $\min_{f \in \mathscr{F}} \mathbb{E}_{s,a \sim \nu} (f(s,a) \mathscr{T} f_t(s,a))^2 \leq \epsilon_{approx,\nu}$

$$1 + 2 + 3 => \mathbb{E}_{s,a \sim \nu} (f_{t+1}(s,a) - \mathcal{T}f_t(s,a))^2 \le \frac{1}{(1-\gamma)^2} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx,\nu}$$

$$\mathbb{E}_{s,a\sim\nu} |f_{t+1}(s,a) - \mathcal{T}f_t(s,a)| \leq \sqrt{\frac{1}{(1-\gamma)^2} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx,\nu}} + \epsilon_{approx,\nu}$$

$$\vdots = \epsilon_{regress}$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a) - Q^*(s,a))^2} := ||f_t - Q^*||_{\beta,2}$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a) - Q^*(s,a))^2} := ||f_t - Q^*||_{\beta,2}$$

$$\leq ||f_t - \mathcal{T}f_{t-1}||_{2,\beta} + ||\mathcal{T}f_{t-1} - Q^*||_{2,\beta}$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a)-Q^{\star}(s,a))^2}:=\|f_t-Q^{\star}\|_{\beta,2}$$

$$\leq \|f_t-\mathcal{T}f_{t-1}\|_{2,\beta}+\|\mathcal{T}f_{t-1}-Q^{\star}\|_{2,\beta}$$
 Dist-change and Coverage condition

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_{t}(s,a) - Q^{*}(s,a))^{2}} := ||f_{t} - Q^{*}||_{\beta,2}$$

$$\leq ||f_{t} - \mathcal{T}f_{t-1}||_{2,\beta} + ||\mathcal{T}f_{t-1} - Q^{*}||_{2,\beta}$$
Dist-change and
$$\leq \sqrt{C}||f_{t} - \mathcal{T}f_{t-1}||_{2,\nu} + ||\mathcal{T}f_{t-1} - Q^{*}||_{2,\beta}$$
Coverage condition

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_{t}(s,a) - Q^{\star}(s,a))^{2}} := \|f_{t} - Q^{\star}\|_{\beta,2}$$

$$\leq \|f_{t} - \mathcal{T}f_{t-1}\|_{2,\beta} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Dist-change and
$$\leq \sqrt{C}\|f_{t} - \mathcal{T}f_{t-1}\|_{2,\nu} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Coverage condition

$$\leq \sqrt{C}\epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a\sim\beta} \left(\mathbb{E}_{s'\sim P(\cdot|s,a)} \left(\max_{a'} f_{t-1}(s',a') - \max_{a'} Q^{\star}(s',a') \right) \right)^2}$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_{t}(s,a) - Q^{\star}(s,a))^{2}} := \|f_{t} - Q^{\star}\|_{\beta,2}$$

$$\leq \|f_{t} - \mathcal{T}f_{t-1}\|_{2,\beta} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Dist-change and
$$\leq \sqrt{C}\|f_{t} - \mathcal{T}f_{t-1}\|_{2,\nu} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Coverage condition

$$\leq \sqrt{C}\epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a\sim\beta} \left(\mathbb{E}_{s'\sim P(\cdot|s,a)} \left(\max_{a'} f_{t-1}(s',a') - \max_{a'} Q^{\star}(s',a') \right) \right)^{2}}$$

$$\leq \sqrt{C}\epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a\sim\beta} \mathbb{E}_{s'\sim P(\cdot|s,a)} \max_{a'} \left(f_{t-1}(s',a') - Q^{\star}(s',a') \right)^{2}}$$

$$= \beta'(s',a')$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_{t}(s,a) - Q^{\star}(s,a))^{2}} := \|f_{t} - Q^{\star}\|_{\beta,2}$$

$$\leq \|f_{t} - \mathcal{T}f_{t-1}\|_{2,\beta} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Dist-change and
$$\leq \sqrt{C}\|f_{t} - \mathcal{T}f_{t-1}\|_{2,\nu} + \|\mathcal{T}f_{t-1} - Q^{\star}\|_{2,\beta}$$
Coverage condition

$$\leq \sqrt{C}\epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a\sim\beta} \left(\mathbb{E}_{s'\sim P(\cdot|s,a)} \left(\max_{a'} f_{t-1}(s',a') - \max_{a'} Q^{\star}(s',a') \right) \right)^{2}}$$

$$\leq \sqrt{C}\epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a\sim\beta} \mathbb{E}_{s'\sim P(\cdot|s,a)} \max_{a'} \left(f_{t-1}(s',a') - Q^{\star}(s',a') \right)^{2}} = \sqrt{C}\epsilon_{regress} + \gamma ||f_{t-1} - Q^{\star}||_{2,\beta'}$$

$$= \beta'(s',a')$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a) - Q^*(s,a))^2} := \|f_t - Q^*\|_{\beta,2} \le \sqrt{C}\epsilon_{regress} + \gamma \|f_{t-1} - Q^*\|_{2,\beta'}$$

Near Bellman consistency implies convergence

$$\sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a) - Q^*(s,a))^2} := \|f_t - Q^*\|_{\beta,2} \le \sqrt{C}\epsilon_{regress} + \gamma \|f_{t-1} - Q^*\|_{2,\beta'}$$

$$\le \sqrt{C}\epsilon_{regress} + \gamma \left[\sqrt{C}\epsilon_{regress} + \gamma \|f_{t-2} - Q^*\|_{2,\beta''}\right]$$

Near Bellman consistency implies convergence

$$\begin{split} \sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a)-Q^{\star}(s,a))^2} &:= \|f_t-Q^{\star}\|_{\beta,2} \leq \sqrt{C}\epsilon_{regress} + \gamma \|f_{t-1}-Q^{\star}\|_{2,\beta'} \\ &\leq \sqrt{C}\epsilon_{regress} + \gamma \left[\sqrt{C}\epsilon_{regress} + \gamma \|f_{t-2}-Q^{\star}\|_{2,\beta''}\right] \\ &\leq \sqrt{C}\epsilon_{regress} \left(1+\gamma+\ldots+\gamma^k\right) + \gamma^k \|f_0-Q^{\star}\|_{2,\tilde{\beta}} \end{split}$$

Near Bellman consistency implies convergence

$$\begin{split} \sqrt{\mathbb{E}_{s,a\sim\beta}(f_t(s,a)-Q^{\star}(s,a))^2} &:= \|f_t-Q^{\star}\|_{\beta,2} \leq \sqrt{C}\epsilon_{regress} + \gamma \|f_{t-1}-Q^{\star}\|_{2,\beta'} \\ &\leq \sqrt{C}\epsilon_{regress} + \gamma \left[\sqrt{C}\epsilon_{regress} + \gamma \|f_{t-2}-Q^{\star}\|_{2,\beta'}\right] \\ &\leq \sqrt{C}\epsilon_{regress} \left(1+\gamma+\ldots+\gamma^k\right) + \gamma^k \|f_0-Q^{\star}\|_{2,\tilde{\beta}} \\ &\leq \frac{\sqrt{C}\epsilon_{regress}}{1-\gamma} + \gamma^k/(1-\gamma) \end{split}$$

Turn in error $||f_k - Q^*||_{2,\beta}$ to policy π^k performance

Denote
$$\pi^k(s) = \arg \max_a f_k(s, a)$$

$$V^{\star} - V^{\pi^k} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^k}} \left[Q^{\star}(s, \pi^{\star}(s)) - Q^{\star}(s, a) \right]$$

Turn in error $||f_k - Q^*||_{2,\beta}$ to policy π^k performance

Denote
$$\pi^k(s) = \underset{a}{\operatorname{arg max}} f_k(s, a)$$

$$V^{*} - V^{\pi^{k}} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - Q^{*}(s, a) \right]$$

$$\leq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - f_{k}(s, \pi^{*}(s)) + f_{k}(s, \pi^{k}(s)) - Q^{*}(s, a) \right]$$

Turn in error $||f_k - Q^*||_{2,\beta}$ to policy π^k performance

Denote
$$\pi^k(s) = \underset{a}{\operatorname{arg max}} f_k(s, a)$$

$$V^{*} - V^{\pi^{k}} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - Q^{*}(s, a) \right]$$

$$\leq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - f_{k}(s, \pi^{*}(s)) + f_{k}(s, \pi^{k}(s)) - Q^{*}(s, a) \right]$$

$$\leq \frac{1}{1 - \gamma} \left[\sqrt{\mathbb{E}_{s \sim d^{\pi^{k}}} \left(Q^{*}(s, \pi^{*}(s)) - f_{k}(s, \pi^{*}(s)) \right)^{2}} + \sqrt{\mathbb{E}_{s \sim d^{\pi^{k}}} \left(f_{k}(s, \pi^{k}(s)) - Q^{*}(s, \pi^{k}(s)) \right)^{2}} \right]$$

Turn in error $||f_k - Q^*||_{2,\beta}$ to policy π^k performance

Denote
$$\pi^k(s) = \arg \max_a f_k(s, a)$$

$$V^{*} - V^{\pi^{k}} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - Q^{*}(s, a) \right]$$

$$\leq \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{k}}} \left[Q^{*}(s, \pi^{*}(s)) - f_{k}(s, \pi^{*}(s)) + f_{k}(s, \pi^{k}(s)) - Q^{*}(s, a) \right]$$

$$\leq \frac{1}{1 - \gamma} \left[\sqrt{\mathbb{E}_{s \sim d^{\pi^{k}}} \left(Q^{*}(s, \pi^{*}(s)) - f_{k}(s, \pi^{*}(s)) \right)^{2}} + \sqrt{\mathbb{E}_{s \sim d^{\pi^{k}}} \left(f_{k}(s, \pi^{k}(s)) - Q^{*}(s, \pi^{k}(s)) \right)^{2}} \right]$$

$$\leq \frac{2}{1-\gamma} \left(\frac{\sqrt{C}\epsilon_{regress}}{1-\gamma} + \frac{\gamma^k}{1-\gamma} \right)$$

$$V^{\star} - V^{\pi^{k}} \leq \frac{2}{1 - \gamma} \left(\frac{\sqrt{C} \epsilon_{regress}}{1 - \gamma} + \frac{\gamma^{k}}{1 - \gamma} \right) \quad \text{where } \epsilon_{regress} = \sqrt{\frac{1}{(1 - \gamma)^{2}} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx, \nu}}$$

$$V^{\star} - V^{\pi^{k}} \leq \frac{2}{1 - \gamma} \left(\frac{\sqrt{C} \epsilon_{regress}}{1 - \gamma} + \frac{\gamma^{k}}{1 - \gamma} \right) \quad \text{where } \epsilon_{regress} = \sqrt{\frac{1}{(1 - \gamma)^{2}} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx, \nu}}$$

1. Least square ensures we have near Bellman consistency under ν :

$$||f_t - \mathcal{I}f_{t-1}||_{2,\nu} \le \epsilon_{regress}$$

$$V^{\star} - V^{\pi^{k}} \leq \frac{2}{1 - \gamma} \left(\frac{\sqrt{C} \epsilon_{regress}}{1 - \gamma} + \frac{\gamma^{k}}{1 - \gamma} \right) \quad \text{where } \epsilon_{regress} = \sqrt{\frac{1}{(1 - \gamma)^{2}} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx,\nu}}$$

1. Least square ensures we have near Bellman consistency under ν :

$$||f_t - \mathcal{I}f_{t-1}||_{2,\nu} \le \epsilon_{regress}$$

2. Near Bellman consistency under ν + ν covers all other possible distributions β :

$$||f_t - Q^*||_{2,\beta} \le \left(\sqrt{C\epsilon_{regress}} + \gamma^k\right) \cdot \text{poly}(1/(1-\gamma))$$

$$V^{\star} - V^{\pi^{k}} \leq \frac{2}{1 - \gamma} \left(\frac{\sqrt{C} \epsilon_{regress}}{1 - \gamma} + \frac{\gamma^{k}}{1 - \gamma} \right) \quad \text{where } \epsilon_{regress} = \sqrt{\frac{1}{(1 - \gamma)^{2}} \frac{\ln(|\mathcal{F}|/\delta)}{N} + \epsilon_{approx,\nu}}$$

1. Least square ensures we have near Bellman consistency under ν :

$$||f_t - \mathcal{I}f_{t-1}||_{2,\nu} \le \epsilon_{regress}$$

2. Near Bellman consistency under ν + ν covers all other possible distributions β :

$$||f_t - Q^*||_{2,\beta} \le \left(\sqrt{C\epsilon_{regress}} + \gamma^k\right) \cdot \text{poly}(1/(1-\gamma))$$

3. Like what we did in VI, turn f_t 's approximation error to its policy's performance $(1/(1-\gamma))$ amplification):