Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning



Announcements

1. HW1 Is going to be out Thursday.

2. Wen'’s office hour: after lectures



Recap: Generative model + Tabular

1. Generative model assumption:
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1. Generative model assumption:

At any (s, a), we can sample s’ ~ P( - | s, a)

Q: why this could be a strong assumption in practice?
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Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, s; ~ P( - | s, a)

> 1) = 5)

2. For each (s, a, s’), construct ﬁ(S" S,a) = Y

3. Find optimal policy under P ie. #* = PI(IA’, r)



Recap: Generative model + Tabular
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Recap: Generative model + Tabular

Result:
In(SA/0o) | - N -
When N > m, then w/ prob 1 — 9, we will learn a 7™, such that ||Q™ — Q" ||, < €
e\l =Y
Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to 1/(1 — y)°)

2. Remarkably, our learned model P in this case is not necessarily accurate at all



Today: Generative model + linear function
approximation

Key question: what happens when state-action space is large or even continuous?



Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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Finite Horizon MDPs and DP

% — {S,A,Ph,r,H}
P,:SXAmr AW), r:5xA-[0,1}
Compute z* via DP (backward in time):

1.set Q7 (s,a) = r(s,a), n;_,(s) = argmax Q7 (s, a), V;_,(s) = max Q;_,(s, a)

2. At h, set Q)(s,a) = r(s,a) + Ey_p 150V i1 (),
7 (s) = arg max Q) (s, a), V*(s) = max Q/ (s, a)

A A
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Recall Error amplification

1. Bellman optimality: ||Q — 5 Q|| = 0, then Q = o~

2. If nearly Bellman-consistent, i.e., ||Q — T 0|, <

Then we have error ampllflcatlon

10— O0*|l, <e/(1—7p), = V*=VT<e/(l —y)

Similar results hold in finite horizon, with the effective horizon
1/(1 — y) being replaced by H



Linear Bellman Completion

Given feature ¢, take any linear function w ' (s, a):

Vh,30 € R s.t.,0 " d(s,a) = r(s,a) + , max w' (s’ a),Vs,a
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Given feature ¢, take any linear function w ' (s, a):

Vh,30 e R s .t., 6’T¢(S, a) = r(s,a) + = P (5.q) NAX ngb(S’, a\\Vs,a

A

This is a function of (s, a), and it’s linear in ¢(s, a)

d d

Notation: we will denote such 0 := 5 ,(w), where &, : R® |



a , n

Vh,30 € R?
s.t.,0" ¢(s,a) = r(s,a) +

m T
) ae}xw o(s’,a’), Vs, a

s'~P,(s,a



What does Linear Bellman completion imply
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What does Linear Bellman completion imply

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 e R% s .t., HTqb(S, a) =r(s,a) + = P (5.0) NAX WT¢(S’, a),Vs,a

d

It implies that Q" is linear in ¢:
Oy =(0%)'¢,Vh
Why?

reward r(s, a) is linear in ¢, i.e., Q7_ (s, a) is linear,
now recursively show that Q% is linear
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Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set (s, a) to be a one-hot encoding vector in | A e o(s,a) = |0,...,0,1,0,.. 01"

2. Linear System with Quadratic feature @

seR?aeR, P,(-|s,a) =/V(As+ba,021)

P(s,a) =[5y, S5, ST, 57,5155, 81, $,a, a, a*,1]"

Claim: (s, a) + kg _p(; o Max w' (s, a’) is a linear function in ¢
a/




Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,
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Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,

Vh,30 e R% s .t .. HTgb(s, a) =r(s,a) + = P (5.q) AX qub(S’, a),Vs,a

d
Adding additional elements to ¢ can break the condition!

seR%aeR, P,(-|s,a) =/V(As+ba,02])

_ 2 2 2
P(s,a) = s, 5, 57,85, 815, 814, $ra,a,a*,1, s

.
/]
Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression),
adding elements to features is ok!
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Can we just assume Q™ being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with Q}f (s,a) is linear in ¢(s, a) (known),

such that in order to find a policy 7 with V”(s,) > V*(s;) — 0.05, it requires at
least min{2%,2"} many samples!

i.e., polynomial bound poly(d, H) is not possible for linear O™ (Ch5 AJKS)



What we will show today:

1. Generative Model
(i.e., we can reset system to any (s, a), query r(s,a),s’ ~ P(.|s,a))

+

2. Linear Bellman Completion

Sample efficient Learning
(poly time)



Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q,f(s, a) = (6’;)Tgb(s, a),Vs,a,h

Set Viy(s) = 0,Vs Given datasets 9y, ..., Dy, W/
For h = H-1 to O: D, =1{s,a,r,8'},r=r(s,a),s’ ~P,(-|s,a)

2
0, = arg mgin Z (HTqb(s, a) — (r + Vh+1(s’))> Let’s simulate the DP process w/

= linear function to approximate O *
Set V,(s) := max 6’hT O(s,a), Vs
da

Return 7, (s) = arg max 6’hT o(s,a),Vh
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2
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Set VH(S) — O, VS

Why LSVI may work? For h = H-1 to 0:
2
0, = arg m@in Z (9T¢(S, a) — (r + Vh+1(s’))>

When we do linear regression at step h: D)
Set V,(s) := max HhT o(s,a),Vs
A

= ¢(s,a), y:=r+V, ()

- _ T
We note that- Return 7,(s) = arg mjx 0, ¢(s,a),Vh

“lvix|l=rs,a)+ 1t maX s’ a , _
[y1x] (s, a) s'~P(s.a) 145( ) and linear regression

7 ,(0,.) ¢(s,a) due to Linear BC Succeeds (e.9.,0,~ T ,(0,.)),

Then we should hope Q}Tqﬁ(s, a) X Q;(S, a)

l.e., our regression target is indeed
inear in ¢, and it is close to Q" if

o /X
Vh+1 ~ Vh+1
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Sample complexity of LSVI

Theorem: There exists a way to construct datasets { I 1}32—01, such that
with probability at least 1 — 0, we have:
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Sample complexity of LSVI

Theorem: There exists a way to construct datasets { I 1}32—01, such that
with probability at least 1 — 0, we have:

VIi—V*<e¢
w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

Plans: (1) OLS and D-optimal design; (2) construct &, using D-optimal
design; (3) transfer regression error to Hé’hT D — Q,ff |
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Detour: Ordinary Linear Squares

Consider a dataset {x;, y;}:",, where y, = (%) 'x; + ¢, E[¢;|x;] = 0, ¢; are independent

N
with | €;| < o, assume A = Z x.x; /N is full rank;
i=1
N
OLS : 0 = arg m@in Z O'x; — y,)°
i=1

Standard OLS guarantee: with probability at least 1 — 0, we have:

o2d In(1/8) )

N AOX\NTACO Nk
6—07) A0 H)SO( v
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Detour: Issues in Ordinary Linear Squares

With probability at least 1 — o:
62d ln(1/5)>

N
Recall A = Z xx; /N ;
i=1 O —0%)TAB—0%) <0 ( >

If the test point x is not covered by the training data, I.e., x A lxis huge,
then we cannot guarantee ' x is close to (8*) ' x

t @ No hope to predict
well here!

A ———

Let’s actively design a diverse dataset !
(D-optimal Design)
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Detour: D-optimal Design

4

Consider a compact space & C R (without loss of generality, assume span() = |

D-optimal Design p* € A(Z): p* = arg max Indet ( p [xxTD
pEA(L)

Properties of the D-optimal Design:

support(p™) < d(d+ 1)/2

-1
maxy' [-pr*xxT] y<d
yeX
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Detour: OLS w/ D-optimal Design

4

Consider a compact space & C R (without loss of generality, assume span() = |

D-optimal Design p* € A(Z): p* = arg max Indet ( = [xxT])
PEA(L)

We actively construct a dataset <, which contains | p(x)N | many copies of x

For each x € &, query y (noisy measure);

The OLS solution & on 9 has the following point-wise guarantee: w/ prob 1 — o

od In(1/0)

VN

max
b=t A

(é—@*,x}‘ <




Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ( S [xxT] )
PEA(L)



Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ( S [xxT] )
PEA(L)

D-optimal design allows us to actively construct a dataset 4 = {x, y},
such that OLS solution is POINT-WISE accurate:

od In(1/0)

VN

(é—é’*,x}‘ <

max
xXeX



