Learning with Linear Bellman Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning

Announcements

1. HW1 is going to be out Thursday.

2. Wen's office hour: after lectures

1. Generative model assumption:

At any (s, a), we can sample $s' \sim P(\cdot \mid s, a)$

1. Generative model assumption:

At any (s, a), we can sample $s' \sim P(\cdot \mid s, a)$

Q: why this could be a strong assumption in practice?

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s'_i \sim P(\cdot \mid s, a)$

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s'_i \sim P(\cdot \mid s, a)$

2. For each
$$(s, a, s')$$
, construct $\hat{P}(s'|s, a) = \frac{\sum_{i=1}^{N} \mathbf{1}(s'_i = s')}{N}$

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s'_i \sim P(\cdot \mid s, a)$

2. For each
$$(s, a, s')$$
, construct $\hat{P}(s'|s, a) = \frac{\sum_{i=1}^{N} \mathbf{1}(s'_i = s')}{N}$

3. Find optimal policy under \hat{P} , i.e., $\hat{\pi}^* = \text{PI}(\hat{P}, r)$

Result:

When
$$N \ge \frac{\ln(SA/\delta)}{\epsilon^2(1-\gamma)^6}$$
, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^*$, such that $\|Q^*-Q^{\hat{\pi}^*}\|_{\infty} \le \epsilon$

Remarks:

Result:

When
$$N \ge \frac{\ln(SA/\delta)}{\epsilon^2(1-\gamma)^6}$$
, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^*$, such that $\|Q^*-Q^{\hat{\pi}^*}\|_{\infty} \le \epsilon$

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $1/(1-\gamma)^5$)

Result:

When
$$N \ge \frac{\ln(SA/\delta)}{\epsilon^2(1-\gamma)^6}$$
, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^*$, such that $\|Q^*-Q^{\hat{\pi}^*}\|_{\infty} \le \epsilon$

Remarks:

- 1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $1/(1-\gamma)^5$)
- 2. Remarkably, our learned model \hat{P} in this case is not necessarily accurate at all

Today: Generative model + linear function approximation

Key question: what happens when state-action space is large or even continuous?

Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Finite Horizon MDPs and DP

$$\mathcal{M} = \{S, A, P_h, r, H\}$$

$$P_h : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1]$$

Compute π^* via DP (backward in time):

Finite Horizon MDPs and DP

$$\mathcal{M} = \{S, A, P_h, r, H\}$$

$$P_h : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1]$$

Compute π^* via DP (backward in time):

1. set
$$Q_{H-1}^{\star}(s, a) = r(s, a), \pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a), V_{H-1}^{\star}(s) = \max_{a} Q_{H-1}^{\star}(s, a)$$

Finite Horizon MDPs and DP

$$\mathcal{M} = \{S, A, P_h, r, H\}$$

$$P_h : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1]$$

Compute π^* via DP (backward in time):

1. set
$$Q_{H-1}^{\star}(s,a) = r(s,a), \, \pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s,a), \, V_{H-1}^{\star}(s) = \max_{a} Q_{H-1}^{\star}(s,a)$$

2. At h , set $Q_{h}^{\star}(s,a) = r(s,a) + \mathbb{E}_{s' \sim P_{h}(\cdot \mid s,a)} V_{h+1}^{\star}(s'), \, \pi_{h}^{\star}(s) = \arg\max_{a} Q_{h}^{\star}(s,a), \, V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s,a)$

1. Bellman optimality: $\|Q - \mathcal{I}Q\|_{\infty} = 0$, then $Q = Q^*$

1. Bellman optimality: $\|Q - \mathcal{I}Q\|_{\infty} = 0$, then $Q = Q^*$

2. If nearly Bellman-consistent, i.e., $\|Q - \mathcal{I}Q\|_{\infty} \leq \epsilon$,

1. Bellman optimality: $\|Q - \mathcal{I}Q\|_{\infty} = 0$, then $Q = Q^*$

2. If nearly Bellman-consistent, i.e., $\|Q - \mathcal{I}Q\|_{\infty} \leq \epsilon$,

Then we have error amplification:

$$\|Q - Q^*\|_{\infty} \le \epsilon/(1 - \gamma), \Rightarrow V^* - V^{\hat{\pi}} \le \epsilon/(1 - \gamma)^2$$

1. Bellman optimality: $\|Q - \mathcal{I}Q\|_{\infty} = 0$, then $Q = Q^*$

2. If nearly Bellman-consistent, i.e., $\|Q - \mathcal{I}Q\|_{\infty} \leq \epsilon$,

Then we have error amplification:

$$\|Q - Q^*\|_{\infty} \le \epsilon/(1 - \gamma), \Rightarrow V^* - V^{\hat{\pi}} \le \epsilon/(1 - \gamma)^2$$

Similar results hold in finite horizon, with the effective horizon $1/(1-\gamma)$ being replaced by H

Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

This is a function of (s, a), and it's linear in $\phi(s, a)$

Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

This is a function of (s, a), and it's linear in $\phi(s, a)$

Notation: we will denote such $\theta := \mathcal{T}_h(w)$, where $\mathcal{T}_h : \mathbb{R}^d \mapsto \mathbb{R}^d$

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

It implies that Q_h^* is linear in ϕ :

$$Q_h^{\star} = (\theta^{\star})^{\mathsf{T}} \phi, \forall h$$

Why?

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\mathsf{T}}\phi(s,a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

It implies that Q_h^* is linear in ϕ :

$$Q_h^{\star} = (\theta^{\star})^{\mathsf{T}} \phi, \forall h$$

Why?

reward r(s,a) is linear in ϕ , i.e., $Q_{H-1}^{\star}(s,a)$ is linear, now recursively show that Q_h^{\star} is linear

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s,a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s,a)=[0,\ldots,0,1,0,\ldots 0]^{\mathsf{T}}$

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s,a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s,a)=[0,\ldots,0,1,0,\ldots 0]^{\mathsf{T}}$

2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot \mid s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s,a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s,a)=[0,\ldots,0,1,0,\ldots 0]^{\mathsf{T}}$

2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$
$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1]^\mathsf{T}$$

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s,a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s,a)=[0,\ldots,0,1,0,\ldots 0]^{\mathsf{T}}$

2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N} \left(As + ba, \sigma^2 I \right)$$
$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1]^\top$$

Claim: $r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \max_{a'} w^T \phi(s', a')$ is a linear function in ϕ

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Adding additional elements to ϕ can break the condition!

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot \mid s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot \mid s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$

$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1s_2, s_1a, s_2a, a, a^2, 1, s_1^3]^{\mathsf{T}}$$

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$
$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, s_1^3]^{\mathsf{T}}$$

Linear Bellman completion breaks!

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\mathsf{T}} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\mathsf{T}} \phi(s', a'), \forall s, a$$

Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}\left(As + ba, \sigma^2 I\right)$$
$$\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, s_1^3]^{\mathsf{T}}$$

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!

Can we just assume Q^* being linear?

No! There are lower bounds (even under generative model):

Can we just assume Q^* being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_h^{\star}(s,a)$ is linear in $\phi(s,a)$ (known), such that in order to find a policy π with $V^{\pi}(s_1) \geq V^{\star}(s_1) - 0.05$, it requires at least $\min\{2^d,2^H\}$ many samples!

Can we just assume Q^* being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_h^{\star}(s,a)$ is linear in $\phi(s,a)$ (known), such that in order to find a policy π with $V^{\pi}(s_1) \geq V^{\star}(s_1) - 0.05$, it requires at least $\min\{2^d,2^H\}$ many samples!

i.e., polynomial bound poly(d, H) is not possible for linear Q^* (Ch5 AJKS)

What we will show today:

1. Generative Model

(i.e., we can reset system to any (s, a), query $r(s, a), s' \sim P(. \mid s, a)$)

+

2. Linear Bellman Completion

Sample efficient Learning (poly time)

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^{\mathsf{T}} \phi(s, a), \forall s, a, h$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^T \phi(s, a), \forall s, a, h$

Given datasets
$$\mathcal{D}_0, ..., \mathcal{D}_{H-1}$$
, w/ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^{\mathsf{T}} \phi(s, a), \forall s, a, h$

Given datasets
$$\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}$$
, w/ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^T \phi(s, a), \forall s, a, h$

Set
$$V_H(s) = 0, \forall s$$

Given datasets
$$\mathcal{D}_0, ..., \mathcal{D}_{H-1}$$
, w/
$$\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^\top \phi(s, a), \forall s, a, h$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

or n = H-1 to U:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

Given datasets $\mathcal{D}_0,\ldots,\mathcal{D}_{H-1}$, w/ $\mathcal{D}_h=\{s,a,r,s'\}, r=r(s,a), s'\sim P_h(\,\cdot\,|\,s,a)$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^T \phi(s, a), \forall s, a, h$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

$$\text{Set } V_h(s) := \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall s$$

Given datasets
$$\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}$$
, w/
$$\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$$

Recall linear bellman-completion implies $Q_h^*(s, a) = (\theta_h^*)^T \phi(s, a), \forall s, a, h$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2 \\ \text{Set } V_h(s) := \max_{a} \theta_h^\mathsf{T} \phi(s, a), \forall s \end{array} \right|$$

Return
$$\hat{\pi}_h(s) = \arg\max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$$

Given datasets
$$\mathcal{D}_0,\ldots,\mathcal{D}_{H-1}$$
, w/
$$\mathcal{D}_h=\{s,a,r,s'\}, r=r(s,a), s'\sim P_h(\,\cdot\,|\,s,a)$$

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

Set $V_H(s) = 0, \forall s$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

Set $V_h(s) := \max_{\theta} \theta_h^{\mathsf{T}} \phi(s, a), \forall s$

Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that:

$$\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

Set $V_H(s) = 0, \forall s$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

Set $V_h(s) := \max_{\theta} \theta_h^T \phi(s, a), \forall s$

Return $\hat{\pi}_h(s) = \arg \max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that:

$$\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if

$$V_{h+1} \approx V_{h+1}^{\star}$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$
Set $V_h(s) := \max_{\theta} \theta_h^T \phi(s, a), \forall s$

Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that:

$$\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if

$$V_{h+1} \approx V_{h+1}^{\star}$$

Set $V_H(s) = 0, \forall s$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$
Set $V_h(s) := \max_{\theta} \theta_h^T \phi(s, a), \forall s$

Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{T}_h(\theta_{h+1})$),

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that:

$$\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if

$$V_{h+1} \approx V_{h+1}^{\star}$$

Set $V_H(s) = 0, \forall s$

For h = H-1 to 0:

$$\theta_h = \arg\min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^2$$

$$\text{Set } V_h(s) := \max_{\theta} \theta_h^\mathsf{T} \phi(s, a), \forall s$$

Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^{\mathsf{T}} \phi(s, a), \forall h$

If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{F}_h(\theta_{h+1})$),
Then we should hope $\theta_h^{\mathsf{T}} \phi(s,a) \approx Q_h^{\star}(s,a)$

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \leq \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1-\delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \leq \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Plans: (1) OLS and D-optimal design; (2) construct \mathcal{D}_h using D-optimal design; (3) transfer regression error to $\|\theta_h^\top \phi - Q_h^\star\|_{\infty}$

Detour: Ordinary Linear Squares

Consider a dataset
$$\{x_i, y_i\}_{i=1}^N$$
, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + e_i$, $\mathbb{E}[e_i | x_i] = 0$, e_i are independent with $|e_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

OLS:
$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (\theta^{\mathsf{T}} x_i - y_i)^2$$

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i \, | \, x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^\top / N$ is full rank;

OLS:
$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (\theta^{\mathsf{T}} x_i - y_i)^2$$

Standard OLS guarantee: with probability at least $1-\delta$, we have:

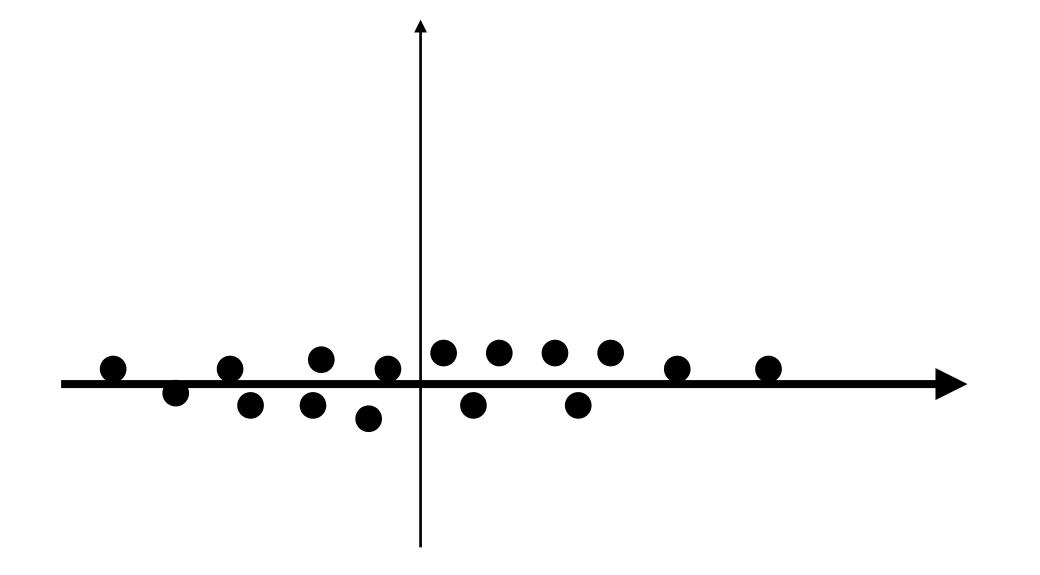
$$(\hat{\theta} - \theta^*)^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^*) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
;

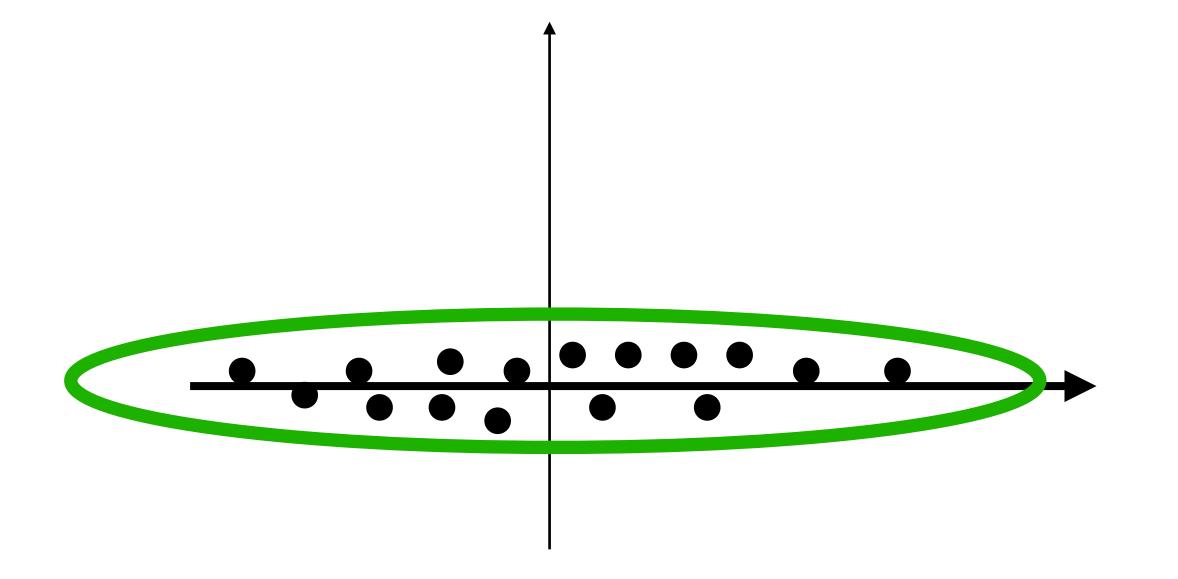
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

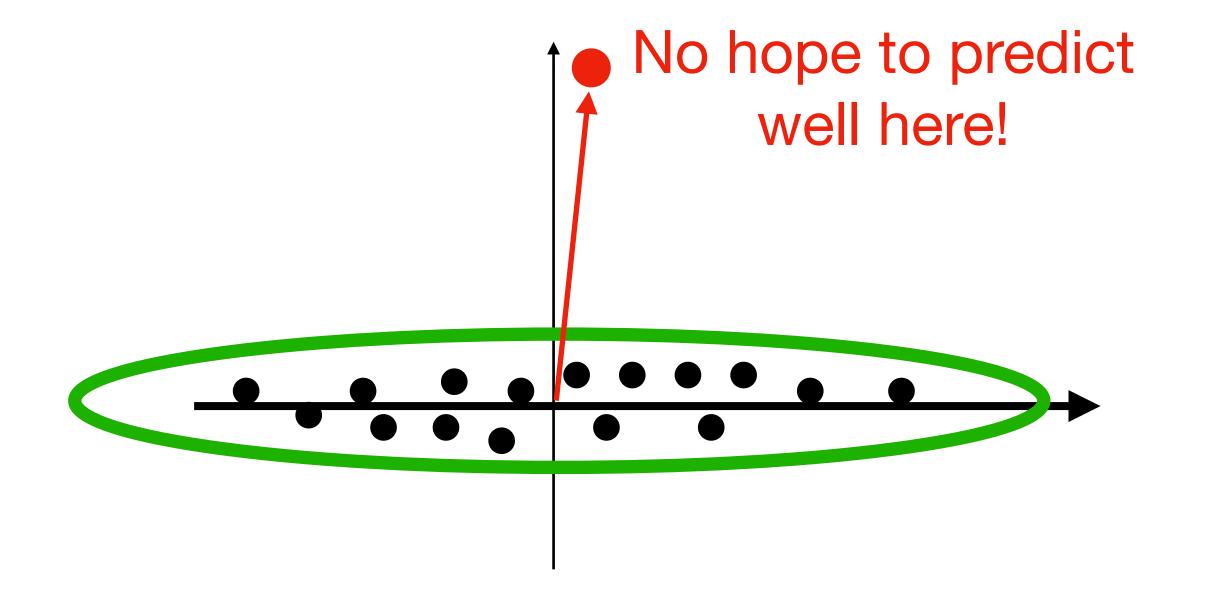
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

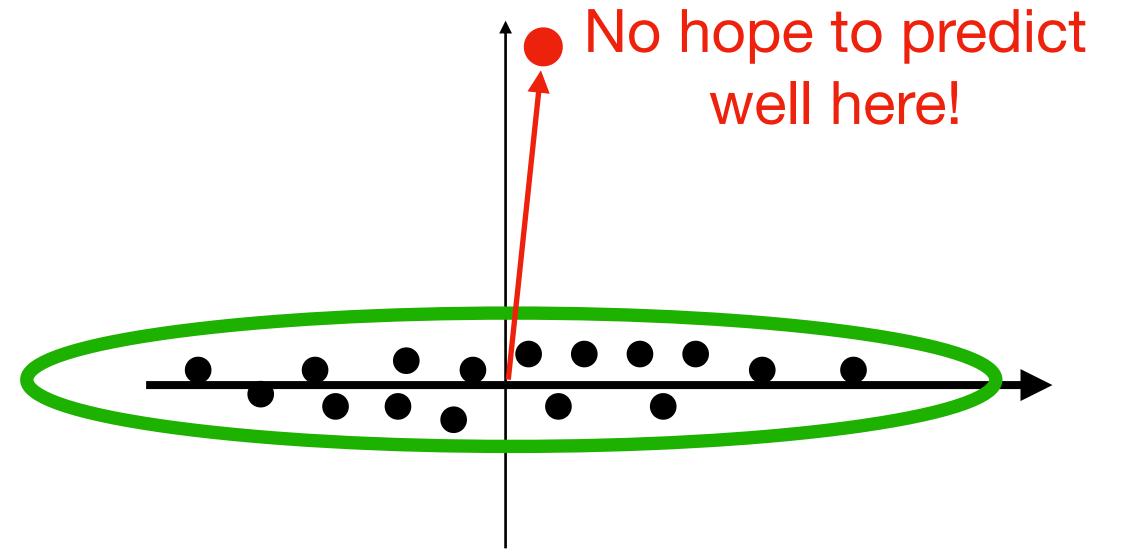


Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}}/N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$



Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}}/N$$
; With probability at least $1 - \delta$:
$$(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$$

If the test point x is not covered by the training data, i.e., $x^{\top}\Lambda^{-1}x$ is huge, then we cannot guarantee $\hat{\theta}^{\top}x$ is close to $(\theta^{\star})^{\top}x$



Let's actively design a diverse dataset! (D-optimal Design)

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^{\star} \in \Delta(\mathcal{X})$$
: $\rho^{\star} = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\top} \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^{\star} \in \Delta(\mathcal{X})$$
: $\rho^{\star} = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^{\top} \right] \right)$

Properties of the D-optimal Design:

$$support(\rho^*) \le d(d+1)/2$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Properties of the D-optimal Design:

$$support(\rho^*) \le d(d+1)/2$$

$$\max_{\mathbf{y} \in \mathcal{X}} \mathbf{y}^{\mathsf{T}} \left[\mathbb{E}_{\mathbf{x} \sim \rho} \star \mathbf{x} \mathbf{x}^{\mathsf{T}} \right]^{-1} \mathbf{y} \leq d$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathscr{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x. For each $x \in \mathscr{D}$, query y (noisy measure);

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume $\mathrm{span}(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathscr{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x. For each $x \in \mathscr{D}$, query y (noisy measure);

The OLS solution $\hat{ heta}$ on ${\mathscr D}$ has the following point-wise guarantee: w/ prob $1-\delta$

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^*, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Summary so far on OLS & D-optimal Design

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Summary so far on OLS & D-optimal Design

D-optimal Design
$$\rho^* \in \Delta(\mathcal{X})$$
: $\rho^* = \arg\max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

D-optimal design allows us to **actively** construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^*, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$