
Learning with Linear Bellman
Completion & Generative Model

 
CS 6789: Foundations of Reinforcement Learning

Announcements

1. HW1 is going to be out Thursday.

2. Wen’s office hour: after lectures

Recap: Generative model + Tabular

1. Generative model assumption:

At any , we can sample (s, a) s′ ∼ P(⋅ |s, a)

Recap: Generative model + Tabular

1. Generative model assumption:

At any , we can sample (s, a) s′ ∼ P(⋅ |s, a)

Q: why this could be a strong assumption in practice?

Recap: Generative model + Tabular

Algorithm:

1. For each i.i.d sample next states, (s, a), N s′ i ∼ P(⋅ |s, a)

Recap: Generative model + Tabular

Algorithm:

1. For each i.i.d sample next states, (s, a), N s′ i ∼ P(⋅ |s, a)

2. For each construct (s, a, s′), ̂P(s′ |s, a) =
∑N

i=1 1(s′ i = s′)
N

Recap: Generative model + Tabular

Algorithm:

1. For each i.i.d sample next states, (s, a), N s′ i ∼ P(⋅ |s, a)

2. For each construct (s, a, s′), ̂P(s′ |s, a) =
∑N

i=1 1(s′ i = s′)
N

3. Find optimal policy under , i.e., ̂P ̂π⋆ = PI(̂P, r)

Recap: Generative model + Tabular

Result:

When , then w/ prob , we will learn a , such that N ≥ ln(SA/δ)
ϵ2(1 − γ)6 1 − δ ̂π⋆ ∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Remarks:

Recap: Generative model + Tabular

Result:

When , then w/ prob , we will learn a , such that N ≥ ln(SA/δ)
ϵ2(1 − γ)6 1 − δ ̂π⋆ ∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to)1/(1 − γ)5

Recap: Generative model + Tabular

Result:

When , then w/ prob , we will learn a , such that N ≥ ln(SA/δ)
ϵ2(1 − γ)6 1 − δ ̂π⋆ ∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to)1/(1 − γ)5

2. Remarkably, our learned model in this case is not necessarily accurate at all̂P

Today: Generative model + linear function
approximation

Key question: what happens when state-action space is large or even continuous?

Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Finite Horizon MDPs and DP
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1]

Compute via DP (backward in time):π⋆

Finite Horizon MDPs and DP
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1]

Compute via DP (backward in time):π⋆

1. set , Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a), V⋆

H−1(s) = max
a

Q⋆
H−1(s, a)

Finite Horizon MDPs and DP
ℳ = {S, A, Ph, r, H}

Ph : S × A ↦ Δ(S), r : S × A → [0,1]

Compute via DP (backward in time):π⋆

1. set , Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a), V⋆

H−1(s) = max
a

Q⋆
H−1(s, a)

2. At , set , h Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)
π⋆

h (s) = arg max
a

Q⋆
h (s, a), V⋆

h (s) = max
a

Q⋆
h (s, a)

Recall Error amplification
1. Bellman optimality: then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recall Error amplification

2. If nearly Bellman-consistent, i.e., ∥Q − 𝒯Q∥∞ ≤ ϵ,

1. Bellman optimality: then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recall Error amplification

2. If nearly Bellman-consistent, i.e., ∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification:

, => ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality: then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Recall Error amplification

2. If nearly Bellman-consistent, i.e., ∥Q − 𝒯Q∥∞ ≤ ϵ,

Then we have error amplification:

, => ∥Q − Q⋆∥∞ ≤ ϵ/(1 − γ) V⋆ − V ̂π ≤ ϵ/(1 − γ)2

1. Bellman optimality: then ∥Q − 𝒯Q∥∞ = 0, Q = Q⋆

Similar results hold in finite horizon, with the effective horizon
 being replaced by H1/(1 − γ)

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

This is a function of , and it’s linear in (s, a) ϕ(s, a)

Linear Bellman Completion

Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

This is a function of , and it’s linear in (s, a) ϕ(s, a)

Notation: we will denote such θ := 𝒯h(w), where 𝒯h : ℝd ↦ ℝd

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆)⊤ϕ, ∀h

It implies that is linear in :Q⋆
h ϕ

Why?

What does Linear Bellman completion imply
Given feature , take any linear function :ϕ w⊤ϕ(s, a)

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Q⋆
h = (θ⋆)⊤ϕ, ∀h

It implies that is linear in :Q⋆
h ϕ

Why?

reward is linear in , i.e., is linear,

now recursively show that is linear
r(s, a) ϕ Q⋆

H−1(s, a)
Q⋆

h

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Why this is a reasonable assumption?
It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set to be a one-hot encoding vector in , i.e., ϕ(s, a) ℝSA ϕ(s, a) = [0,…,0,1,0,…0]⊤

2. Linear System with Quadratic feature ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1]⊤

Claim: is a linear function in r(s, a) + 𝔼s′ ∼P(s,a) max
a′

wTϕ(s′ , a′) ϕ

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a
Adding additional elements to can break the condition! ϕ

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a
Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a
Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]⊤

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a
Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]⊤

Linear Bellman completion breaks!

Why this is a strong assumption?
Assume the given feature has linear Bellman completion, i.e.,ϕ

∀h, ∃θ ∈ ℝd, s . t . , θ⊤ϕ(s, a) = r(s, a) + 𝔼s′ ∼Ph(s,a) max
a′

w⊤ϕ(s′ , a′), ∀s, a
Adding additional elements to can break the condition! ϕ

s ∈ ℝ2, a ∈ ℝ, Ph(⋅ |s, a) = 𝒩 (As + ba, σ2I)
ϕ(s, a) = [s1, s2, s2

1 , s2
2 , s1s2, s1a, s2a, a, a2,1, s3

1]⊤

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression),
adding elements to features is ok!

Can we just assume being linear?Q⋆

No! There are lower bounds (even under generative model):

Can we just assume being linear?Q⋆

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with is linear in (known),
such that in order to find a policy with , it requires at

least many samples!

Q⋆
h (s, a) ϕ(s, a)

π Vπ(s1) ≥ V⋆(s1) − 0.05
min{2d,2H}

Can we just assume being linear?Q⋆

No! There are lower bounds (even under generative model):

i.e., polynomial bound is not possible for linear (Ch5 AJKS)poly(d, H) Q⋆

For any RL algorithm, there exist MDPs with is linear in (known),
such that in order to find a policy with , it requires at

least many samples!

Q⋆
h (s, a) ϕ(s, a)

π Vπ(s1) ≥ V⋆(s1) − 0.05
min{2d,2H}

What we will show today:

1. Generative Model

(i.e., we can reset system to any , query)(s, a) r(s, a), s′ ∼ P(. |s, a)

+
2. Linear Bellman Completion

=
Sample efficient Learning

(poly time)

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set VH(s) = 0,∀s

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

LSVI: Least-Square Value Iteration
Recall linear bellman-completion implies Q⋆

h (s, a) = (θ⋆
h)⊤ϕ(s, a), ∀s, a, h

Given datasets , w/ 𝒟0, …, 𝒟H−1
𝒟h = {s, a, r, s′ }, r = r(s, a), s′ ∼ Ph(⋅ |s, a)

Let’s simulate the DP process w/
linear function to approximate Q⋆

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

Why LSVI may work?
Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

Why LSVI may work?
Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

Why LSVI may work?
Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

Why LSVI may work?
Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

If , and linear regression
succeeds (e.g.,),
Vh+1 ≈ V⋆

h+1
θh ≈ 𝒯h(θh+1)

Why LSVI may work?
Set VH(s) = 0,∀s
For h = H-1 to 0:

θh = arg min
θ ∑

𝒟h

(θTϕ(s, a) − (r + Vh+1(s′)))
2

Set Vh(s) := max
a

θ⊤
h ϕ(s, a), ∀s

Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

When we do linear regression at step h:

x := ϕ(s, a), y := r + Vh+1(s′)

We note that:

 𝔼[y |x] = r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′

θ⊤
h+1ϕ(s′ , a′)

𝒯h(θh+1)⊤ϕ(s,a) due to Linear BC

i.e., our regression target is indeed
linear in , and it is close to if ϕ Q⋆

h
Vh+1 ≈ V⋆

h+1

If , and linear regression
succeeds (e.g.,),
Vh+1 ≈ V⋆

h+1
θh ≈ 𝒯h(θh+1)

Then we should hope θ⊤
h ϕ(s, a) ≈ Q⋆

h (s, a)

Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Sample complexity of LSVI

Theorem: There exists a way to construct datasets , such that
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)

Sample complexity of LSVI

Theorem: There exists a way to construct datasets , such that
with probability at least , we have:

{𝒟h}H−1
h=0

1 − δ

V ̂π − V⋆ ≤ ϵ

w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)
Plans: (1) OLS and D-optimal design; (2) construct using D-optimal

design; (3) transfer regression error to
𝒟h

∥θ⊤
h ϕ − Q⋆

h ∥∞

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

OLS : ̂θ = arg min
θ

N

∑
i=1

(θ⊤xi − yi)2

Detour: Ordinary Linear Squares
Consider a dataset , where are independent

with assume is full rank;

{xi, yi}N
i=1 yi = (θ⋆)⊤xi + ϵi, 𝔼[ϵi |xi] = 0, ϵi

|ϵi | ≤ σ, Λ =
N

∑
i=1

xix⊤
i /N

OLS : ̂θ = arg min
θ

N

∑
i=1

(θ⊤xi − yi)2

Standard OLS guarantee: with probability at least , we have:
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict
well here!

Detour: Issues in Ordinary Linear Squares

Recall ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

(̂θ − θ⋆)⊤Λ(̂θ − θ⋆) ≤ O (σ2d ln(1/δ)
N)

If the test point is not covered by the training data, i.e., is huge,
then we cannot guarantee is close to

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict
well here! Let’s actively design a diverse dataset !

(D-optimal Design)

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

Detour: D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
Properties of the D-optimal Design:

support(ρ⋆) ≤ d(d + 1)/2

max
y∈𝒳

y⊤ [𝔼x∼ρ⋆xx⊤]
−1

y ≤ d

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query (noisy measure);x ∈ 𝒟 y

Detour: OLS w/ D-optimal Design
Consider a compact space (without loss of generality, assume)𝒳 ⊂ ℝd span(𝒳) = ℝd

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])
We actively construct a dataset , which contains many copies of 𝒟 ⌈ρ(x)N⌉ x

For each , query (noisy measure);x ∈ 𝒟 y

The OLS solution on has the following point-wise guarantee: w/ prob ̂θ 𝒟 1 − δ

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

Summary so far on OLS & D-optimal Design

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

Summary so far on OLS & D-optimal Design

D-optimal Design : ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max
ρ∈Δ(𝒳)

ln det (𝔼x∼ρ [xx⊤])

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

D-optimal design allows us to actively construct a dataset ,
such that OLS solution is POINT-WISE accurate:

𝒟 = {x, y}

