Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning



Announcements

1. HW1 is going to be out Thursday.

2. Wen’s office hour: after lectures



Recap: Generative model + Tabular

1. Generative model assumption:

At any (s,a), we can sample s’ ~ P( - |s,a)
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1. Generative model assumption:

At any (s,a), we can sample s’ ~ P( - |s,a)

Q: why this could be a strong assumption in practice?
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Recap: Generative model + Tabular

Algorithm:

1. For each (s, a), i.i.d sample N next states, s; ~ P( - |s,a)

Zi\il 1(s; = s")
N

2. For each (s, a, s"), construct P(s'| s, a) =

3. Find optimal policy under P, i.e., #% = PI(P, r)



Recap: Generative model + Tabular

Result:
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When N > 0= then w/ prob 1 — 8, we will learn a 7%, such that ||Q* — Q" ||, < €
e\l =7

Remarks:
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Recap_Generative model + Tabular
SAN )X SK

Result:

In(SA/0)
When N >

> ,theh w/ prob 1 — &, we will learn a #*, such that ||Q* — Q7' || . < €
e*(1 —y)°

Remarks:
1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to 1/(1 — y)°)

2. Remarkably, our learned model P in this case is not necessarily accurate at alll



Today: Generative model + linear function
approximation

Key question: what happens when state-action space is large or even continuous?



Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value lIteration Algorithm

3. Guarantee and the proof sketch
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Compute 7* via DP (backward in time):
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Finite Horizon MDPs and DP

%: {S,A,Ph,r,H}
P,:SXA s AS), r:SxA - [0,1]

Compute 7* via DP (backward in time):

1.set Q)_,(s,a) = r(s,a), m;;_,(s) = argmax Q;;_,(s,a), V;_,(s) = max Q}_,(s, a)




Recall Error amplification

1. Bellman optimality: ||Q — T Q|| = 0, then Q = O*
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Recall Error amplification

1. Bellman optimality: ||Q — T Q|| = 0, then Q = O*

2. If nearly Bellman-consistent, i.e., [|[Q — I Q|| , L €,

Then we have error amplification:
10— 0%l <e/(1—7), => V*=VF<el(1—y)

Similar results hold in finite hati =i ctive horizon
1/(1 = eing replaced by H




4 Linear Bellman Completion
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Linear Bellman Completion

Given feature ¢, take any linear function w ' ¢(s, a):
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This is a function of (s, a), and it’s linear in ¢ (s, a)



Linear Bellman Completion

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 € RY s .t.,0 T ¢(s,a) =r(s,a) + Eyp,(s.0) MaX w'g(s’,a)\Vs,a

This is a function of (s, a), and it’s linear in ¢ (s, a)

Notation: we will denote such 6 :=/J,(w), Jwhere 7, : RY —» R4



What does Linear Bellman completion imply

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 e R% 5.t ., QTgb(S, a)=r(s,a) + [ES/NPh(S,a) max ngb(s’, a’),Vs,a
7
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Given feature ¢, take any linear function w ' ¢ (s, ay:
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What does Linear Bellman completion imply

Given feature ¢, take any linear function w ' ¢(s, a):

Vh,30 e R% 5.t ., HTgb(S, a)=r(s,a) + [ES/NPh(S’a) max qub(s’, a’),Vs,a
”
It implies that Q" is linear in ¢:
OF = (0", Vh
Why?

reward r(s, a) is linear in ¢, i.e., Q;_l(s, a) is linear,
now recursively show that Q;; is linear



Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set ¢(s, a) to be a one-hot encoding vector in R34 e, ¢(s,a) < [0,...,0,1,0,.. 017
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Why this is a reasonable assumption?

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:
Set ¢(s, a) to be a one-hot encoding vector in R34 e, ¢(s,a) =1[0,...,0,1,0,.. 017

2. Linear System with Quadratic feature ¢

seR%aeR, P(-|s,a)=N (As+ba,021)
d(s,a) = [sq, 5, 512, S22, $159, §14, $Ha, a, a11"

Claim: (s, a) + Ey_p(; ,) Max wl¢(s’, a’) is a linear function in ¢
—— k ' a’
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Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,
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Why this is a strong assumption?

Assume the given feature ¢ has linear Bellman completion, i.e.,
Vh,30 € R% s .t., QTQ’)(S, a) =r(s,a) + [ES,NPh(S,a) max qub(s’, a),Vs,a
Adding additional elements to ¢ can break thcaa condition!
seR%a€eR, P(-|s,a)=NN (As+ba,o'21)

d(s,a) = [, 5, S12, 522, 5159, 814, $Ha, a, a1, si’]T

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression),
adding elements to features is ok!



Can we just assume Q™ being linear?

No! There are lower bounds (even under generative model):
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No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with Q;(S, a) is linear in ¢(s, a) (known),
such that in order to find a policy 7 with V*(s;) > V*(s;) — 0.05, it requires at
least min{2¢,2¥} many samples!
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Can we just assume Q™ being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with Q,f(s, a) is linear in ¢(s, a) (known),
such that in order to find a policy 7 with V*(s;) > V*(s;) — 0.05, it requires at
least min{2¢,2¥} many samples!

i.e., polynomial bound poly(d, H) is not possible for linear O* (Ch5 AJKS)



What we will show today:

1. Generative Model
(i.e., we can reset system to any (s, a), query r(s,a), s’ ~ P(.|s,a))

+

2. Linear Bellman Completion

Sample efficient Learning
(poly time)



Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch
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Given datasets 9Dy, ..., Dy_1, W/
D, =1{s,a,r,5'},r=r(s,a),s' ~ Py(-|s,a)

Let’s simulate the DP process w/
linear function to approximate Q*
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Recall linear bellman-completion implies O (s, a) = (6)' ¢ (s, a), Vs, a, h

Set Vi (s) = 0,Vs Given datasets 9y, ..., Dy_, W/
For h = H-1 to O: Dy ={s,a,r,s'},r=r(s,a),s"~ Py(-|s,a)

2
0, = arg m@i Z 0T (s, a) — (r+ Vh+1(S’))> Let s simulate the DP process w/

= jon to approximate O™
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LSVI: Least-Square Value lteration

Recall linear bellman-completion implies O (s, a) = (6)' ¢ (s, a), Vs, a, h

Set V,(s) = 0,Vs
For h = H-1 to O:

sets Dy, ..., Dy_1, W/
r(s,a),s’ ~ P(-|s,a)

0, = arg m@in Z <GT¢(S, a) — (r + V. Imulate the DP process w/

2y linear function to approximate Q™
Set V,(s) := max 0 p(s,a),Vs
a

etufn 77,(s) = argma HhT P(s,a)

Qe e O 59



Why LSVI may work?

When we do linear regression at step h:

x:=¢s,a), y:=r+V, (s
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Set Vi, (s) = 0,Vs
For h = H-1 to O:

2
0, = arg mgin 2 <6T¢(S, a)— (r+ Vh+1(S'))>

P,
Set V,(s) := max QhT ¢(s,a),Vs

Return 7,(s) = arg max GhT ¢(s,a),Vh
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Why LSVI may work? Forh=H-110 0:

When we do linear regression at step h: D),
Set V,(s) := max HhT ¢(s,a),Vs
a

x:=¢s,a), y:=r+V, (s

a _ T
We note that Return 7;,(s) = arg mc?X 0, P(s,a),Vh

Ely|x] = r(s,a) + [ES'Nph(S,a
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Why LSVI may work?

When we do linear regression at step h:

x:=¢s,a), y:=r+V, (s

We note that:
Ely|x] = r(s,a) + Eg_p, (5.0 Max QhTH(,b(S/, a’)
a

T (0,1 ¢(s,a) due to Linear BC

l.e., our regression target is indeed
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We note that:
Ely|x] = r(s,a) + Eg_p, (5.0 Max QhTH(,b(S/, a’)
a

T (0,1 ¢(s,a) due to Linear BC

l.e., our regression target is indeed
linear in ¢, and it is close to Q}f if
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Why LSVI may work?

When we do linear regression at step h:

x:=¢s,a), y:=r+V, (s

We note that:
Ely|x] = r(s,a) + Eg_p, (5.0 Max QhTH(,b(S/, a’)
a

T (0,1 ¢(s,a) due to Linear BC

l.e., our regression target is indeed
linear in ¢, and it is close to Q}f if

~ /X
Vh+1 ~ Vh+1

Set Vi, (s) = 0,Vs
For h = H-1 to O:

2
0, = arg mgin 2 <6T¢(S, a)— (r+ Vh+1(S'))>

P,
Set V,(s) := max QhT ¢(s,a),Vs

Return 7,(s) = arg max GhT ¢(s,a),Vh

If V.1 = V)< |, and linear regression
succeeds (e.g., 0, & T ,(0,,,1)),
Then we should hope 6, ¢(s, a) ~ Q7 (s, a)




Outline:

1. The Linear Bellman Completion Condition

2. Learning: The Least Square Value lteration Algorithm

3. Guarantee and the proof sketch



Sample complexity of LSVI

Theorem: There exists a way to construct datasets {J, fz_ol, such that
with probability at least 1 — o, we have:

VE—_V*<e

w/ total number of samples in these datasets scaling 5 (d2 + H6d2/€2)



Sample complexity of LSVI

Theorem: There exists a way to construct datasets {J, fz_ol, such that
with probability at least 1 — o, we have:

Vi—V*<e
w/ total number of samples in these datasets scaling 5 (d2 + H6d2/€2)

Plans: (1) OLS and D-optimal design; (2) construct &, using D-optimal
design; (3) transfer regression error to ||9thb — 0/l



Detour: Ordinary Linear Squares

Consider a dataset {x;,y;}'x |, where y; = (0*)'x;+ ¢, E[¢;|x;] = 0, ¢, are independent

N
with |€;| < o, assume A = Z xx;' /N is full rank;
i=1
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Detour: Ordinary Linear Squares

Consider a dataset {x;, y; i\; |» Where y; = (9*)Txl- +¢;, [Ele;|x;] =0, ¢, are independent

N
with |€;| < o, assume A = Z xx;' /N is full rank;
i=1
N
OLS : 0 = arg min Z OTx; — y,)?
o =

Standard OLS guarantee: with probability at least 1 — 6, we have:

o2d In(1/8) >
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Detour: Issues in Ordinary Linear Squares

With probability at least 1 — ¢:
o%d 1n(1/6)>

N
Recall A = Z xx'/N;
i=1
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Detour: Issues in Ordinary Linear Squares

With probability at least 1 — ¢:

o2d1n(1/6)
N

N
Recall A = Z xx'/N;
i=1 O —0%)TAB-0% <0 <

If the test point x is not covered by the training data, i.e., x'Alxis huge,
then we cannot guarantee 6 x is close to (%) "x

t @ No hope to predict
well here!

e T ———

Let’s actively design a diverse dataset !
(D-optimal Design)
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Detour: D-optimal Design

Consider a compact space & C R4 (without loss of generality, assume span(’) = IRd)

D-optimal Design p* € A(XZ): p* = arg max Indet <[Ex~p [xxT]>
pEA(D)

Properties of the D-optimal Design:

support(p™) < d(d+ 1)/2

-1
maxy' [[Epr*xxT] y<d
yed



Detour: OLS w/ D-optimal Design

Consider a compact space I C R4 (without loss of generality, assume span(’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet ([EXN[) [xxT]>
PEA(X) |
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Detour: OLS w/ D-optimal Design
Consider a compact space I C R4 (without loss of generality, assume span(’) = IRd)

D-optimal Design p* € A(Z): p* = arg max Indet ([EXN[) [xxT]>
PEA(X) |

We actively construct a dataset &, which contains [p(x)N | many copies of x

For each x € &, query y (noisy measure);

The OLS solution & on U has the following point-wise guarantee: w/ prob 1 — o

od In(1/6)

JN

max ‘(9— H*,x)‘ <
xeX



Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ([Epr [xxT]>
PEA(X)



Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet <[Ex~p [xxT]>
PEA(X)

D-optimal design allows us to actively construct a dataset & = {x, y},
such that OLS solution is POINT-WISE accurate:

od In(1/6)

VN

max ‘(9— @*,x)‘ <
xed



