Learning with Linear Bellman Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning

Announcements

1. HW1 is going to be out Thursday.

2. Wen's office hour: after lectures

1. Generative model assumption:

At any (s, a), we can sample $s' \sim P(\cdot | s, a)$

1. Generative model assumption:

At any (s, a), we can sample $s' \sim P(\cdot | s, a)$

Q: why this could be a strong assumption in practice?

Algorithm:

1. For each (s, a), i.i.d sample *N* next states, $s'_i \sim P(\cdot | s, a)$

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s'_i \sim P(\cdot | s, a)$ $\sum_{i=1}^{N} \mathbf{1}(s'_i = s')$

2. For each (*s*, *a*, *s'*), construct $\hat{P}(s' | s, a) = \frac{\sum_{i=1}^{N} \mathbf{1}(s'_i = s')}{N}$

Algorithm:

1. For each (s, a), i.i.d sample N next states, $s'_i \sim P(\cdot | s, a)$

2. For each
$$(s, a, s')$$
, construct $\hat{P}(s' | s, a) = \frac{\sum_{i=1}^{N} \mathbf{1}(s'_i = s')}{N}$

3. Find optimal policy under \hat{P} , i.e., $\hat{\pi}^{\star} = \text{PI}(\hat{P}, r)$

Result:

When $N \ge \frac{\ln(SA/\delta)}{\epsilon^2(1-\gamma)^6}$, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^*$, such that $\|Q^* - Q^{\hat{\pi}^*}\|_{\infty} \le \epsilon$

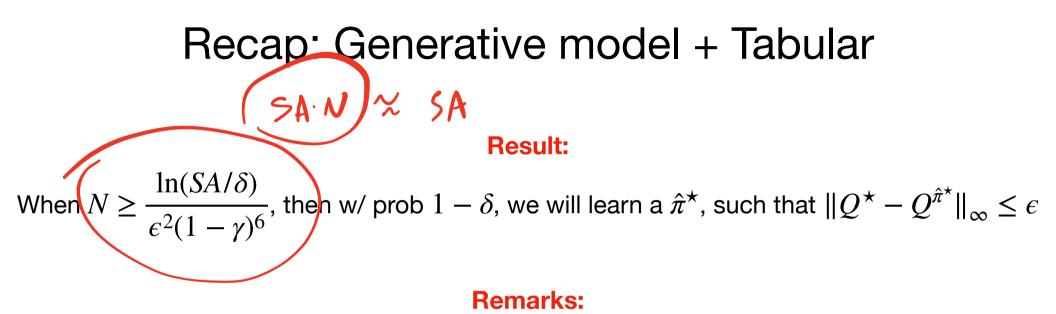
Remarks:

Result:

When $N \ge \frac{\ln(SA/\delta)}{\epsilon^2(1-\gamma)^6}$, then w/ prob $1-\delta$, we will learn a $\hat{\pi}^*$, such that $\|Q^* - Q^{\hat{\pi}^*}\|_{\infty} \le \epsilon$

Remarks:

1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $1/(1 - \gamma)^5$)



1. Horizon factor is not tight at all (Ch2 in AJKS optimizes it to $1/(1 - \gamma)^5$)

^

2. Remarkably, our learned model \hat{P} in this case is not necessarily accurate at all

Today: Generative model + linear function approximation

Key question: what happens when state-action space is large or even continuous?

Outline:

1. The Linear Bellman Completion Condition

2. The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Finite Horizon MDPs and DP

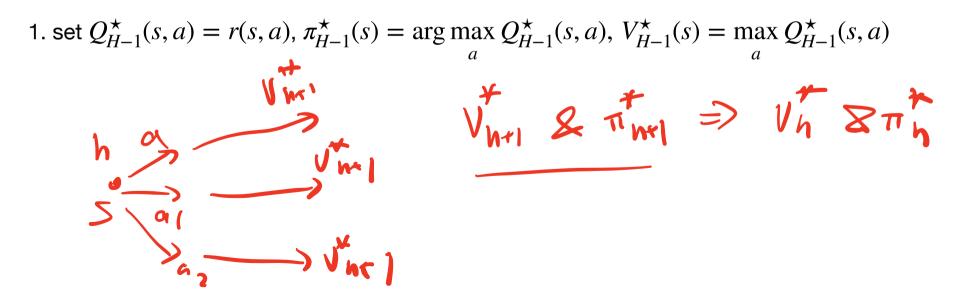
$$\mathcal{M} = \{S, A, P_h, r, H\} \qquad h=0, 1.2... \mu-1$$
$$P_h: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1]$$

Compute π^* via DP (backward in time):

Finite Horizon MDPs and DP

 $\mathcal{M} = \{S, A, P_h, r, H\}$ $P_h : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1]$

Compute π^* via DP (backward in time):



Finite Horizon MDPs and DP

 $\mathcal{M} = \{S, A, P_h, r, H\}$ $P_h : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0, 1]$

Compute π^* via DP (backward in time):

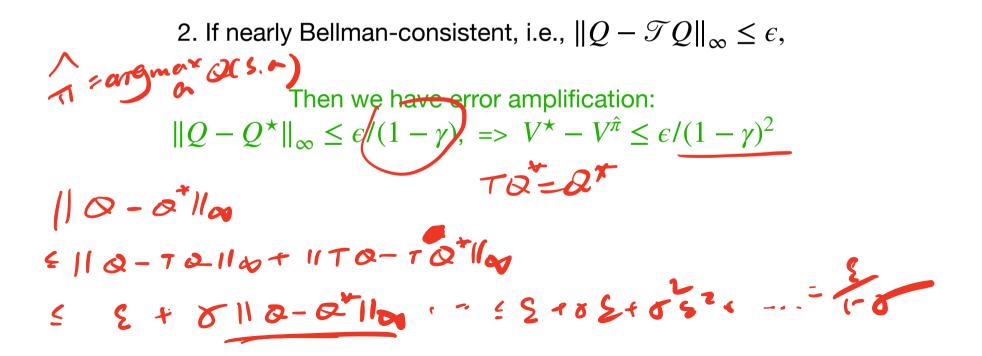
1. Bellman optimality: $||Q - \mathcal{T}Q||_{\infty} = 0$, then $Q = Q^{\star}$

Q = TQ $(TQ)(SON) = \Gamma(SON) + \mathcal{F} = \max_{S \to P(SON)} Q(SON) = \Gamma(SON) + \mathcal{F} = \max_{S \to P(SON)} Q(SON)$

1. Bellman optimality: $||Q - \mathcal{T}Q||_{\infty} = 0$, then $Q = Q^{\star}$

2. If nearly Bellman-consistent, i.e., $\|Q - \mathcal{T}Q\|_{\infty} \leq \epsilon$,

1. Bellman optimality: $||Q - \mathcal{T}Q||_{\infty} = 0$, then $Q = Q^{\star}$

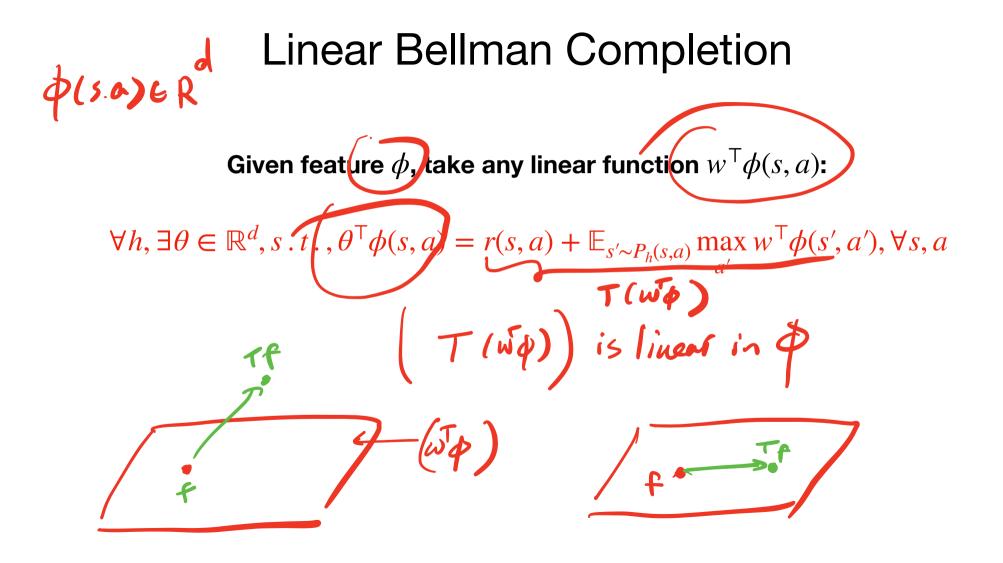


1. Bellman optimality: $||Q - \mathcal{T}Q||_{\infty} = 0$, then $Q = Q^{\star}$

2. If nearly Bellman-consistent, i.e., $\|Q - \mathcal{T}Q\|_{\infty} \leq \epsilon$,

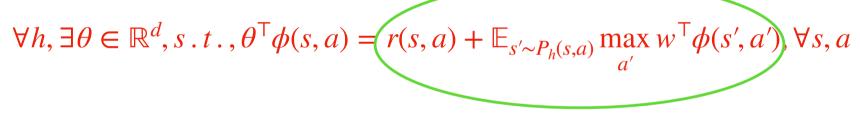
Then we have error amplification: $\|Q - Q^{\star}\|_{\infty} \le \epsilon/(1 - \gamma), \Rightarrow V^{\star} - V^{\hat{\pi}} \le \epsilon/(1 - \gamma)^2$

Similar results hold in finite horizon, with the effective horizon $1/(1 - \gamma)$ being replaced by H



Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:



This is a function of (s, a), and it's linear in $\phi(s, a)$

Linear Bellman Completion

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a \in \mathbb{R}^d$$

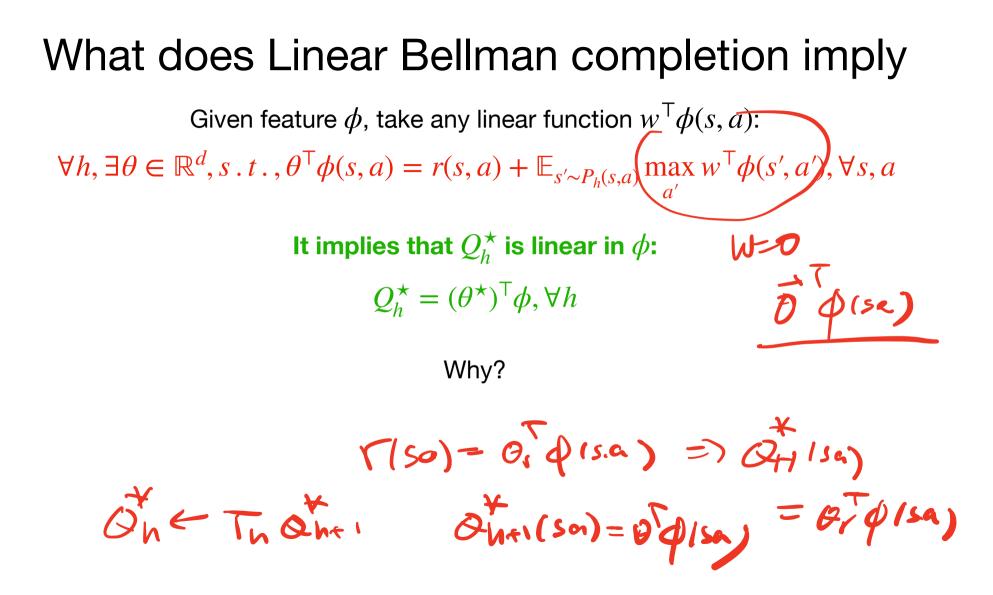
This is a function of (s, a), and it's linear in $\phi(s, a)$

Notation: we will denote such $\theta := \mathcal{T}_h(w)$, where $\mathcal{T}_h : \mathbb{R}^d \mapsto \mathbb{R}^d$

What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$



What does Linear Bellman completion imply

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$

It implies that Q_h^{\star} is linear in ϕ :

 $Q_h^{\star} = (\theta^{\star})^{\mathsf{T}} \phi, \forall h$

Why?

reward r(s, a) is linear in ϕ , i.e., $Q_{H-1}^{\star}(s, a)$ is linear, now recursively show that Q_h^{\star} is linear

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\mathsf{T}}$

It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$

2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba \sigma^2 I)$$

$$s' \in s.c.$$

 $s' = Astbats, s \sim N(0, 0^2I)$

It captures at least two special cases: tabular MDP and linear dynamical systems

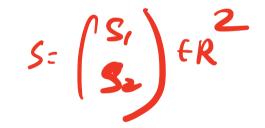
1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$

2. Linear System with Quadratic feature ϕ

$$s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot | s, a) = \mathcal{N} \left(As + ba, \sigma^{2} I \right)$$

$$\phi(s, a) = [s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1}s_{2}, s_{1}a, s_{2}a, a, a^{2}, 1]^{\mathsf{T}}$$



It captures at least two special cases: tabular MDP and linear dynamical systems

1. Tabular MDP:

Set $\phi(s, a)$ to be a one-hot encoding vector in \mathbb{R}^{SA} , i.e., $\phi(s, a) = [0, \dots, 0, 1, 0, \dots, 0]^{\top}$

2. Linear System with Quadratic feature ϕ

 $s \in \mathbb{R}^{2}, a \in \mathbb{R}, P_{h}(\cdot | s, a) = \mathcal{N} \left(As + ba, \sigma^{2} I \right)$ $\phi(s, a) = [s_{1}, s_{2}, s_{1}^{2}, s_{2}^{2}, s_{1}s_{2}, s_{1}a, s_{2}a, a, a^{2}, 1]^{\top}$ Claim: $r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \max_{a'} w^{T} \phi(s', a')$ is a linear function in ϕ $f(s_{a}) = \mathcal{N} \phi(s_{a})$

Assume the given feature ϕ has linear Bellman completion, i.e.,

$$\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^\top \phi(s', a'), \forall s, a$$

Assume the given feature ϕ has linear Bellman completion, i.e., $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$ Adding additional elements to ϕ can break the condition!

Assume the given feature ϕ has linear Bellman completion, i.e., $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$ Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

Assume the given feature ϕ has linear Bellman completion, i.e., $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$ Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

 $\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, s_1^3]^\top$

Assume the given feature ϕ has linear Bellman completion, i.e., $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$ Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

 $\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, s_1^3]^\top$

Linear Bellman completion breaks!

Assume the given feature ϕ has linear Bellman completion, i.e., $\forall h, \exists \theta \in \mathbb{R}^d, s.t., \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} w^{\top} \phi(s', a'), \forall s, a$ Adding additional elements to ϕ can break the condition!

$$s \in \mathbb{R}^2, a \in \mathbb{R}, P_h(\cdot | s, a) = \mathcal{N}(As + ba, \sigma^2 I)$$

 $\phi(s, a) = [s_1, s_2, s_1^2, s_2^2, s_1 s_2, s_1 a, s_2 a, a, a^2, 1, \mathbf{s_1^3}]^\top$

Linear Bellman completion breaks!

This is counter-intuitive: in SL (e.g., linear regression), adding elements to features is ok!

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_h^{\star}(s, a)$ is linear in $\phi(s, a)$ (known), such that in order to find a policy π with $V^{\pi}(s_1) \ge V^{\star}(s_1) - 0.05$, it requires at least $\min\{2^d, 2^H\}$ many samples!

Can we just assume Q^{\star} being linear?

No! There are lower bounds (even under generative model):

For any RL algorithm, there exist MDPs with $Q_h^{\star}(s, a)$ is linear in $\phi(s, a)$ (known), such that in order to find a policy π with $V^{\pi}(s_1) \ge V^{\star}(s_1) - 0.05$, it requires at least $\min\{2^d, 2^H\}$ many samples!

i.e., polynomial bound poly(d, H) is not possible for linear Q^{\star} (Ch5 AJKS)

What we will show today:

1. Generative Model

(i.e., we can reset system to any (s, a), query r(s, a), $s' \sim P(.|s, a)$)

2. Linear Bellman Completion

+-

Sample efficient Learning (poly time)

Outline:

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Given datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Given datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Let's simulate the DP process w/ linear function to approximate Q^{\star}

Set $V_H(s) = 0 \forall s$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

Given datasets $\mathcal{D}_0, \dots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

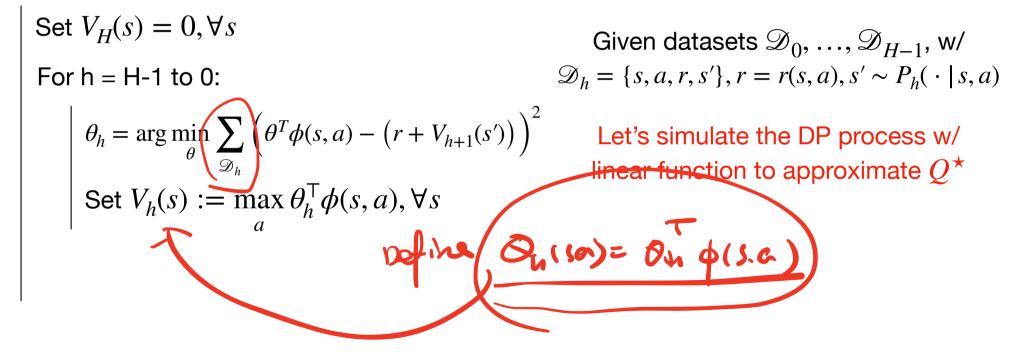
Let's simulate the DP process w/ linear function to approximate Q^{\star}

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$

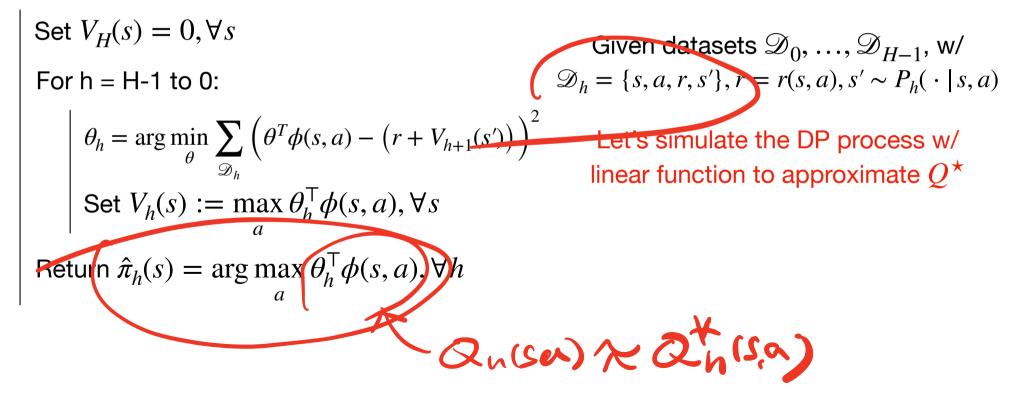
Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\theta_{h} = \arg \min_{\theta} \sum_{\mathcal{D}_{h}} \left(\underbrace{\theta^{T} \phi(s, a) - \left(r + V_{h+1}(s')\right)}_{\text{fight}} \right)^{2}$ Let's simulate the DP process w/ linear function to approximate Q^{\star}

Given datasets $\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}, w/$ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)$

Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$



Recall linear bellman-completion implies $Q_h^{\star}(s, a) = (\theta_h^{\star})^{\top} \phi(s, a), \forall s, a, h$



When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

$$S' - P(s, a)$$

$$F(s + V_{h+1}(s') + sa$$

Set
$$V_H(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{l} \theta_h = \arg\min_{\theta} \sum_{\mathscr{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^T \\ \text{Set } V_h(s) := \max_{a} \theta_h^T \phi(s, a), \forall s \end{array} \right|$
Return $\hat{\pi}_h(s) = \arg\max_{a} \theta_h^T \phi(s, a), \forall h$

When we do linear regression at step h:

$$x := \phi(s, a), \quad y := r + V_{h+1}(s')$$

We note that
$$\mathbb{E}[y \mid x] = r(s, a) + \mathbb{E}_{s' \sim P_{t}(s, a)} \max \theta_{h+1}^{\top} \phi(s', a)$$

$$= r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a)$$

 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

Set
$$V_{H}(s) = 0, \forall s$$

For h = H-1 to 0:
 $\left| \begin{array}{c} \theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - (r + V_{h+1}(s')) \right)^{2} \\ \theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - (r + V_{h+1}(s')) \right)^{2} \\ \theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - (r + V_{h+1}(s')) \right)^{2} \\ \theta_{h} = \arg\min_{\theta} \sum_{\mathcal{D}_{h}} \left(\theta^{T} \phi(s, a) - (r + V_{h+1}(s')) \right)^{2} \\ \text{Set } V_{h}(s) := \max_{a} \theta^{T} \phi(s, a), \forall s \\ \text{Return } \hat{\pi}_{h}(s) = \arg\max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s, a), \forall h \\ \theta_{h+1} \phi(s', a') = \max_{a} \theta^{T} \phi(s', a') \\ \theta_{h+1} \phi(s', a') \\ \theta_{h+1} \phi$

When we do linear regression at step h:

 $x := \phi(s, a), \quad y := r + V_{h+1}(s')$

We note that: $\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\top} \phi(s', a')$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in
$$\phi$$
, and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$

Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\theta_{h} = \arg\min_{\theta} \sum_{\alpha} \left(\theta^{T} \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^{2}$ Set $V_h(s) := \max \theta_h^\top \phi(s, a), \forall s$ Return $\hat{\pi}_h(s) = \arg \max \theta_h^\top \phi(s, a), \forall h$ a

When we do linear regression at step h:

 $x := \phi(s, a), \quad y := r + V_{h+1}(s')$

We note that: $\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$

 $\mathcal{T}_h(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$ Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\theta_{h} = \arg\min_{\theta} \sum_{\alpha} \left(\theta^{T} \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^{2}$ Set $V_h(s) := \max \theta_h^\top \phi(s, a), \forall s$ Return $\hat{\pi}_h(s) = \arg \max \theta_h^{\top} \phi(s, a), \forall h$ If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{T}_h(\theta_{h+1})$), Qu ~ ch

When we do linear regression at step h:

 $x := \phi(s, a), \quad y := r + V_{h+1}(s')$

We note that: $\mathbb{E}[y | x] = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta_{h+1}^{\mathsf{T}} \phi(s', a')$

 $\mathcal{T}_{h}(\theta_{h+1})^{\mathsf{T}}\phi(s,a)$ due to Linear BC

i.e., our regression target is indeed linear in ϕ , and it is close to Q_h^{\star} if $V_{h+1} \approx V_{h+1}^{\star}$

Set $V_H(s) = 0, \forall s$ For h = H-1 to 0: $\theta_{h} = \arg\min_{\theta} \sum_{\alpha} \left(\theta^{T} \phi(s, a) - \left(r + V_{h+1}(s') \right) \right)^{2}$ Set $V_h(s) := \max \theta_h^\top \phi(s, a), \forall s$ Return $\hat{\pi}_h(s) = \arg \max \theta_h^{\top} \phi(s, a), \forall h$ If $V_{h+1} \approx V_{h+1}^{\star}$, and linear regression succeeds (e.g., $\theta_h \approx \mathcal{T}_h(\theta_{h+1})$), Then we should hope $\theta_h^{\top} \phi(s, a) \approx Q_h^{\star}(s, a)$

Outline:

2. Learning: The Least Square Value Iteration Algorithm

3. Guarantee and the proof sketch

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Sample complexity of LSVI

Theorem: There exists a way to construct datasets $\{\mathcal{D}_h\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$V^{\hat{\pi}} - V^{\star} \le \epsilon$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2 + H^6 d^2/\epsilon^2\right)$

Plans: (1) OLS and D-optimal design; (2) construct \mathcal{D}_h using D-optimal design; (3) transfer regression error to $\|\theta_h^{\mathsf{T}}\phi - Q_h^{\star}\|_{\infty}$

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^{\star})^{\top} x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \leq \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^{\top} / N$ is full rank;

Detour: Ordinary Linear Squares

Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^*)^T x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \le \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^T / N$ is full rank; OLS : $\hat{\theta} = \arg \min_{\theta} \sum_{i=1}^N (\theta^T x_i - y_i)^2$

Detour: Ordinary Linear Squares

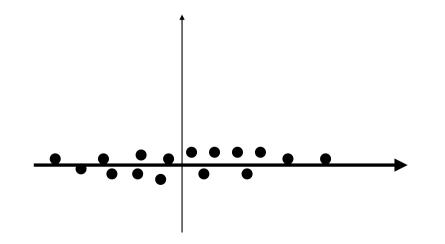
Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^*)^T x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $|\epsilon_i| \le \sigma$, assume $\Lambda = \sum_{i=1}^N x_i x_i^T / N$ is full rank; OLS : $\hat{\theta} = \arg \min_{\theta} \sum_{i=1}^N (\theta^T x_i - y_i)^2$

Standard OLS guarantee: with probability at least $1 - \delta$, we have: $(\hat{\theta} - \theta^{\star})^{\top} \Lambda(\hat{\theta} - \theta^{\star}) \leq O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$

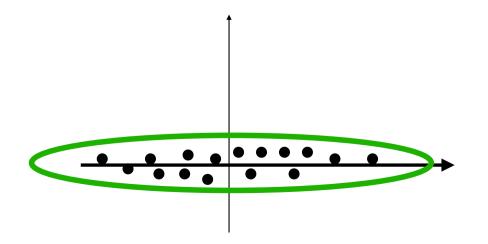
Recall $\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$; With probability at least $1 - \delta$: $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$

Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$$
; With probability at least $1 - \delta$:
 $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda(\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$

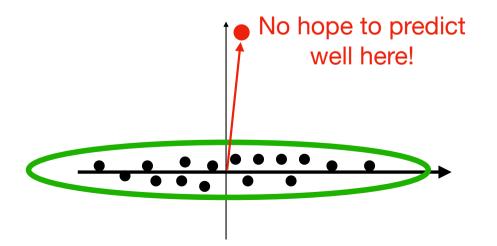
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$$
; With probability at least $1 - \delta$:
 $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$



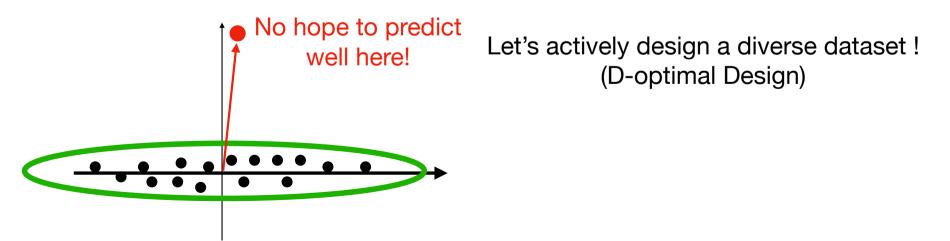
Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$$
; With probability at least $1 - \delta$:
 $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$



Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$$
; With probability at least $1 - \delta$:
 $(\hat{\theta} - \theta^{\star})^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$



Recall
$$\Lambda = \sum_{i=1}^{N} x_i x_i^{\mathsf{T}} / N$$
; With probability at least $1 - \delta$:
 $(\hat{\theta} - \theta^*)^{\mathsf{T}} \Lambda (\hat{\theta} - \theta^*) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)$



Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^T \right] \right)$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Properties of the D-optimal Design:

 $\operatorname{support}(\rho^{\star}) \leq d(d+1)/2$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^T \right] \right)$

Properties of the D-optimal Design:

 $\operatorname{support}(\rho^{\star}) \leq d(d+1)/2$

$$\max_{y \in \mathcal{X}} y^{\top} \left[\mathbb{E}_{x \sim \rho^{\star}} x x^{\top} \right]^{-1} y \le d$$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of x

For each $x \in \mathcal{D}$, query y (noisy measure);

Consider a compact space $\mathscr{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathscr{X}) = \mathbb{R}^d)

D-optimal Design
$$\rho^* \in \Delta(\mathscr{X})$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

We actively construct a dataset \mathcal{D} , which contains $\lceil \rho(x)N \rceil$ many copies of xFor each $x \in \mathcal{D}$, query y (noisy measure);

The OLS solution $\hat{\theta}$ on ${\mathscr D}$ has the following point-wise guarantee: w/ prob $1-\delta$

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^{\star}, x \rangle \right| \leq \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$

Summary so far on OLS & D-optimal Design

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

Summary so far on OLS & D-optimal Design

D-optimal Design $\rho^* \in \Delta(\mathscr{X})$: $\rho^* = \arg \max_{\rho \in \Delta(\mathscr{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[x x^\top \right] \right)$

D-optimal design allows us to **actively** construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

$$\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^{\star}, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}$$