Learning with Linear Bellman
Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning
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But adding additional elements may just break the condition
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Recap: Least-Square Value lteration

Datasets Y, ..., Dy_;, W/

D, ={s,a,r,s'},r=r(s,a),s" ~ Py(-|s,a)
BC always ensures linear
regression is realizable:

Set Vy(s) = 0,Vs C \ f]
For h = H-1 to O: ¢ % I.e., our regression target
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=y is always linear:

Set V,(s) := max QhT ¢(s,a),Vs

Return 77,(s) = arg max QhT @(s,a),Vh




Outline for Today

1. Linear regression, D optimal Design (active learning)

2. Proof sketch for LSVI
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Theorem

Theorem: There exists a way to construct datasets { h}hH;Ol, such that
with probability at least 1 — o, we have:

VE_V* <e¢

w/ total number of samples in these datasets scaling 0 (d2 + H6d2/€2)

1. How to actively design / construct datasets &, via the Generative Model property

- - AT T -
2. Show that our estimators are near-bellman consistent: |6, ¢ # T (0, ,P)||, is small

3. Near-Bellman consistency implies near optimal performance (s.t. H error amplification)
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With probability at least 1 — o:
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If the test point x is not covered by the training data, i.e., xTA xis huge,
then we cannot guarantee 6 x is close to (%) "x

t @ No hope to predict

well herel Let’s actively design a diverse dataset !
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Summary so far on OLS & D-optimal Design

D-optimal Design p* € A(Z): p* = arg max Indet ([Epr [xxT]>
PEA(X)

D-optimal design allows us to actively construct a dataset & = {x, y},
such that OLS solution is POINT-WISE accurate:

6d In(1/5)
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Consider the space ® = {¢(s,a) : s,a e S XA}

D-optimal Design p* € A(®): p* = arg max Indet <[ES i |p(s, ) (s, Cl)T]>
PEA(D) ’

Construct &, that contain : copies of ¢ (s, a),
for each ¢ (s, a), que =r(s,a)+ V, (s),3 ~ P,(.]s,a)

What’s the Bayes optimal E[y | s, a]?

OLS /w D-optimal design implies that 6, is point-wise accurate:
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Concluding the proof of LSVI

1. OLS /w D-optimal design implies that @), is point-wise accurate:
max |6]p(s.a) = T (0, (s, )| <O (Hd/ﬁ) |
s,a
2. This implies that our estimator Qh = Hthb is nearly Bellman-consistent, i.e.,
| Q= 7100 || < o@ww‘v)

3. Nearly-Bellman consistency implies Q, is close to Q}f (this holds in general)

10, — OF|l., < O(HWI/N)



Concluding the proof of LSVI

1. OLS /w D-optimal design implies that @), is point-wise accurate:

O p(s5.0) — T (0,00 b5 )| <0 (Hd/ﬁ) |

max
s,a

2. This implies that our estimator Q), := 6, ¢ is nearly Bellman-consist

H On— T 1Ont1 H . <0 <Hd/\/N>

10, — OF|l., < O(H?d/\/N)

= V* - V*< @(HNI/I\/N)
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Summary

1. Linear Bellman Completion definition (a strong assumption, though captures some models)
2. Least square value iteration: integrate Linear regression into DP, i.e., O, := Qthb ~ Q,f via
¢(s,a) — r(s,a) + max HhTqu(s’, a’)
a/

3. Leverage D-optimal design, we make sure that 8, is point-wise accurate, which ensures
near Bellman consistent, i.e., H O, — I 10141 H is small
0

4. Near-Bellman consistency implies small approximation error of 0, (holds in general)



Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP



