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But adding additional elements may just break the condition
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(θTϕ(s, a) − (r + Vh+1(s′ )))
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Return ̂πh(s) = arg max
a

θ⊤
h ϕ(s, a), ∀h

BC always ensures linear 
regression is realizable:

i.e., our regression target 
 

is always linear:
r(s, a) + 𝔼s′ ∼Ph(s,a) max

a′ 

θ⊤
h+1ϕ(s′ , a′ )



Outline for Today

1. Linear regression, D optimal Design (active learning)

2. Proof sketch for LSVI
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Theorem
Theorem: There exists a way to construct datasets , such that 

with probability at least , we have:
{𝒟h}H−1

h=0
1 − δ

V ̂π − V⋆ ≤ ϵ
w/ total number of samples in these datasets scaling Õ (d2 + H6d2/ϵ2)
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1. How to actively design / construct datasets  via the Generative Model property𝒟h

2. Show that our estimators are near-bellman consistent:  is small∥θ⊤
h ϕ − 𝒯h(θ⊤

h+1ϕ)∥∞

3. Near-Bellman consistency implies near optimal performance (s.t.  error amplification)H
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OLS : ̂θ = arg min
θ
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Standard OLS guarantee: with probability at least :1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict 
well here!



Detour: Issues in Ordinary Linear Squares

Recall  ; Λ =
N

∑
i=1

xix⊤
i /N

With probability at least :
1 − δ

( ̂θ − θ⋆)⊤Λ( ̂θ − θ⋆) ≤ O ( σ2d ln(1/δ)
N )

If the test point  is not covered by the training data, i.e.,  is huge, 
then we cannot guarantee  is close to 

x x⊤Λ−1x
̂θ⊤x (θ⋆)⊤x

No hope to predict 
well here! Let’s actively design a diverse dataset !
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Summary so far on OLS & D-optimal Design
D-optimal Design :   ρ⋆ ∈ Δ(𝒳) ρ⋆ = arg max

ρ∈Δ(𝒳)
ln det (𝔼x∼ρ [xx⊤])

max
x∈𝒳

⟨ ̂θ − θ⋆, x⟩ ≤ σd ln(1/δ)
N

D-optimal design allows us to actively construct a dataset , 
such that OLS solution is POINT-WISE accurate:

𝒟 = {x, y}
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1. OLS /w D-optimal design implies that  is point-wise accurate:θh

max
s,a

θ⊤
h ϕ(s, a) − 𝒯h(θh+1)⊤ϕ(s, a) ≤ O (Hd/ N) .

2. This implies that our estimator  is nearly Bellman-consistent, i.e., Qh := θ⊤
h ϕ

Qh − 𝒯hQh+1 ∞
≤ O (Hd/ N)

3. Nearly-Bellman consistency implies  is close to  (this holds in general)Qh Q⋆
h

∥Qh − Q⋆
h ∥∞ ≤ O(H2d/ N)

⇒ V⋆ − V ̂π ≤ Õ (H3d/ N)
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Summary
1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e.,  viaQh := θ⊤
h ϕ ≈ Q⋆

h

ϕ(s, a) ↦ r(s, a) + max
a′ 

θ⊤
h+1ϕ(s′ , a′ )

3. Leverage D-optimal design, we make sure that  is point-wise accurate, which ensures 
near Bellman consistent, i.e.,  is small

θh
Qh − 𝒯hQh+1 ∞

4. Near-Bellman consistency implies small approximation error of  (holds in general)Qh



Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP


