Learning with Linear Bellman Completion & Generative Model

CS 6789: Foundations of Reinforcement Learning

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s \ldots, \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'}$ *a*′ *w*⊤*ϕ*(*s*′ , *a*′), ∀*s*, *a*

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s \ldots, \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'}$ *a*′ *w*⊤*ϕ*(*s*′ , *a*′), ∀*s*, *a*

It implies that Q_h^\star is linear in ϕ : $Q_h^\star = (\theta_h^\star)^\top \phi, \forall h$

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s \ldots, \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'}$ *a*′ *w*⊤*ϕ*(*s*′ , *a*′), ∀*s*, *a*

It implies that Q_h^\star is linear in ϕ : $Q_h^\star = (\theta_h^\star)^\top \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

Given feature ϕ , take any linear function $w^{\top}\phi(s, a)$:

 $\forall h, \exists \theta \in \mathbb{R}^d, s \ldots, \theta^{\top} \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'}$ *a*′ *w*⊤*ϕ*(*s*′ , *a*′), ∀*s*, *a*

It implies that Q_h^\star is linear in ϕ : $Q_h^\star = (\theta_h^\star)^\top \phi, \forall h$

Captures Tabular MDPs, and Linear Quadratic Regulators

But adding additional elements may just break the condition

Datasets $\mathcal{D}_0, \ldots, \mathcal{D}_{H-1}$, w/ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Datasets $\mathcal{D}_0, ..., \mathcal{D}_{H-1}$, w/ $\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot | s, a)$

Set
$$
V_H(s) = 0, \forall s
$$

$$
\text{Datasets } \mathcal{D}_0, \dots, \mathcal{D}_{H-1}, \text{ w/}
$$
\n
$$
\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)
$$

2

$$
\text{Datasets } \mathcal{D}_0, \dots, \mathcal{D}_{H-1}, \text{ w/}
$$
\n
$$
\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)
$$

Set $V_h(s) := \max$ *a* $\theta_h^{\mathsf{T}} \phi(s, a), \forall s$ Set $V_H(s) = 0, \forall s$ For $h = H-1$ to 0: $\theta_h = \arg\min_{\theta}$ *^θ* ∑ \mathscr{D}_h $\left(\theta^T\phi(s,a) - \left(r + V_{h+1}(s')\right)\right)$

2

$$
\text{Datasets } \mathcal{D}_0, \dots, \mathcal{D}_{H-1}, \text{ w/}
$$
\n
$$
\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)
$$

Set
$$
V_H(s) = 0, \forall s
$$

\nFor h = H-1 to 0:
\n
$$
\begin{cases}\n\theta_h = \arg \min_{\theta} \sum_{\mathcal{D}_h} \left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s') \right) \right) \\
\text{Set } V_h(s) := \max_a \theta_h^T \phi(s, a), \forall s\n\end{cases}
$$
\nReturn $\hat{\pi}_h(s) = \arg \max_a \theta_h^T \phi(s, a), \forall h$

$$
\text{Datasets } \mathcal{D}_0, \dots, \mathcal{D}_{H-1}, \text{ w/}
$$
\n
$$
\mathcal{D}_h = \{s, a, r, s'\}, r = r(s, a), s' \sim P_h(\cdot \mid s, a)
$$

Set $V_H(s) = 0, \forall s$ $ECY|Y$ For $h = H-1$ to 0: 2 $\left(\theta^T \phi(s, a) - \left(r + V_{h+1}(s')\right)\right)$ $\theta_h = \arg\min_{\theta}$ *^θ* ∑ \mathscr{D}_h $\theta_h^{\mathsf{T}} \phi(s, a), \forall s$ Set $V_h(s) := \max$ *a* $\textsf{Return } \hat{\pi}_h(s) = \arg \max \theta_h^{\top} \phi(s, a), \forall h$ *a*

BC always ensures linear regression is realizable:

i.e., our regression target is always linear: $r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'}$ *a*′ $\theta_{h+1}^{\top} \phi(s', a')$

Outline for Today

1. Linear regression, D optimal Design (active learning)

2. Proof sketch for LSVI

Theorem: There exists a way to construct datasets $\{\mathscr{D}_{h}\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$
V^{\hat{\pi}} - V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

$$
\Omega(\mathbf{P}^d,\mathbf{P}^H)
$$

Theorem: There exists a way to construct datasets $\{\mathscr{D}_{h}\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$
V^{\hat{\pi}} - V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property

Theorem: There exists a way to construct datasets $\{\mathscr{D}_{h}\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$
V^{\hat{\pi}} - V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property

2. Show that our estimators are near-bellman consistent: $\|\theta_h^\top\phi - {\mathcal{T}}_h(\theta_{h+1}^\top\phi)\|_\infty$ is small \approx $Q_{h}^{r}(se)$

Theorem: There exists a way to construct datasets $\{\mathscr{D}_{h}\}_{h=0}^{H-1}$, such that with probability at least $1 - \delta$, we have:

$$
V^{\hat{\pi}} - V^{\star} \leq \epsilon
$$

w/ total number of samples in these datasets scaling $\widetilde{O}\left(d^2+H^6d^2/\epsilon^2\right)$

- 1. How to actively design / construct datasets \mathcal{D}_h via the Generative Model property
- 2. Show that our estimators are near-bellman consistent: $\|\theta_h^\top\phi \mathcal{T}_h(\theta_{h+1}^\top\phi)\|_\infty$ is small
- 3. Near-Bellman consistency implies near optimal performance (s.t. *H* error amplification)

argnex $\theta_n^{\top}\theta$ 15.a)

Detour: Ordinary Linear Squares Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^{\star})^T x_i + \epsilon_i$, $\int \mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $| \epsilon_i | \leq \sigma$, assume $\Lambda = \sum_i x_i x_i^{\top} / N$ is full rank; $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^*)^\top x_i + \epsilon_i$, $\int \mathbb{E}[\epsilon_i | x_i] = 0, \epsilon_i$ $| \epsilon_i | \leq \sigma$, assume $\Lambda =$ *N* $\sum x_i x_i^\top/N$ $i=1$

Detour: Ordinary Linear Squares Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $| \epsilon_i | \leq \sigma$, assume $\Lambda = \sum x_i x_i^\top / N$ is full rank; *N* $\sum x_i x_i^\top/N$ $i=1$

$$
OLS : \hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (\theta^{T} x_i - y_i)^2
$$

Detour: Ordinary Linear Squares Consider a dataset $\{x_i, y_i\}_{i=1}^N$, where $y_i = (\theta^\star)^\top x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i | x_i] = 0$, ϵ_i are independent with $| \epsilon_i | \leq \sigma$, assume $\Lambda = \sum x_i x_i^\top / N$ is full rank; *N* $\sum x_i x_i^\top/N$ $i=1$

Ol.S:
$$
\hat{\theta} = \arg \min_{\theta} \sum_{i=1}^{N} (\theta^{T}x_i - y_i)^2
$$
 div θ * (\circ ^f θ)

\nStandard OLS guarantee: with probability at least $1 - \delta$:

\n
$$
(\hat{\theta} - \theta^{\star})^T \Lambda(\hat{\theta} - \theta^{\star}) \le O\left(\frac{\partial^2 d \ln(1/\delta)}{N}\right)
$$
\n
$$
\Rightarrow \frac{1}{N} \sum_{i=1}^{N} ((\hat{\theta} - \hat{\theta}^{\star})^T \chi_i)
$$

Recall $\Lambda = \sum x_i x_i^{\top} / N$; *N* ∑ *i*=1 *x*_{*i*} x_i^T/N ; With probability at least 1 − *δ*: $(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \leq O$ $\sigma^2 d \ln(1/\delta)$ *N*)

Recall
$$
\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N
$$
;
With probability at least $1 - \delta$:

$$
(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^\top x$ is close to $(\theta^\star)^\top x$

Recall
$$
\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N
$$
;
With probability at least $1 - \delta$:

$$
(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^\top x$ is close to $(\theta^\star)^\top x$

Recall
$$
\Lambda = \sum_{i=1}^{N} x_i x_i^{\top} / N
$$
;
With probability at least $1 - \delta$:

$$
(\hat{\theta} - \theta^{\star})^{\top} \Lambda (\hat{\theta} - \theta^{\star}) \le O\left(\frac{\sigma^2 d \ln(1/\delta)}{N}\right)
$$

If the test point x is not covered by the training data, i.e., $x^{\top} \Lambda^{-1} x$ is huge, then we cannot guarantee $\hat{\theta}^\top x$ is close to $(\theta^\star)^\top x$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

Consider a compact space $\mathscr{X}\subset\mathbb{R}^d$ (without loss of generality, assume span $(\mathscr{X})=\mathbb{R}^d$)

D-optimal Design $\rho^{\star} \in \Delta(\mathcal{X})$: $\rho^{\star} = \arg \max$ ρ ∈Δ($\mathscr X$) $\ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\mathsf{T} \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

Properties of the D-optimal Design:

support $(\rho^{\star}) \leq d(d+1)/2$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

Properties of the D-optimal Design:

```
support(\rho^{\star}) \leq d(d+1)/2
```


Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span(\mathcal{X}) = \mathbb{R}^d) **D-optimal Design** $\rho^{\star} \in \Delta(\mathcal{X})$: $\rho^{\star} = \arg \max$ ρ ∈Δ($\mathscr{X})$ $\ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\mathsf{T} \right] \right)$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\left[\rho^*(x)N\right]$ many copies of x

$$
supp(e^{\frac{1}{\lambda}x})\leq p(e^{\frac{1}{\lambda}x})
$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\left[\rho^*(x)N\right]$ many copies of x

For each $x \in \mathcal{D}$, query *y* (noisy measure);

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\left[\rho^*(x)N\right]$ many copies of x For each $x \in \mathcal{D}$, query *y* (noisy measure);

The OLS solution $\hat{\theta}$ on \mathscr{D} has the following point-wise guarantee: w/ prob $1 - \delta$

$$
\left|\left(\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^{\star}, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}
$$

Consider a compact space $\mathcal{X} \subset \mathbb{R}^d$ (without loss of generality, assume span $(\mathcal{X}) = \mathbb{R}^d$)

D-optimal Design
$$
\rho^* \in \Delta(\mathcal{X})
$$
: $\rho^* = \arg \max_{\rho \in \Delta(\mathcal{X})} \ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\top \right] \right)$

We **actively** construct a dataset \mathcal{D} , which contains $\left[\rho^*(x)N\right]$ many copies of x For each $x \in \mathcal{D}$, query *y* (noisy measure);

The OLS solution $\hat{\theta}$ on \mathscr{D} has the following point-wise guarantee: w/ prob $1 - \delta$ max *x*∈ $\langle \hat{\theta} - \theta^{\star}, x \rangle \leq$ *σd* ln(1/*δ*) *N* $(\hat{\theta} - \theta^{\star})^{\top}x \leq \left\| \Lambda^{1/2}(\hat{\theta} - \theta^{\star}) \right\| \leq \left\| \Lambda^{-1/2}x \right\|$

Summary so far on OLS & D-optimal Design **D-optimal Design** $\rho^{\star} \in \Delta(\mathcal{X})$: $\rho^{\star} = \arg \max$ ρ ∈Δ($\mathscr X$) $\ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\mathsf{T} \right] \right)$

Summary so far on OLS & D-optimal Design **D-optimal Design** $\rho^{\star} \in \Delta(\mathcal{X})$: $\rho^{\star} = \arg \max$ ρ ∈Δ($\mathscr X$) $\ln \det \left(\mathbb{E}_{x \sim \rho} \left[xx^\mathsf{T} \right] \right)$

D-optimal design allows us to **actively** construct a dataset $\mathcal{D} = \{x, y\}$, such that OLS solution is **POINT-WISE** accurate:

$$
\max_{x \in \mathcal{X}} \left| \langle \hat{\theta} - \theta^{\star}, x \rangle \right| \le \frac{\sigma d \ln(1/\delta)}{\sqrt{N}}
$$

Outline for Today

1. Linear regression, D optimal Design (active learning)

2. Proof sketch for LSVI

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

Using D-optimal design to construct \mathscr{D}_h in LSVI Consider the space $\Phi = {\phi(s, a) : s, a \in S \times A}$ **D-optimal Design** $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max$ *ρ*∈Δ(Φ) $\ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s, q) \phi(s, a)^{\top} \right] \right)$

ρ∈Δ(Φ)

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$ **D-optimal Design** $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max$ $\ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\top} \right] \right)$

Construct
$$
\mathcal{D}_h
$$
 that contains $\lceil \rho(s, a)N \rceil$ many copies of $\tilde{\varphi}(s, a)$,
for each $\phi(s, a)$, **query** $y := r(s, a) + V_{h+1}(s', s' \sim P_h(. | s, a))$

 φ (5a)

 φ (5a)

 \vdots
 φ (6a)

 φ (15a)

 φ (15a)

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$ **D-optimal Design** $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max$ *ρ*∈Δ(Φ) $\ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\top} \right] \right)$

> Construct \mathscr{D}_h that contains $\lceil \rho(s, a)N \rceil$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, **query** $y := r(s, a) + V_{h+1}(s'),$ $y' \sim P_h(. | s, a)$ What's the Bayes optimal $E[y | s, a]$?
 \rightarrow $T_h(\theta_{h^e}, \phi)$ $V_{h^e} = \theta_{h^e}^T \theta_{h^e}^T \theta_{h^e}$ Tives in p

Consider the space $\Phi = \{\phi(s, a) : s, a \in S \times A\}$

D-optimal Design $\rho^* \in \Delta(\Phi)$: $\rho^* = \arg \max$ *ρ*∈Δ(Φ) $\ln \det \left(\mathbb{E}_{s,a \sim \rho} \left[\phi(s,a) \phi(s,a)^{\top} \right] \right)$

> Construct \mathscr{D}_h that contains $\lceil \rho(s, a)N \rceil$ many copies of $\phi(s, a)$, for each $\phi(s, a)$, **query** $y := r(s, a) + V_{h+1}(s'),$ $y' \sim P_h(. | s, a)$ OLS /w D-optimal design implies that θ_h is point-wise accurate: max *s*,*a* $\left| \theta_h^{\mathsf{T}} \phi(s, a) - \mathcal{T}_h(\theta_{h+1})^{\mathsf{T}} \phi(s, a) \right| \le \widetilde{O} \left(H d / \sqrt{N} \right).$ What's the Bayes optimal $\mathbb{E}[y | s, a]$?

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$
\max_{s,a} \left| \theta_h^{\top} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\top} \phi(s,a) \right| \le O\left(Hd/\sqrt{N}\right).
$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$
\max_{s,a} \left| \frac{\theta_h^{\top} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\top} \phi(s,a)}{\sum_{k=1}^n \theta_h^{\top} \phi(k,k)} \right| \le O\left(\frac{H d / \sqrt{N}}{N}\right).
$$

2. This implies that our estimator $Q_h := \theta_h^{\top} \phi$ is nearly **Bellman-consistent**, i.e.,

$$
\left\| Q_h - \mathcal{T}_h Q_{h+1} \right\|_{\infty} \leq O\left(Hd/\sqrt{N}\right)
$$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$
\max_{s,a} \left| \theta_h^{\top} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\top} \phi(s,a) \right| \le O\left(Hd/\sqrt{N}\right).
$$

2. This implies that our estimator $\mathcal{Q}_h := \theta_h^\top \phi$ is nearly Bellman-consistent, i.e.,

$$
\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty} \leq O\left(\frac{H}{H}\right) / \sqrt{N}
$$

3. Nearly-Bellman consistency implies \mathcal{Q}_h is close to \mathcal{Q}_h^\star (this holds in general) $||Q_h - Q_h^{\star}||_{\infty} \leq \Phi(H^2 d / \sqrt{N})$

1. OLS /w D-optimal design implies that θ_h is point-wise accurate:

$$
\max_{s,a} \left| \theta_h^{\top} \phi(s,a) - \mathcal{T}_h(\theta_{h+1})^{\top} \phi(s,a) \right| \le O\left(Hd/\sqrt{N}\right).
$$

2. This implies that our estimator $\mathcal{Q}_h := \theta_h^\top \phi$ is nearly Bellman-consistent, i.e.,

$$
\|Q_h - \mathcal{T}_h Q_{h+1}\|_{\infty} \le O\left(\frac{Hd}{\sqrt{N}}\right)
$$

3. Nearly-Bellman consistency implies \mathcal{Q}_h is close to \mathcal{Q}_h^\star (this holds in general)

$$
||Q_h - Q_h^{\star}||_{\infty} \le O(H^2 d / \sqrt{N})
$$

$$
\star - V^{\hat{\pi}} \le \overline{Q}(H^3 d / \sqrt{N})
$$

 \Rightarrow *V*

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $\mathcal{Q}_h:=\theta_h^\top\phi\approx\mathcal{Q}_h^\star$ via

$$
\phi(s, a) \mapsto r(s, a) + \max_{a'} \theta_{h+1}^{\top} \phi(s', a')
$$

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $\mathcal{Q}_h:=\theta_h^\top\phi\approx\mathcal{Q}_h^\star$ via

 $\phi(s, a) \mapsto r(s, a) + \max$ *a*′ $\theta_{h+1}^{\top} \phi(s', a')$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, $\left\|Q_h-\mathcal{T}_hQ_{h+1}\right\|$ is small ∞

1. Linear Bellman Completion definition (a strong assumption, though captures some models)

2. Least square value iteration: integrate Linear regression into DP, i.e., $\mathcal{Q}_h:=\theta_h^\top\phi\approx\mathcal{Q}_h^\star$ via

$$
\phi(s, a) \mapsto r(s, a) + \max_{a'} \theta_{h+1}^{\top} \phi(s', a')
$$

3. Leverage D-optimal design, we make sure that θ_h is point-wise accurate, which ensures near Bellman consistent, i.e., $\parallel Q_h - {\mathcal{T}}_h Q_{h+1} \parallel$ is small ∞

4. Near-Bellman consistency implies small approximation error of Q_h (holds in general)

Next week

Exploration: Multi-armed Bandits and online learning in Tabular MDP