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Reinforcement Learning
Markov Decision Process

Policy: determine action based on state
⇡(x) ! a

Maximize expected total reward:

J(⇡) = E[r1 + r2 + · · ·+ rH |⇡]
2

H Steps

Send reward and next state from a 
Markovian transition dynamics

r(x, a), x0 ⇠ P (·|x, a)

Agent Environment
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Previous Works on PAC RL 
w/ General Function Approximation

Contextual Decision Process
(Krishnamurthy et al.,16, Jiang et al., 17, Dann et al, 18)

Model-based vs Model-free

Contextual Bandits (horizon=1)
(e.g., Auer et al., 02, Langford & Zhang, 07)

A PAC model-based Algorithm
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Setup of Model-Based RL

2. Access to 

Optimal Planner (OP)

OP (P, r) ) ⇡P

P = {P : X ⇥A ! �(X )}

Function Approximators

(x, a) P (·|x, a)

P ? 2 P1. Realizability:

x0 ⇠ P ?(·|x, a)

6



Definition of Model-free RL

7

Q , {Q : X ⇥A ! R}Input:



Definition of Model-free RL

7

Env: reveal next state x

Policy: determine action based on state

H Steps

Q , {Q : X ⇥A ! R}Input:



Definition of Model-free RL

7

Policy: determine action based on state

H Steps

[Q(x, a)]Q2Q,a2A

Q-profile: 

xall possible Q values evaluated at state

Q , {Q : X ⇥A ! R}Input:



Definition of Model-free RL

7

Policy: determine action based on state

H Steps

Efficient Q-learning (Jin et.al, 18)

Fitted Q-Iteration (Ernst et.al., 05) 


OLIVE (Jiang et.al, 17)


Policy Gradient (Williams 92)

[Q(x, a)]Q2Q,a2A

Q-profile: 

xall possible Q values evaluated at state

Q , {Q : X ⇥A ! R}Input:
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There exists MDPs (e.g., Factored MDPs), s.t., to learn near optimal policy, 

Model-Based RL:

Polynomial Sample 

Complexity

ANY Model-Free RL:

⌦(exp(H))
VS

An Exponential Improvement  
over Model-free RL
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Witness Rank        rank of this misfit matrix,
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Sample Complexity

Õ
⇣H3R2|A|

✏2
log

⇣ |F||P|
�

⌘⌘
Witness Rank

12

To achieve    near-optimal policy (w/ high probability)✏

Poly Dependency on # of states

Complexities of 

model class & discriminator class
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Take-home Messages

Sample efficiency is possible when Witness 
Rank is small

Model-based RL could be exponentially more 
sample efficient than model-free ones


