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Reinforcement Learning

Markov Decision Process

Environment

m(x) — a
Policy: determine action based on state

N\

H Steps

“~_

Send reward and next state from a
Markovian transition dynamics

r(x,a), x' ~ P(:|z,a)

Maximize expected total reward:
J(m)=Elri +ro4+ - +ryg|n
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To achieve € near-optimal policy,
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poly(# of states, # of actions, Horizon, 1/¢)

many interactions

[e.g., Kearns & Singh, 02, Dann & Brunskill, 15, Azar et.al, 17]
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Setup of Model-Based RL

Function Approximators

P={P: X xA— A(X)}

1. Realizability: P* ¢ P
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Setup of Model-Based RL

Function Approximators

P={P: X xA—AX)} 2. Access to
Optimal Planner (OP)

OP(P,?“) — TTp

Canter
]
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Definition of Model-free RL
Input: Q@ = {Q : X x A — R}

Policy: determine action based on state

N\

H Steps

“~_

Q-profile:
[Q(ZU? a)]QE Q,acA

all possible Q values evaluated at state U

Efficient Q-learning in et.al, 18)
Fitted Q-Ilteration (Ernst et.al., 05)

OLIVE (Jiang et.al, 17)
Policy Gradient wiliams 92)



An Exponential Improvement
over Model-free RL



An Exponential Improvement
over Model-free RL

There exists MDPs (e.g., Factored MDPs), s.t., to learn near optimal policy,

Model-Based RL- ANY Model-Free RL:

Polynomial Sample VS
Complexity Q(eXP(H))
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Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]

Rank <= Covering number
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Witness Rank
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Poly Depende

Complexities of
model class & discriminator class

on # of states
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Take-home Messages

Model-based RL could be exponentially more
sample efficient than model-free ones

Sample efficiency is possible when Witness
Rank is small



