
Contextual Memory Trees

Wen Sun
CMU —> MSR NYC

Joint work with Alina Beygelzimer, Hal Daumé III, Paul Mineiro, and John Langford

wensun@cs.cmu.edu

mailto:wensun@cs.cmu.edu

External Memory

External Memory
(many query-answer pairs)

External Memory

External Memory
(many query-answer pairs)

Query (e.g., An English sentence)

External Memory

External Memory
(many query-answer pairs)

Query (e.g., An English sentence)

Answer
(A Chinese sentence)

External Memory

External Memory
(many query-answer pairs)

K memories:
(K English-Chinese pairs)

Query (e.g., An English sentence)

Answer
(A Chinese sentence)

External Memory

External Memory
(many query-answer pairs)

K memories:
(K English-Chinese pairs)

An external
Inference/
learning

algorithm

Query (e.g., An English sentence)

Answer
(A Chinese sentence)

External Memory

External Memory
(many query-answer pairs)

K memories:
(K English-Chinese pairs)

An external
Inference/
learning

algorithm

Query (e.g., An English sentence)

Answer
(A Chinese Sentence)

Answer
(A Chinese sentence)

External Memory

External Memory
(many query-answer pairs)

K memories:
(K English-Chinese pairs)

An external
Inference/
learning

algorithm

Query (e.g., An English sentence)

Answer
(A Chinese Sentence)

User provides
rewards (BLUE score) &

ground-truth (A Chinese sentence)

Answer
(A Chinese sentence)

External Memory

External Memory
(many query-answer pairs)

K memories:
(K English-Chinese pairs)

An external
Inference/
learning

algorithm

Query (e.g., An English sentence)

Answer
(A Chinese Sentence)

User provides
rewards (BLUE score) &

ground-truth (A Chinese sentence)

Insert &
Reinforcement Learn

Answer
(A Chinese sentence)

Desired Properties

Desired Properties

Online: every operation works one example at a time

Desired Properties

Online: every operation works one example at a time

Linear Space: O(# of examples)

Desired Properties

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Desired Properties

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Desired Properties

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Self-consistency: identify the item seen before

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

(m1, . . . ,mk)

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

(m1, . . . ,mk)

2. If reward is given, ri

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

(m1, . . . ,mk)

2. If reward is given, ri

UPDATE()q,mi, ri

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

(m1, . . . ,mk)

2. If reward is given, ri

UPDATE()q,mi, ri

3. If ground-truth
value is given, v

Learning Protocol of
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q,

(m1, . . . ,mk)

2. If reward is given, ri

UPDATE()q,mi, ri

3. If ground-truth
value is given, v

INSERT()q, v

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

f1

f2

g

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

f1

f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

f1

f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1

f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1f1(q) < 0

f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1f1(q) < 0

f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1f1(q) < 0

f2(q) > 0 f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1f1(q) < 0

f2(q) > 0 f2

g

m1, . . .mn

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Datastructure of CMT:
A Nearly Balanced Binary Tree

f

q

f1f1(q) < 0

f2(q) > 0 f2

g

m1, . . .mn

m⇤ = argmax
m

g(q,m)

Select the most relevant memory

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Router (binary classifier):
f : Q ! {�1,+1}

e.g., f(q) = sign(�>�(q))

Scorer Function:
g(q, x) = wT�(q, x)

Memories:

Leaf

m1, . . .mn

Update Routers:

f

f1

f2

Using reward signals to update routers

Update Routers:

f

q

f1

f2

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

rRrL

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

rRrL

{q, sign(rR � rL)}
Binary Classification

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

-Greedy for exploration✏
rRrL

{q, sign(rR � rL)}
Binary Classification

Using reward signals to update routers

Update Routers:

f

q

f1f1(q) < 0

f2

-Greedy for exploration✏
rRrL

{q, sign(rR � rL)}
Binary Classification

Using reward signals to update routers

p

Update Routers:

f

q

f1f1(q) < 0

f2

-Greedy for exploration✏
rRrL

{q, sign(rR � rL)}
Binary Classification

+Importance Weight (Propensity Score)

Using reward signals to update routers

p

Update Routers:

f

q

f1f1(q) < 0

f2

-Greedy for exploration✏
rRrL

{q, sign(rR � rL)}
Binary Classification

+Importance Weight (Propensity Score)

Using reward signals to update routers

p

rR
p

⇡ rR � rL

Update Routers:

f

q

f1f1(q) < 0

f2

-Greedy for exploration✏
rRrL

{q, sign(rR � rL)}
Binary Classification

+Importance Weight (Propensity Score)

Using reward signals to update routers

p

rR
p

⇡ rR � rL

Update Routers:
Add Regularization for Balance

f

q

f1f1(q) < 0

f2

Internal node

rRrL

{q, sign(rR � rL)}
Binary Classification

nL

of memories in
the Left/Right

subtree

nR,

Update Routers:
Add Regularization for Balance

f

q

f1f1(q) < 0

f2

Internal node

rRrL

Binary Classification

nL

of memories in
the Left/Right

subtree

nR,

Update Routers:
Add Regularization for Balance

f

q

f1f1(q) < 0

f2

Internal node

rRrL

Binary Classification⇢
q, sign

✓
(1� ↵)(rR � rL) + ↵ log

nL

nR

◆�

nL

of memories in
the Left/Right

subtree

nR,

Update Routers:
Add Regularization for Balance

f

q

f1f1(q) < 0

f2

Internal node

rRrL

Binary Classification⇢
q, sign

✓
(1� ↵)(rR � rL) + ↵ log

nL

nR

◆�

nL

of memories in
the Left/Right

subtree

nR,

Update Routers:
Add Regularization for Balance

f

q

f1f1(q) < 0

f2

Internal node

rRrL

Binary Classification⇢
q, sign

✓
(1� ↵)(rR � rL) + ↵ log

nL

nR

◆�

nL >> nR : +1 (right)

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Self-Consistency

f

f1

f2

m = {q, v}

Insertion:
Self-Consistency

f

f1

f2

m = {q, v}

qSame query:

Insertion:
Self-Consistency

f

f1

f2

m = {q, v}

qSame query:

Insertion:
Self-Consistency

f

f1

f2

m = {q, v}

qSame query:

Insertion:
Self-Consistency

f

f1

f2

m = {q, v}

qSame query:

If a query has been seen before, we want to just retrieve it!

Insertion:
Encourage Self-Consistency

f

f1

f2

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

Enhance its
prediction

m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

Enhance its
prediction

Binary Classification⇢
q, sign

✓
(1� ↵)f(g) + ↵ log

✓
nL

nR

◆◆�

m = {q, v}

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Insertion:
Encourage Self-Consistency

f

f1

f2

A memory: m = {q, v}

Enhance its
prediction

Binary Classification⇢
q, sign

✓
(1� ↵)f(g) + ↵ log

✓
nL

nR

◆◆�

m = {q, v}

Router’s prediction

Internal node

nL

of memories in
the Left/Right

subtree

nR,

Amortized Experience Replay

f

f1

f2

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Amortized Experience Replay

f

f1

f2

1. Randomly sample
a memory

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Amortized Experience Replay

f

f1

f2

m = {q, v}

1. Randomly sample
a memory

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Amortized Experience Replay

f

f1

f2

1. Randomly sample
a memory

2. Delete it & its trace

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Amortized Experience Replay

f

f1

f2

1. Randomly sample
a memory

2. Delete it & its trace

3. Re-insert itm = {q, v}

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Amortized Experience Replay

f

f1

f2

1. Randomly sample
a memory

2. Delete it & its trace

3. Re-insert it

Apply replay constant times per insertion

m = {q, v}

Routers are updated online and may result in a lack of
self-consistency for previous insertions

Empirical Results

Empirical Results

Extreme Multi-Class Classification:
(feature, label), zero-one loss

Empirical Results

Extreme Multi-Class Classification:
(feature, label), zero-one loss

Extreme Multi-Label Classification:
(feature, set of labels), Hamming loss

Empirical Results

Extreme Multi-Class Classification:
(feature, label), zero-one loss

Extreme Multi-Label Classification:
(feature, set of labels), Hamming loss

Image Retrieval
(Caption, Image), Cosine Similarity

Extreme Multi-class Classification:
Online Progressive Performance

Extreme Multi-class Classification:
Online Progressive Performance

ALOI (1K classes, 100K examples)
WikiPara-3 shot (10K classes, 30K examples)

Extreme Multi-class Classification:
Online Progressive Performance

ALOI (1K classes, 100K examples)
WikiPara-3 shot (10K classes, 30K examples)

Extreme: very few examples per class!

Extreme Multi-class Classification:
Online Progressive Performance

ALOI (1K classes, 100K examples)
WikiPara-3 shot (10K classes, 30K examples)

Extreme: very few examples per class!

H
ig

he
r B

et
te

r

of examples

ALOI WikiPara-3 shot

Extreme Multi-class Classification:
Online Progressive Performance

ALOI (1K classes, 100K examples)
WikiPara-3 shot (10K classes, 30K examples)

Extreme: very few examples per class!

H
ig

he
r B

et
te

r

of examples

ALOI WikiPara-3 shot

Recall Tree (Daumé et.al, 17)
(Log(# of classes))

One-Against-All
(O(# of classes))

LOMTree
(Choromanska et.al, 15)

(Log(# of classes))

Extreme Multi-class Classification:
Online Progressive Performance

ALOI (1K classes, 100K examples)
WikiPara-3 shot (10K classes, 30K examples)

Extreme: very few examples per class!

H
ig

he
r B

et
te

r

of examples

ALOI WikiPara-3 shot
Ours: CMT

Recall Tree (Daumé et.al, 17)
(Log(# of classes))

One-Against-All
(O(# of classes))

LOMTree
(Choromanska et.al, 15)

(Log(# of classes))

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

CMTA new
query q {qi, vi}Ni=1

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS
CMTA new

query q {qi, vi}Ni=1

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS (OAA on the subset of labels
from returned memories)

CMTA new
query q {qi, vi}Ni=1

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS (OAA on the subset of labels
from returned memories)

CMTA new
query q {qi, vi}Ni=1

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS (OAA on the subset of labels
from returned memories)

CMTA new
query q {qi, vi}Ni=1

Computation: faster

Extreme Multi-Label Classification:
Helping an External Inference Algorithm (One-Against-Some)

(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS (OAA on the subset of labels
from returned memories)

CMTA new
query q {qi, vi}Ni=1

Computation: faster

Statistical Performance: similar, sometimes even better

Image Retrieval:
Comparison to Nearest Neighbor Approach

(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)
Image feature: HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO
Captions feature: Token Occurrences with hashing (high-dim, very sparse)

CMT(u):
Unsupervised version

i.e., NN (w/ Euclidean dis)
at leaf level

Image Retrieval:
Comparison to Nearest Neighbor Approach

(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)
Image feature: HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO
Captions feature: Token Occurrences with hashing (high-dim, very sparse)

of times faster than NN

CMT(u):
Unsupervised version

i.e., NN (w/ Euclidean dis)
at leaf level

How does computation scale
wrt the size of memory tree?

On ALOI, we range in dataset size from 1K to 100K

How does computation scale
wrt the size of memory tree?

On ALOI, we range in dataset size from 1K to 100K

Size of the memory tree (x 1K)

In
fe

re
nc

e
Ti

m
e

(m
s)

Increase
logarithmically

How does Self-Consistency improve?

1-shot dataset: 10K classes, 10K examples

Self-Consistency
improves over time

Zero training err
means

perfect self-consistency

of passes of training data

Prob of m
issing itself

How does performance scale
wrt classification difficulty?

ALOI S-shot, with S from 1 to 100
(s-shot means s examples per class)

How does performance scale
wrt classification difficulty?

ALOI S-shot, with S from 1 to 100
(s-shot means s examples per class)

How does performance scale
wrt classification difficulty?

CMT (orange)
significantly outperforms

Recall Tree (Green)
when s is small,

ALOI S-shot, with S from 1 to 100
(s-shot means s examples per class)

Revisit our Desired Properties

Revisit our Desired Properties

Online: Reduction to Online Classification

Revisit our Desired Properties

Online: Reduction to Online Classification

Linear Space: Store examples in leaves
O(N/ log(N))many nodes

Revisit our Desired Properties

Online: Reduction to Online Classification

Logarithmic time: Regularization ensures a (provable) near-
balanced tree

Linear Space: Store examples in leaves
O(N/ log(N))many nodes

Revisit our Desired Properties

Online: Reduction to Online Classification

Logarithmic time: Regularization ensures a (provable) near-
balanced tree

Learning-based: Reinforcement

Linear Space: Store examples in leaves
O(N/ log(N))many nodes

Revisit our Desired Properties

Online: Reduction to Online Classification

Logarithmic time: Regularization ensures a (provable) near-
balanced tree

Learning-based: Reinforcement

Self-consistency: an asymptotic guarantee (due to replay)

Linear Space: Store examples in leaves
O(N/ log(N))many nodes

Thanks!

CMT is in the latest Vowpal Wabbit (VW)

https://github.com/VowpalWabbit/vowpal_wabbit

Try out CMT demos!

