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Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Self-consistency: identify the item seen before
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Learning Protocol of 
Contextual Memory Tree (CMT)

A memory (m) : a pair of Query (q)  & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)

1. Given a query q, 

(m1, . . . , mk )

2. If reward      is given,  r i

UPDATE(             )q, mi , r i

3. If ground-truth  
value      is given,  v

INSERT(      )q, v
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If a query has been seen before, we want to just retrieve it!
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Amortized Experience Replay

f

f 1

f 2

1. Randomly sample 
a memory

2. Delete it & its trace 

3. Re-insert  it

Apply replay constant times per insertion

m = { q, v}

Routers are updated online and may result in a lack of 
self-consistency for previous insertions
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Extreme Multi-Label ClassiÞcation: 

(feature, set of labels), Hamming loss

Image Retrieval

(Caption, Image), Cosine Similarity
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(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)

Extreme: very large number of labels (hence linear infer = slow )

{ qi, vi} ki=1
OAS (OAA on the subset of labels  

from returned memories)

CMTA new 
query q { qi , vi } N

i =1

Computation: faster 

Statistical Performance: similar, sometimes even better
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(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)

Image feature : HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO

Captions feature : Token Occurrences with hashing (high-dim, very sparse)

# of times faster than NN

CMT(u):
Unsupervised version

i.e., NN (w/ Euclidean dis) 
at leaf level 



How does computation scale 
wrt the size of memory tree?

On ALOI,  we range in dataset size from 1K to 100K



How does computation scale 
wrt the size of memory tree?

On ALOI,  we range in dataset size from 1K to 100K
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How does Self-Consistency improve?

1-shot dataset: 10K classes, 10K examples

Self-Consistency 
improves over time

Zero training err 
means  

perfect self-consistency

# of passes of training data

P
rob of m

issing itself
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How does performance scale 
wrt classiÞcation difÞculty?

CMT (orange) 
signiÞcantly outperforms 

Recall Tree (Green)
when s is small, 

ALOI S-shot, with S from 1 to 100
(s-shot means s examples per class)
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Revisit our Desired Properties

Online: Reduction to Online ClassiÞcation

Logarithmic time: Regularization ensures a (provable) near-
balanced tree

Learning-based: Reinforcement

Self-consistency: an asymptotic guarantee (due to replay)

Linear Space: Store examples in leaves

O(N/ log(N )) many nodes



Thanks! 

CMT is in the latest Vowpal Wabbit (VW)

https://github.com/VowpalWabbit/vowpal_wabbit

Try out CMT demos!


