Contextual Memory Trees

Wen Sun CMU —> MSR NYC wensun@cs.cmu.edu

Joint work with Alina Beygelzimer, Hal Daumé III, Paul Mineiro, and John Langford

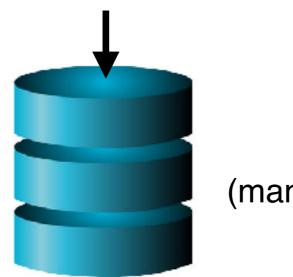
Carnegie Mellon University The Robotics Institute

Microsoft*

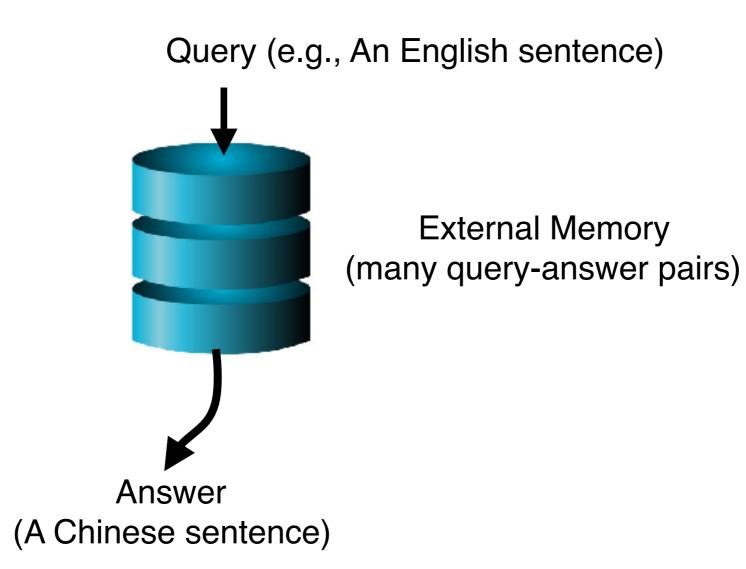
Research

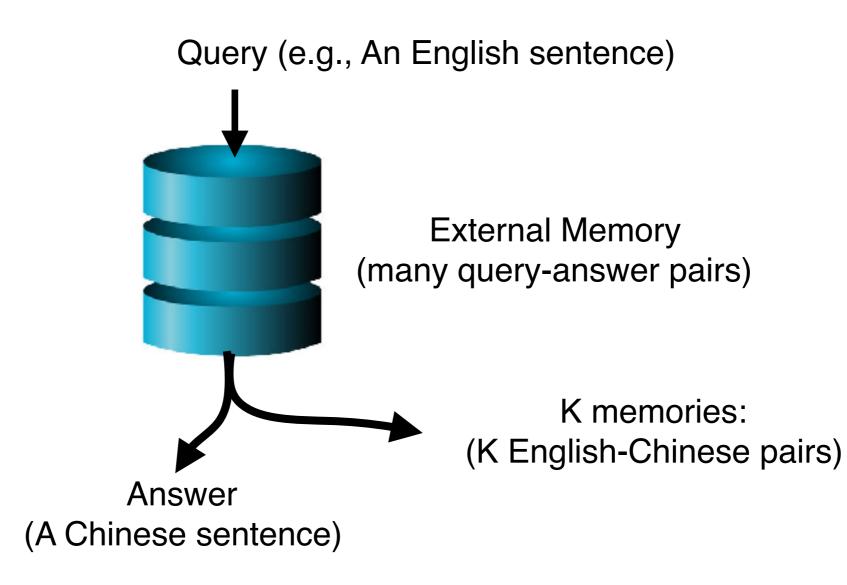
External Memory (many query-answer pairs)

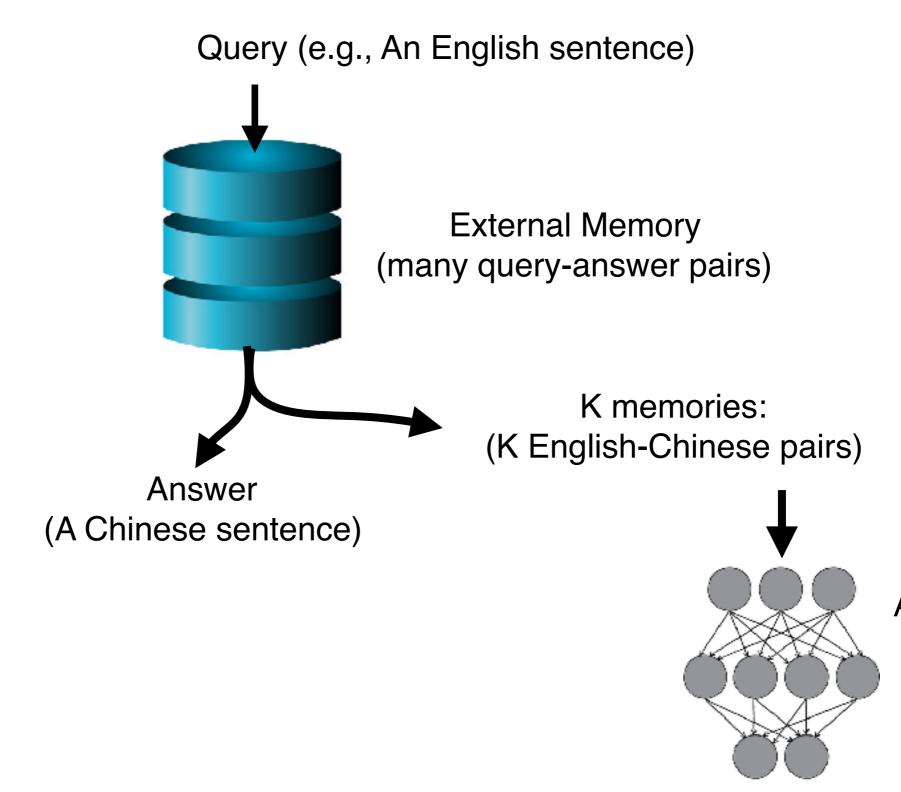
Query (e.g., An English sentence)



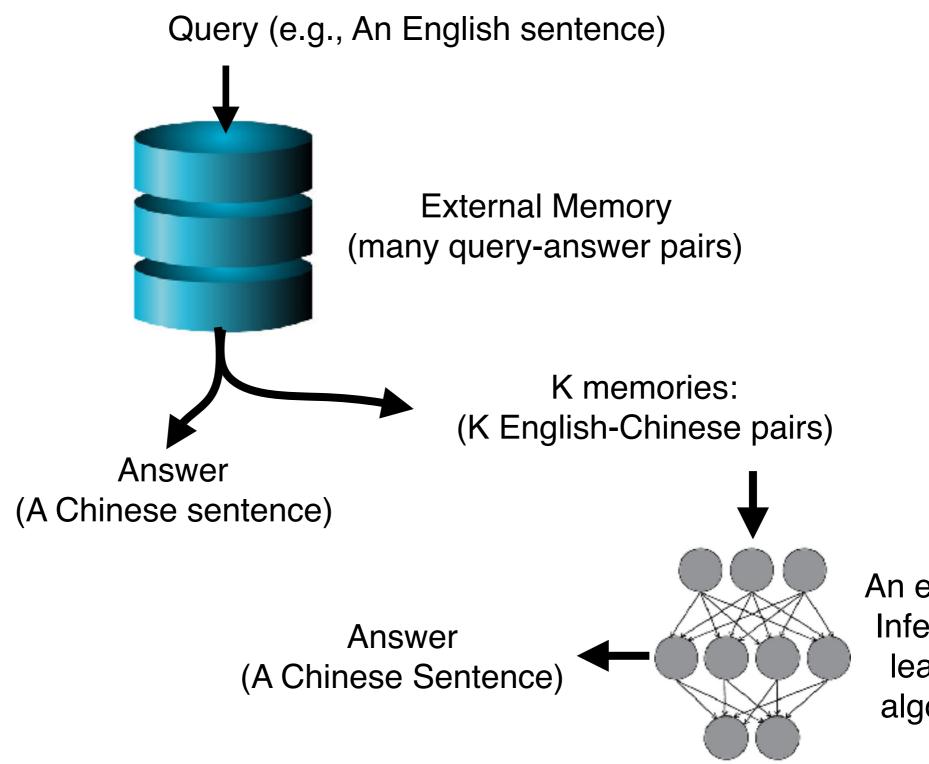
External Memory (many query-answer pairs)



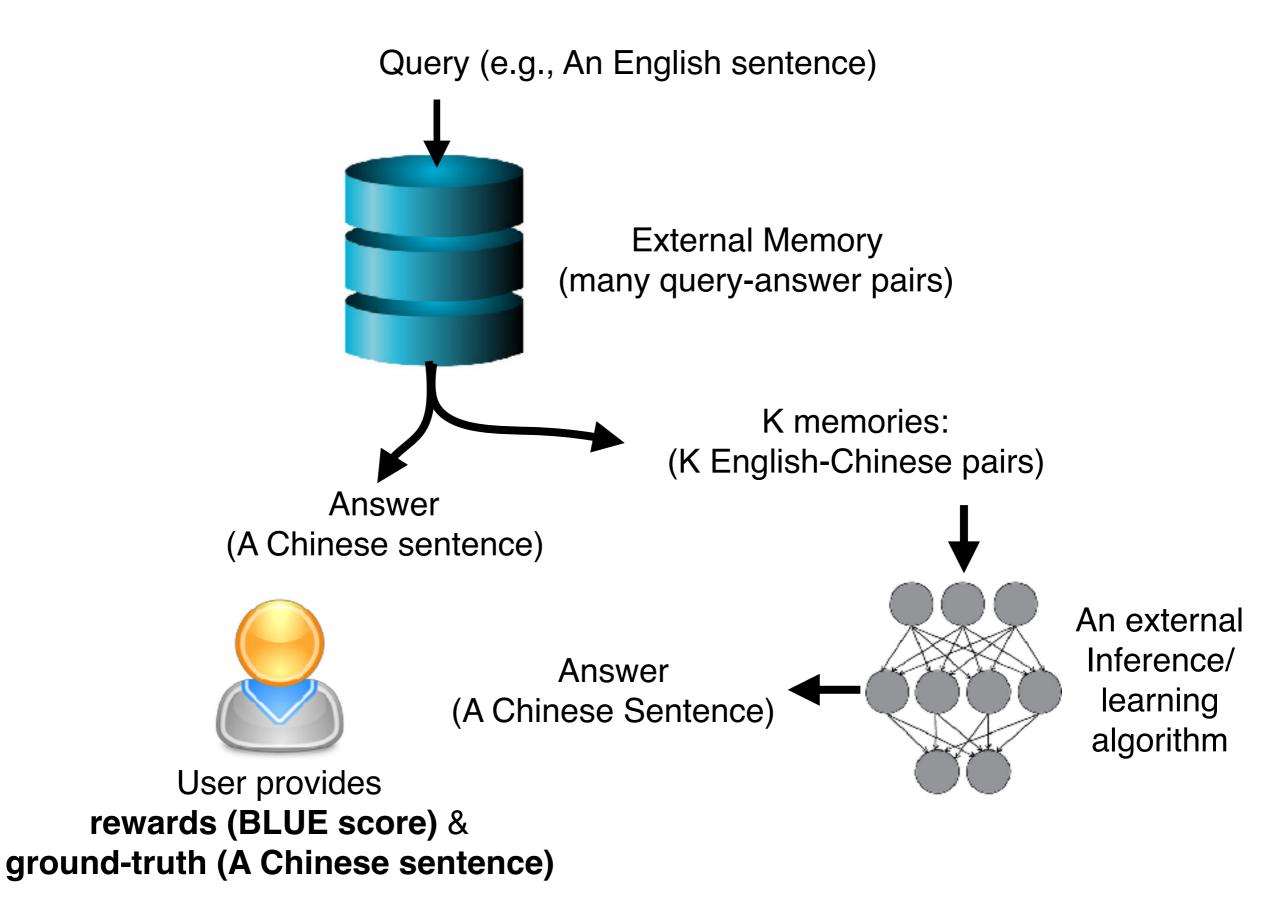


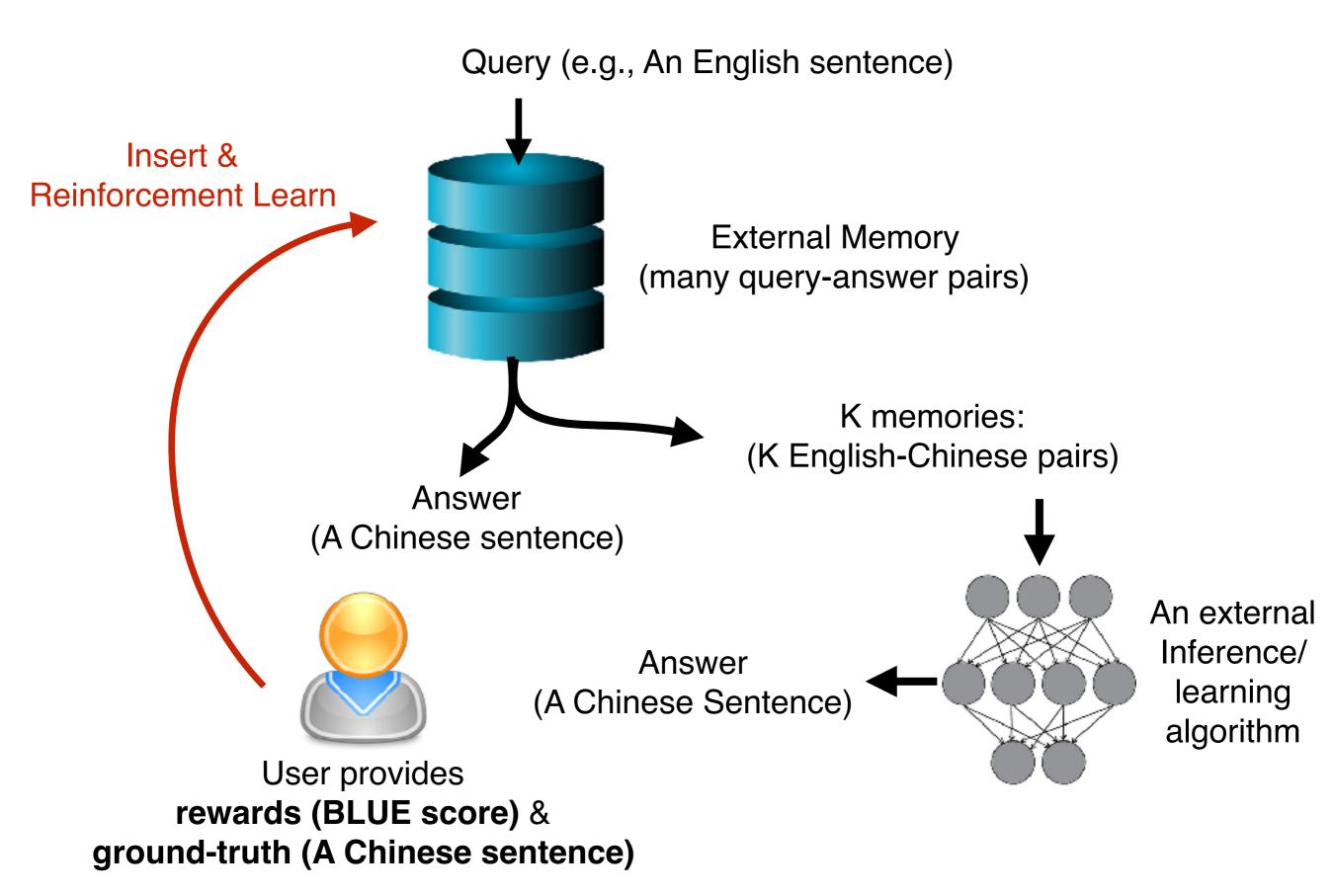


An external Inference/ learning algorithm



An external Inference/ learning algorithm





Online: every operation works one example at a time

Online: every operation works one example at a time

Linear Space: O(# of examples)

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Self-consistency: identify the item seen before

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

QUERY(q)

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

QUERY(q) \downarrow (m_1, \dots, m_k)

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

QUERY(q) \downarrow (m_1, \dots, m_k)

2. If reward r_i is given,

A memory (m): a pair of Query (q) & Value (v)

e.g., (A English Sentence, A Chinese Sentence)

1. Given a query q,

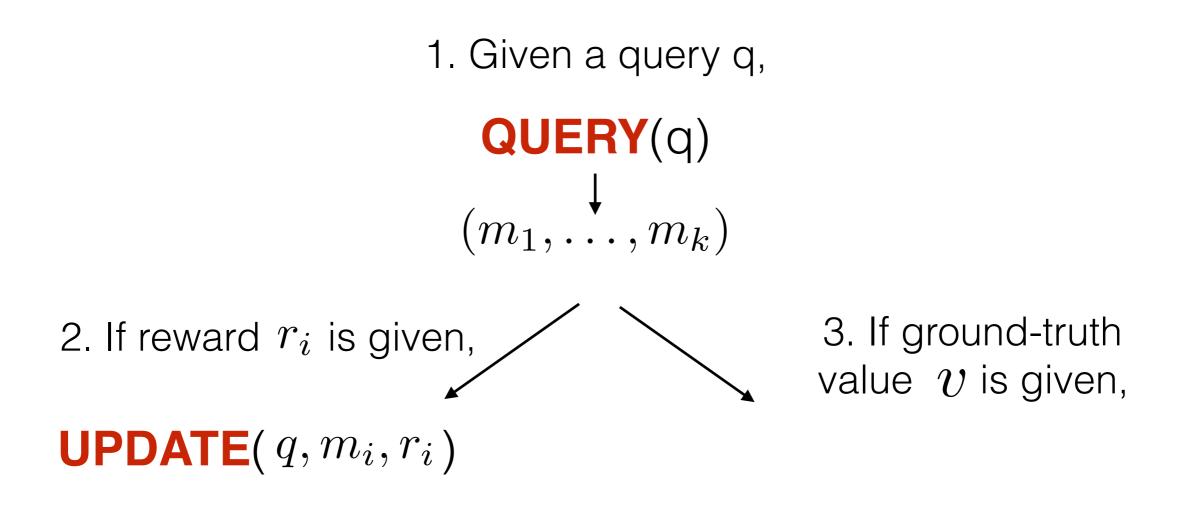
QUERY(q) \downarrow (m_1, \dots, m_k)

2. If reward r_i is given,

UPDATE (q, m_i, r_i)

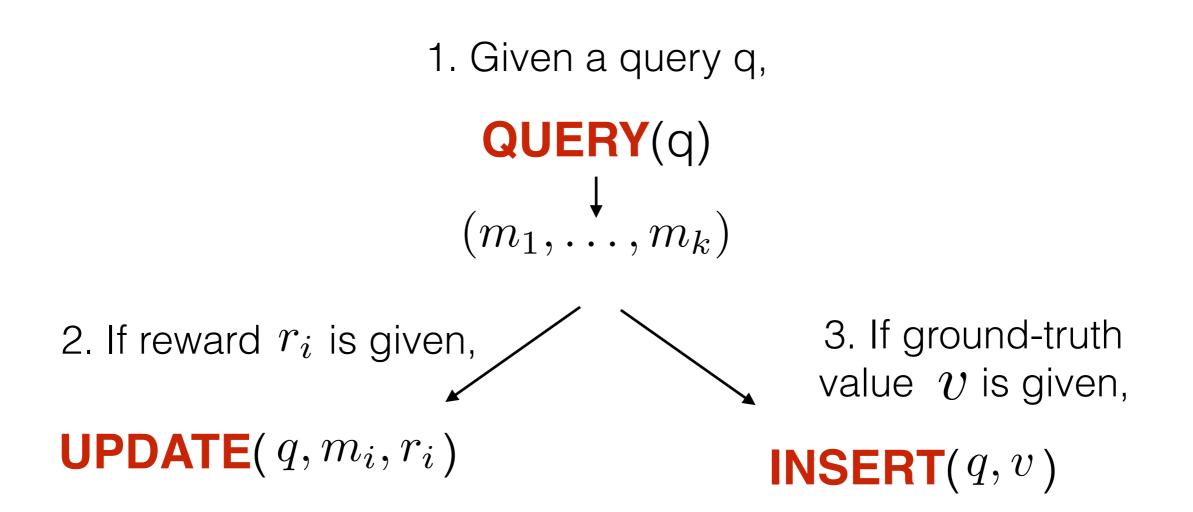
A memory (m): a pair of Query (q) & Value (v)

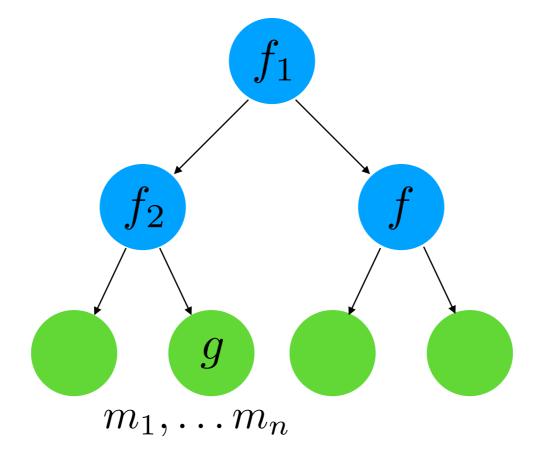
e.g., (A English Sentence, A Chinese Sentence)

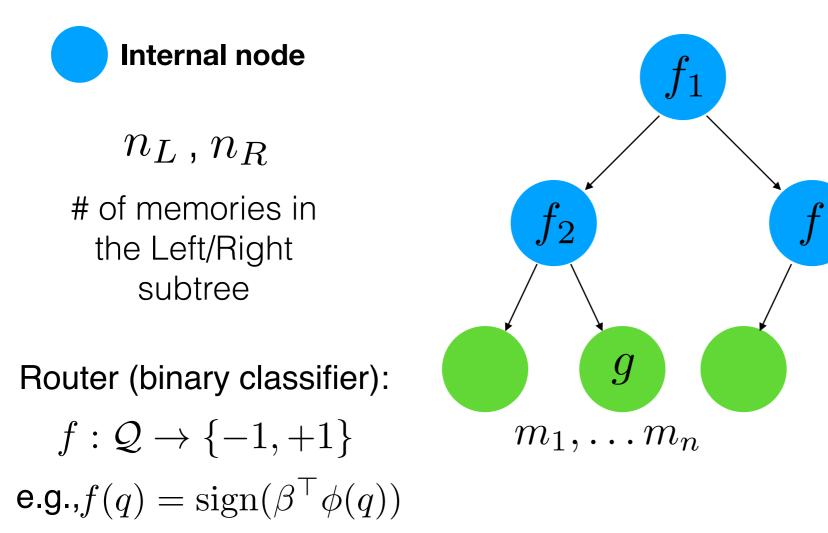


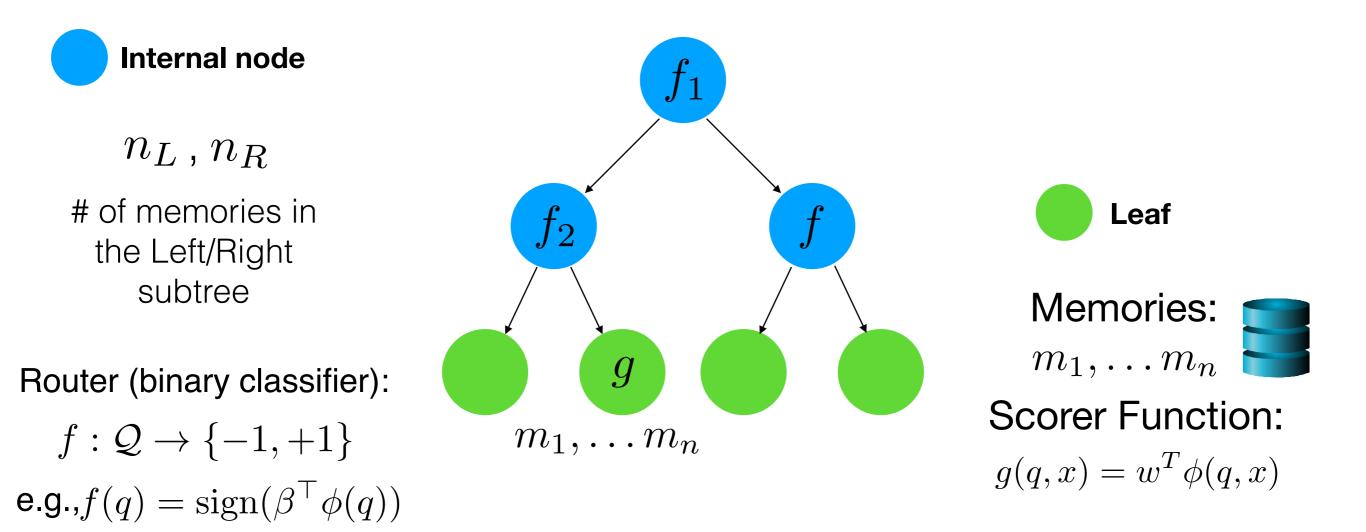
A memory (m): a pair of Query (q) & Value (v)

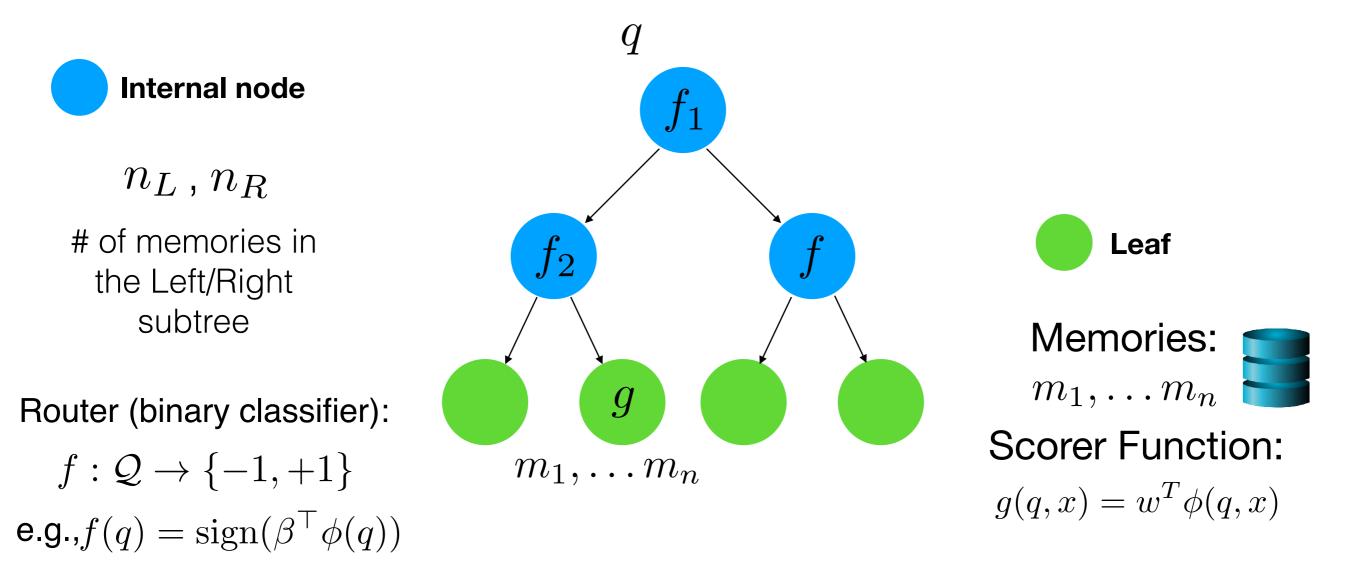
e.g., (A English Sentence, A Chinese Sentence)

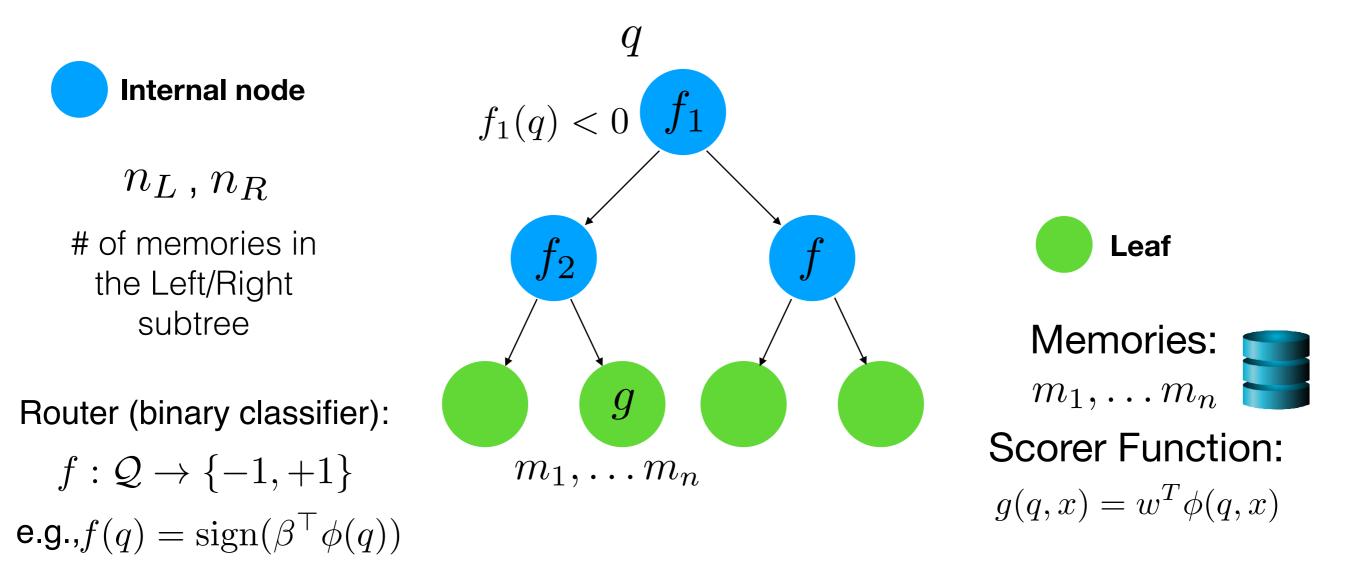


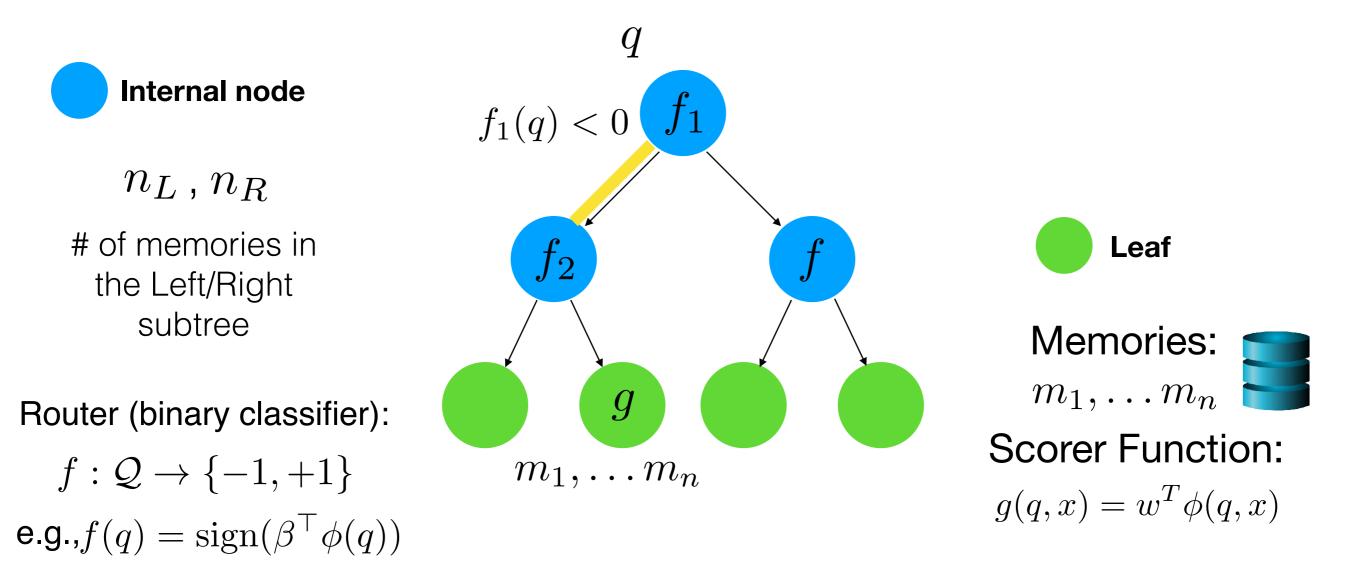


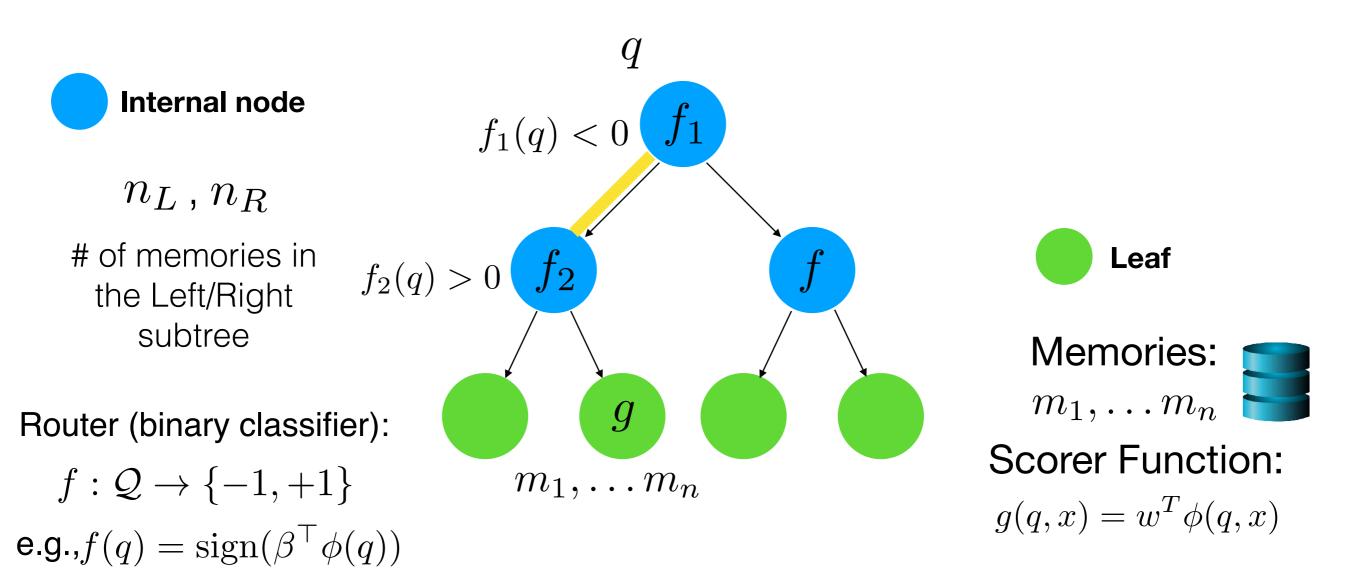


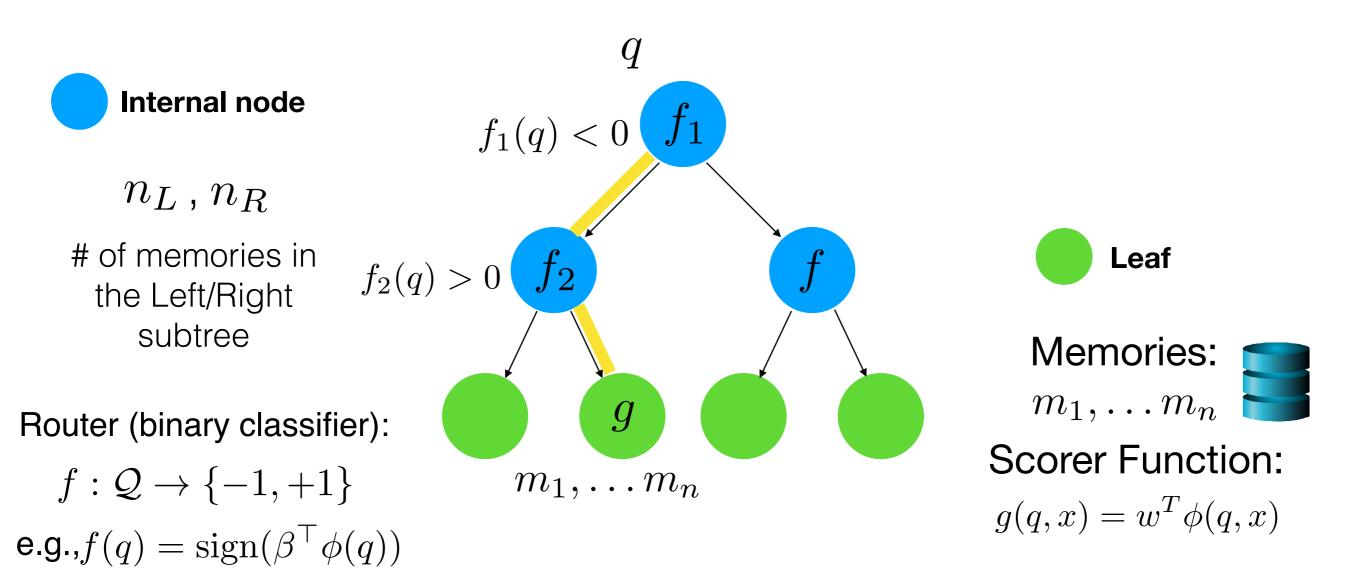


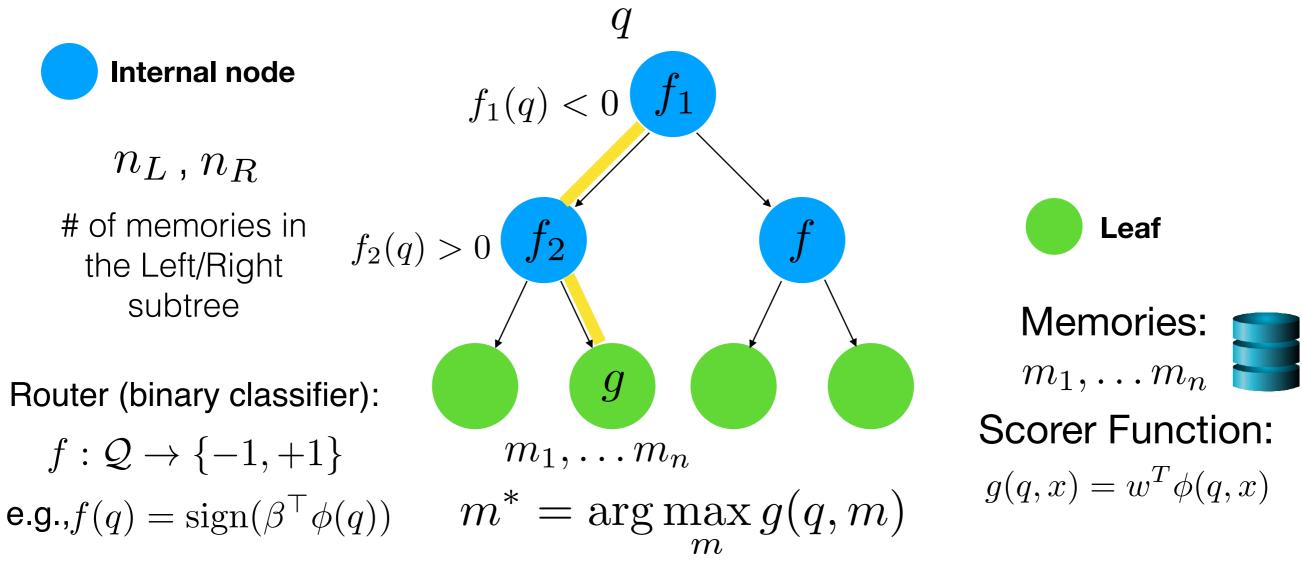




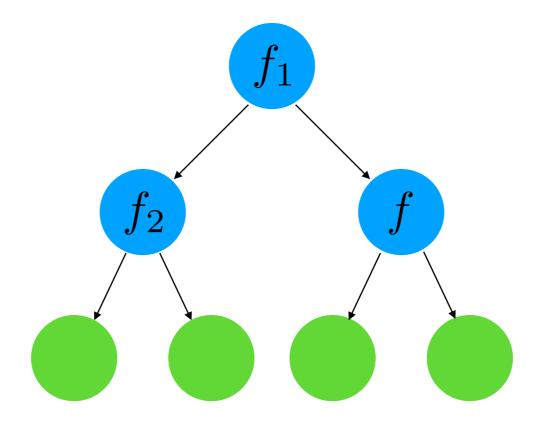


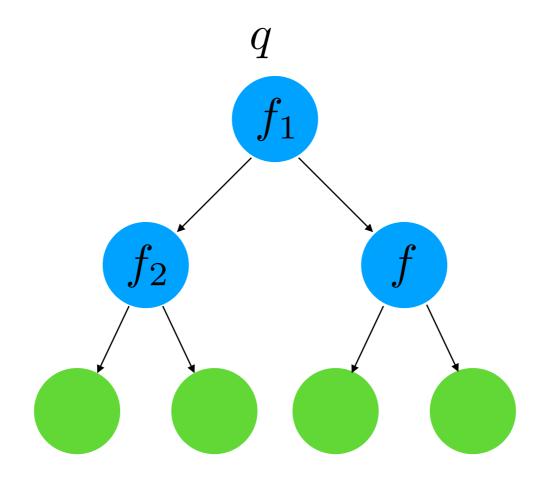


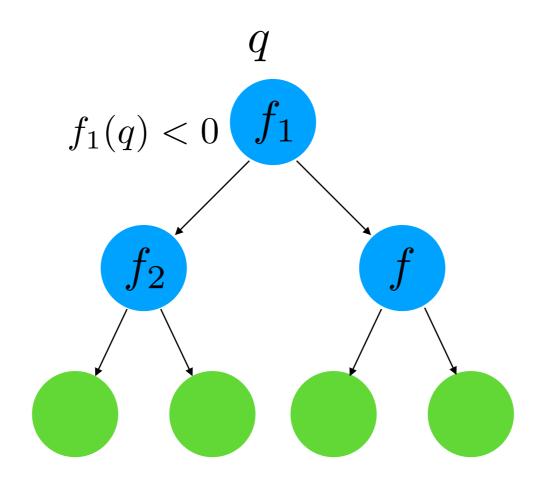


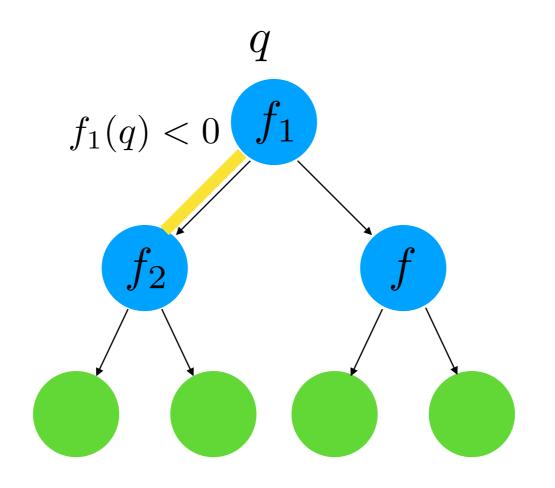


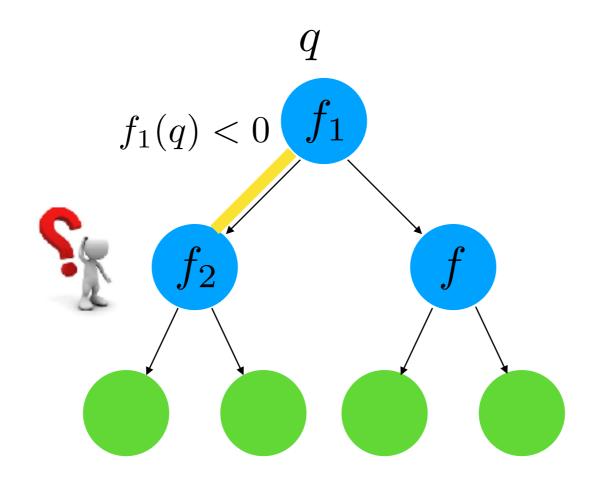
Select the most relevant memory

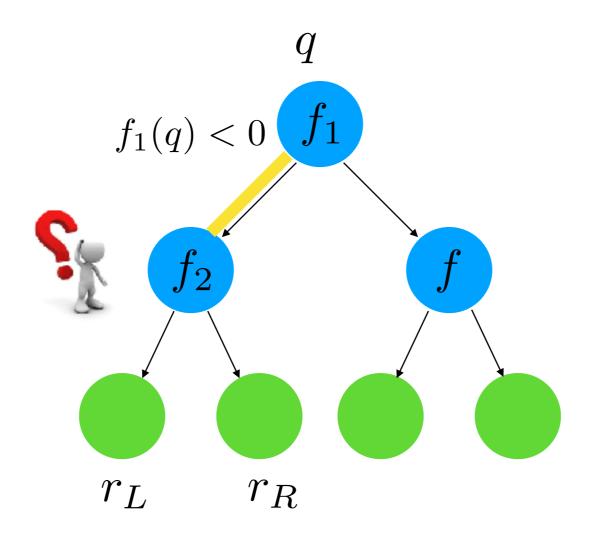


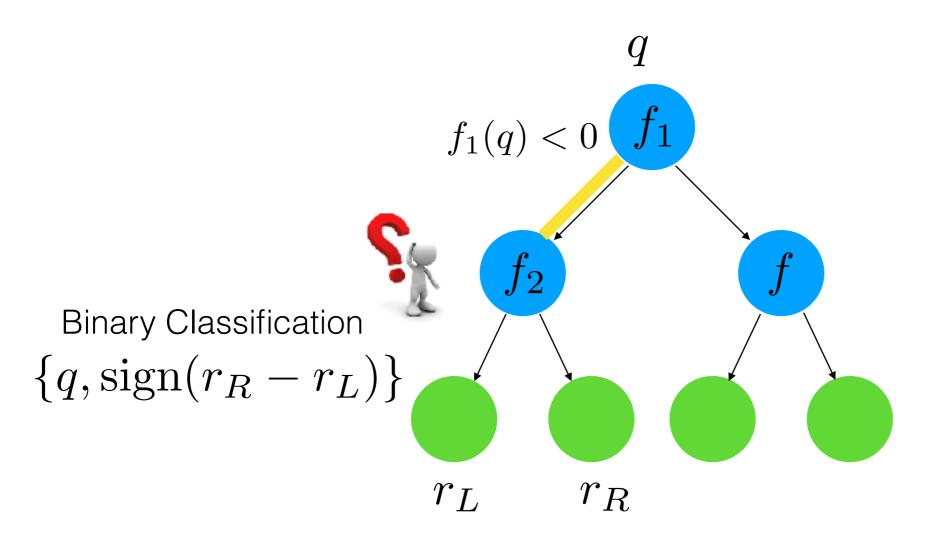




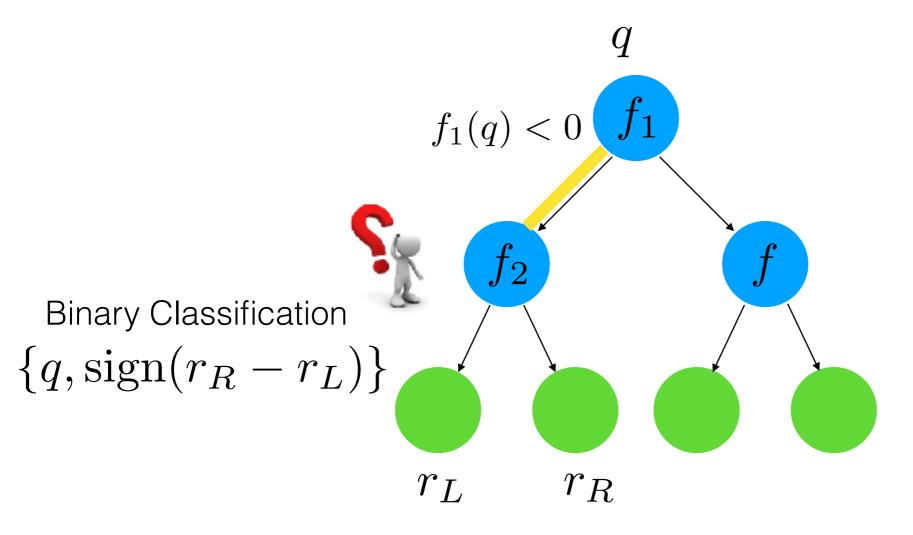






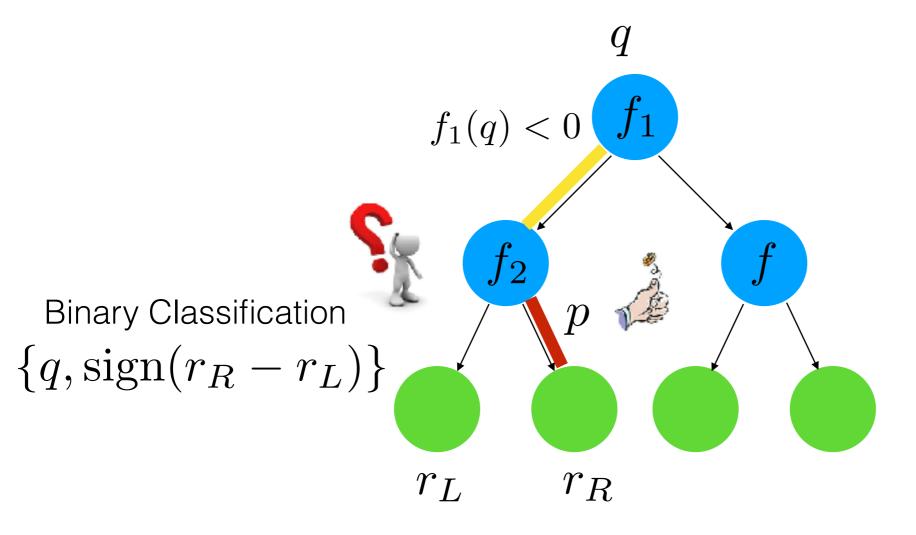


Using reward signals to update routers



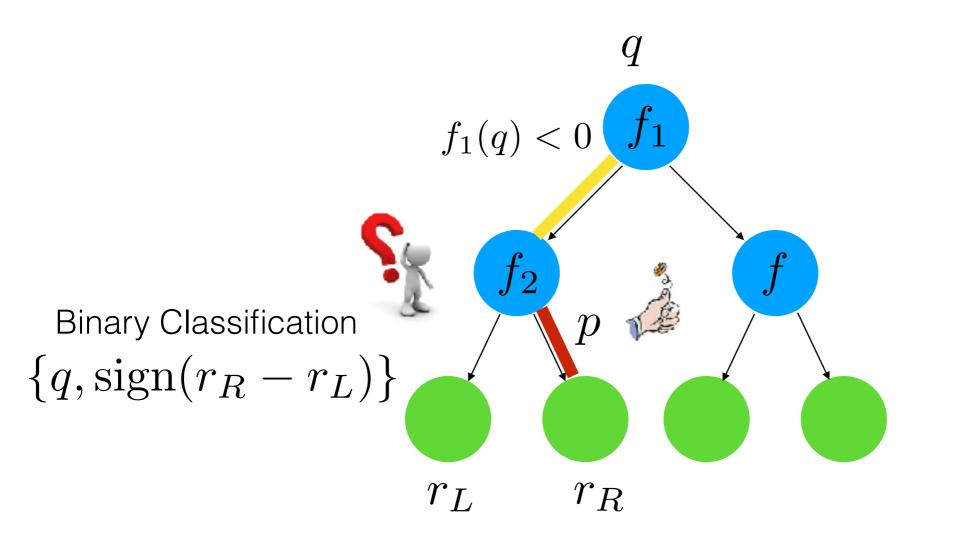
 ϵ -Greedy for exploration

Using reward signals to update routers



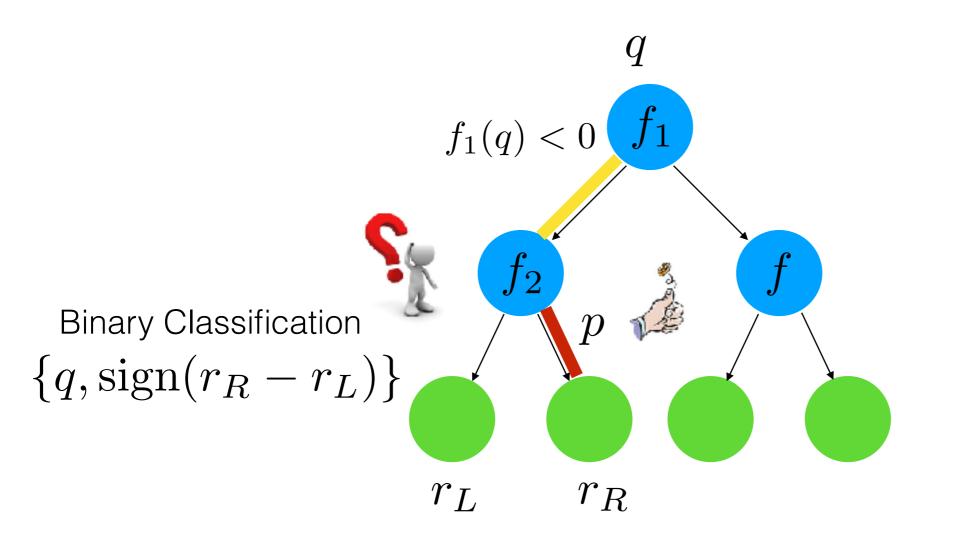
 ϵ -Greedy for exploration

Using reward signals to update routers



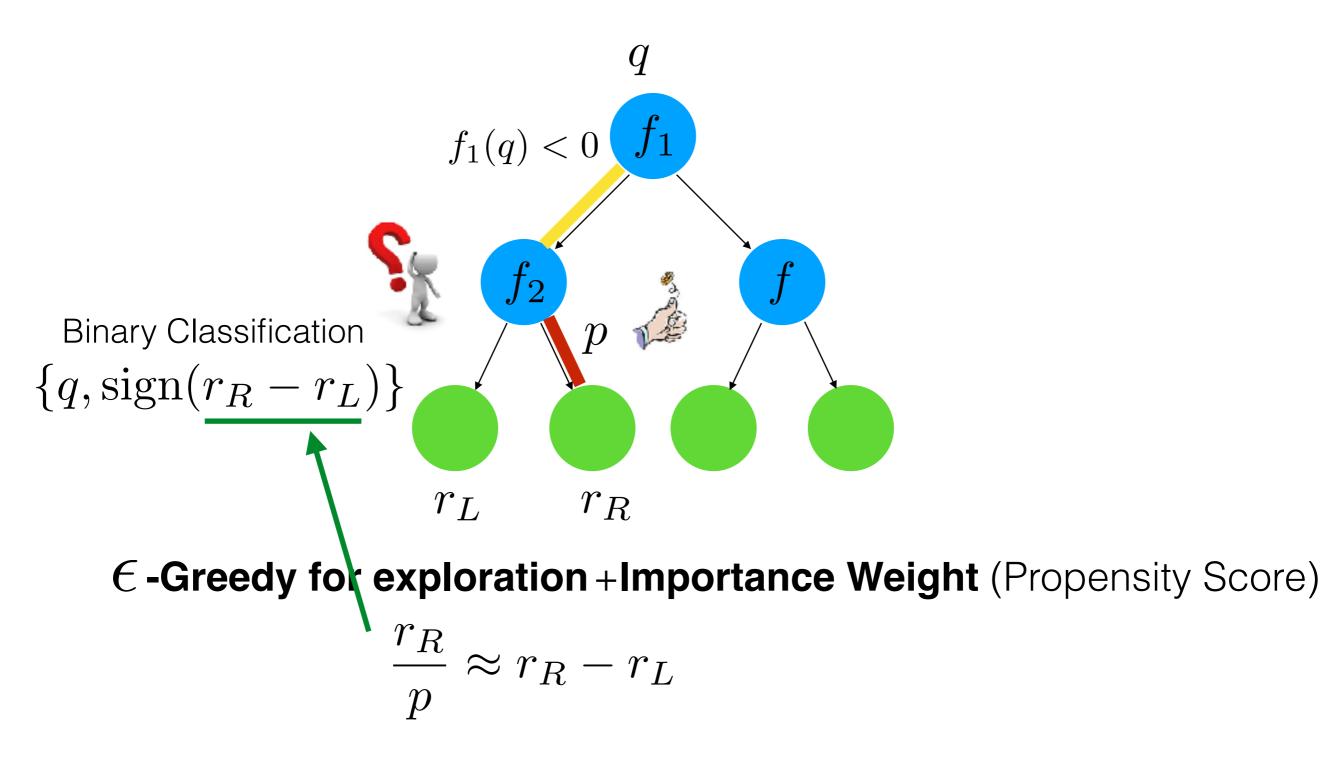
C-Greedy for exploration + Importance Weight (Propensity Score)

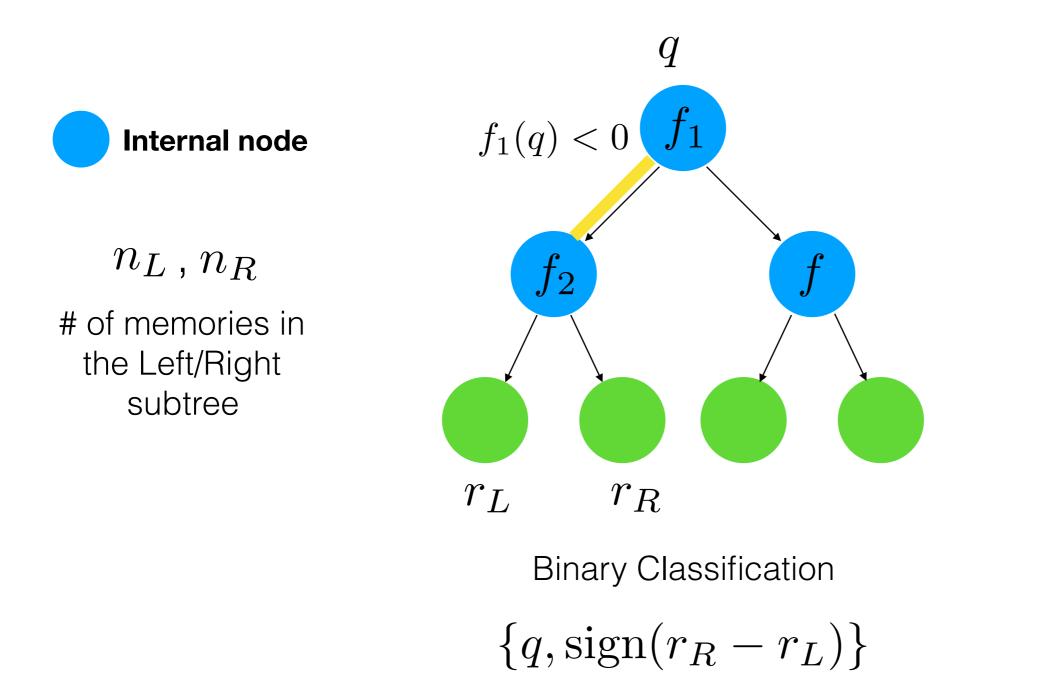
Using reward signals to update routers

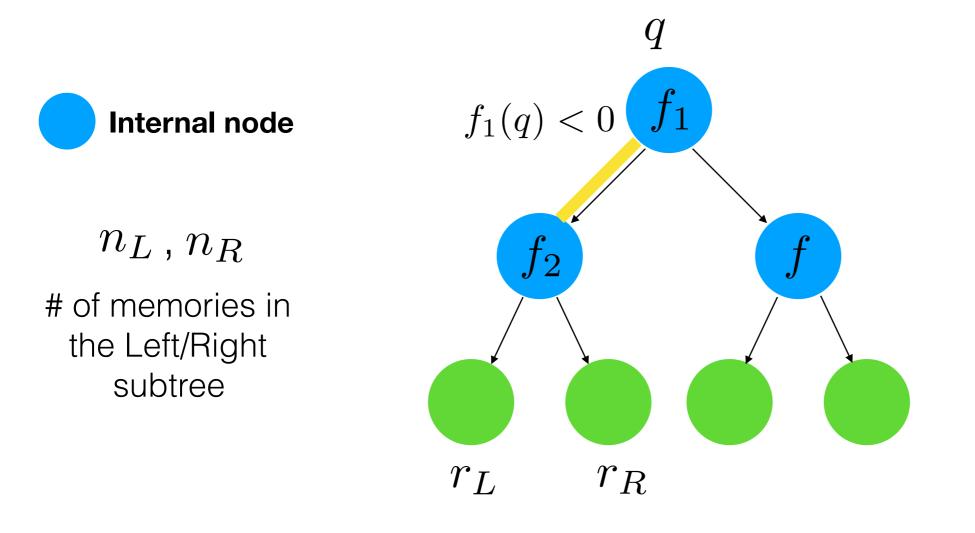


*C***-Greedy for exploration**+Importance Weight (Propensity Score)

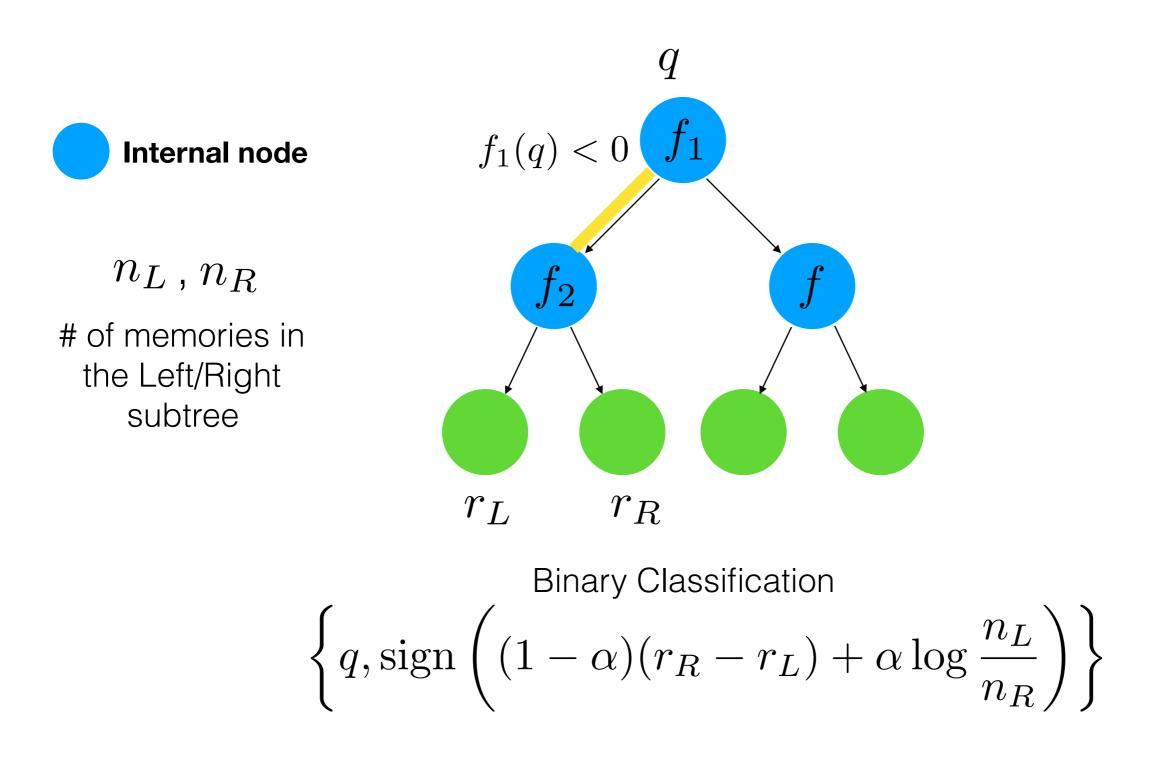
$$\frac{r_R}{p} \approx r_R - r_L$$

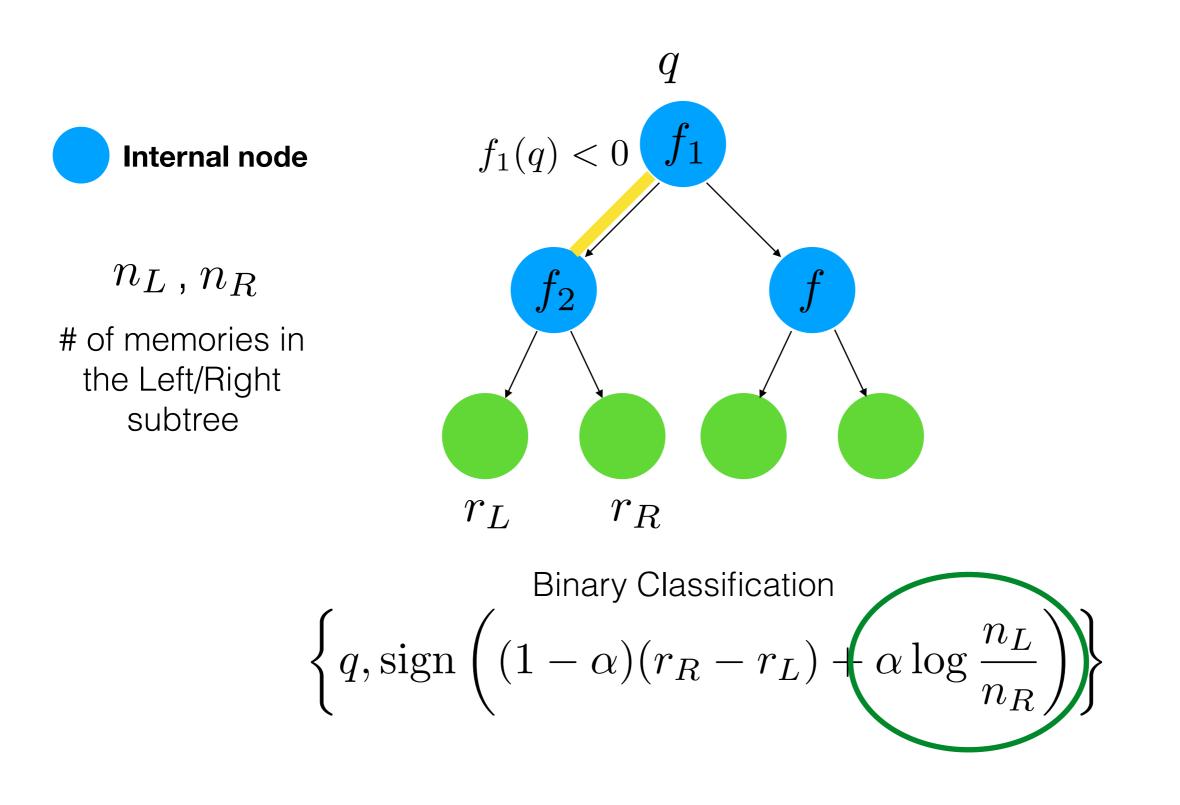


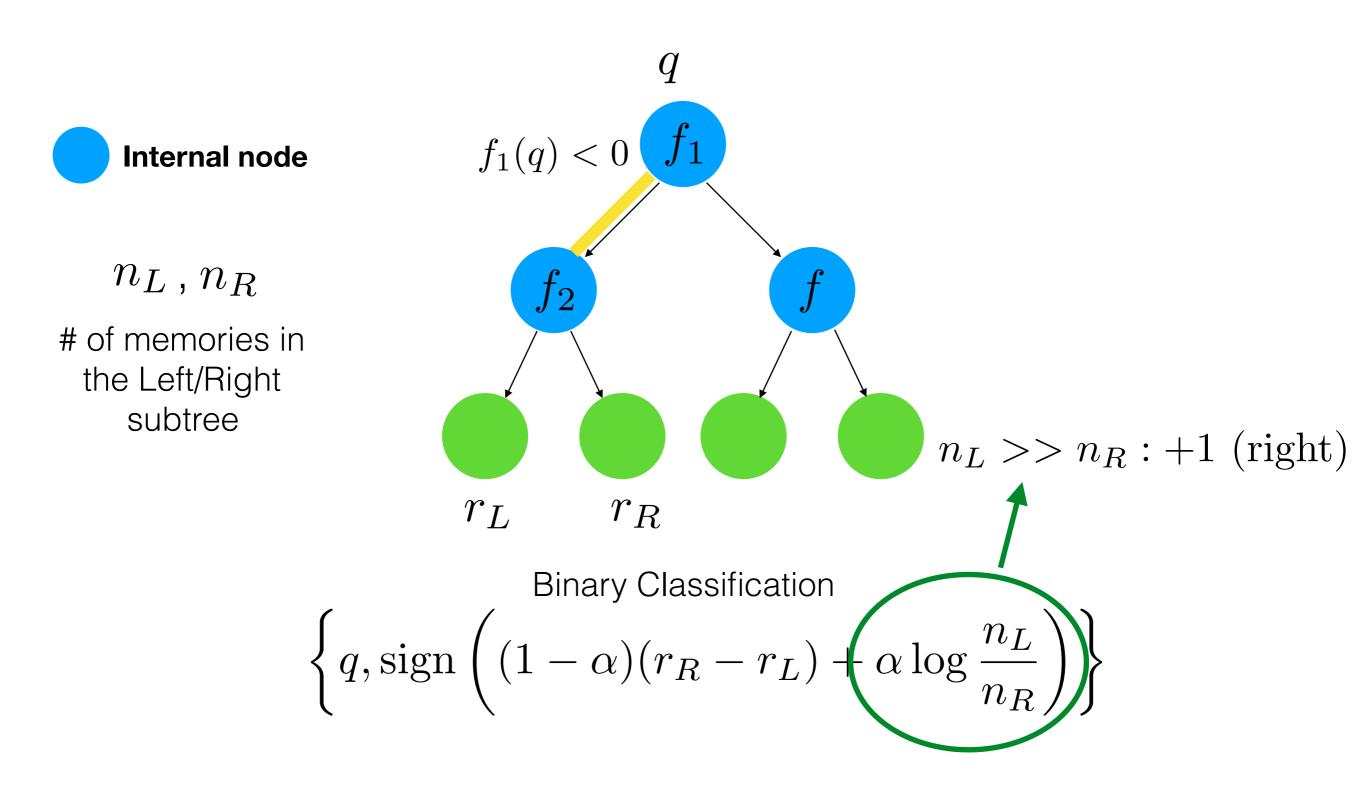


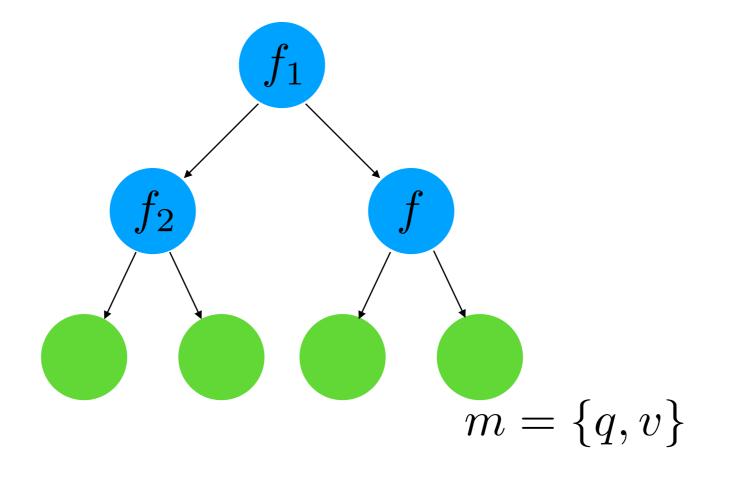


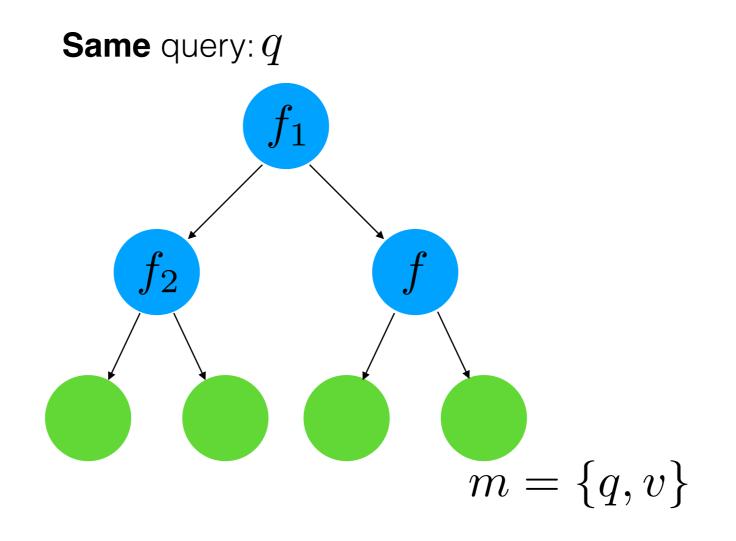
Binary Classification

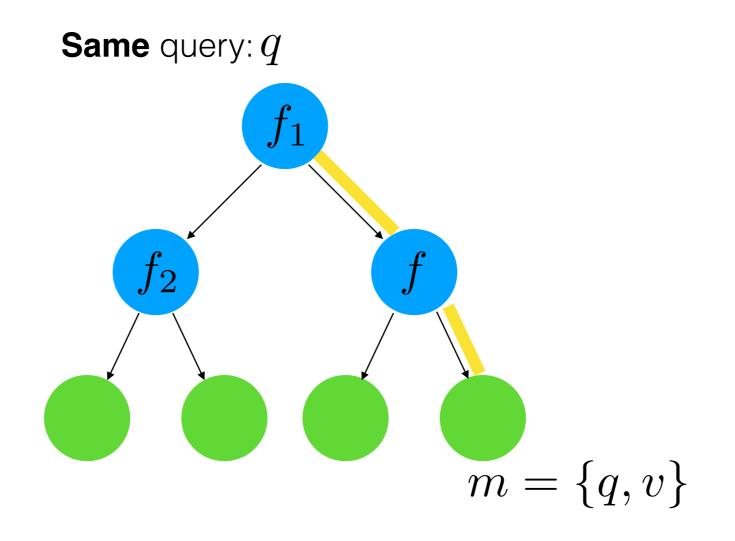


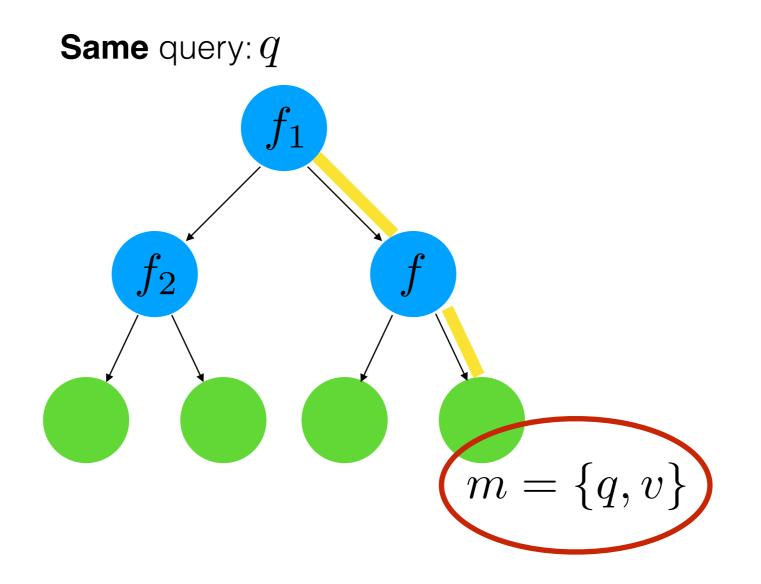


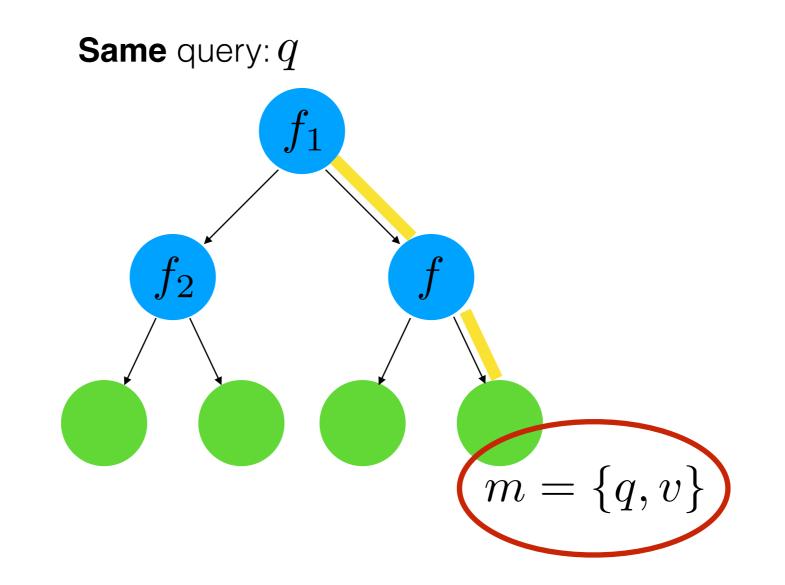




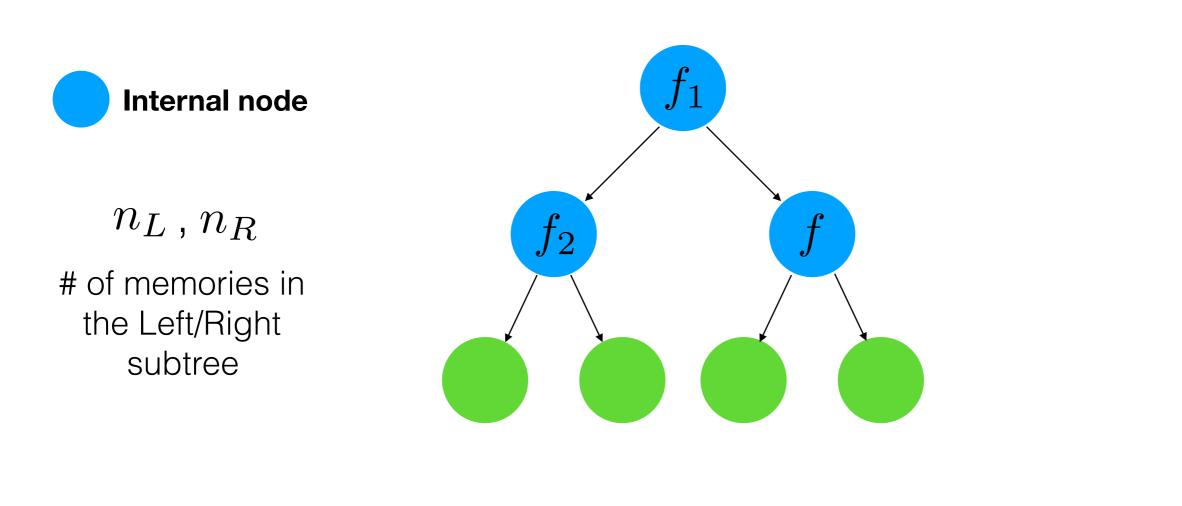


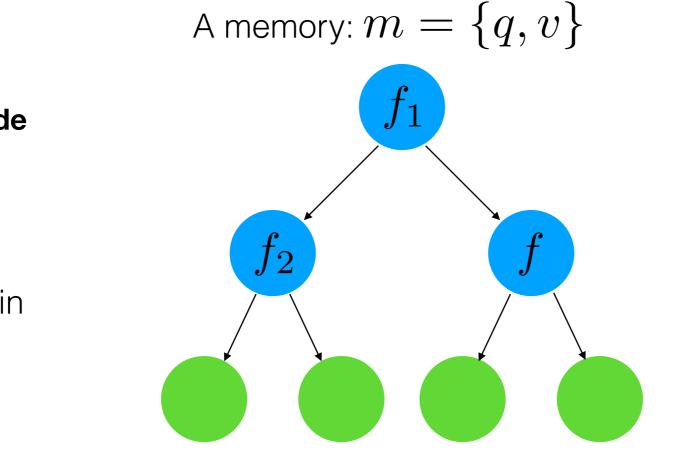






If a query has been seen before, we want to just retrieve it!

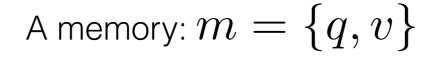




Internal node

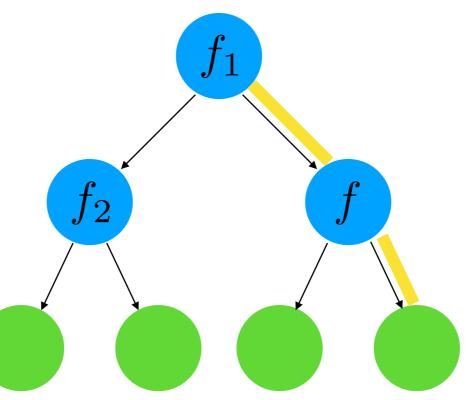
 n_L , n_R

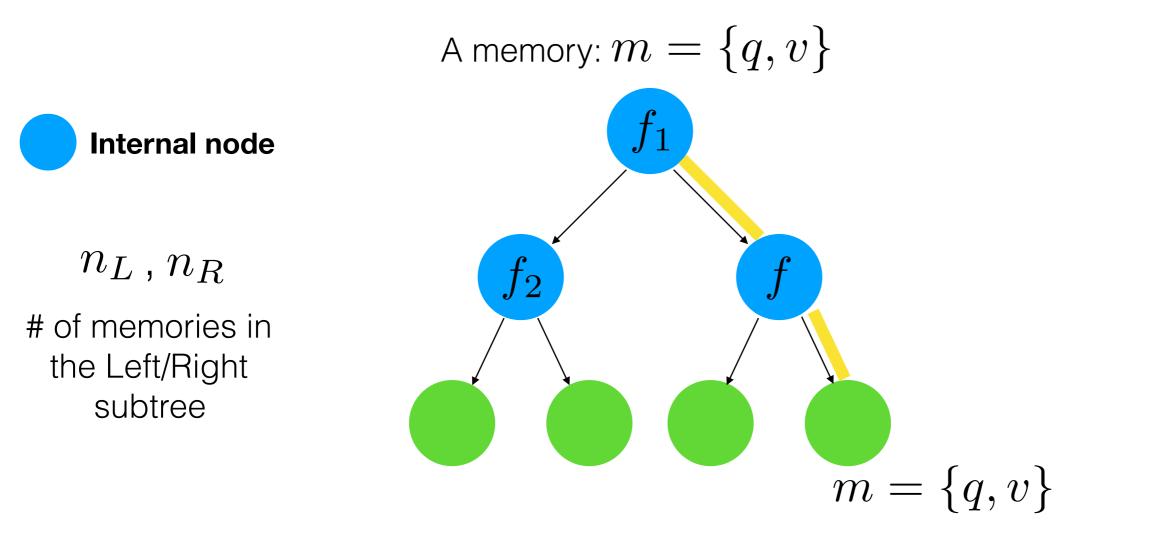
of memories in the Left/Right subtree

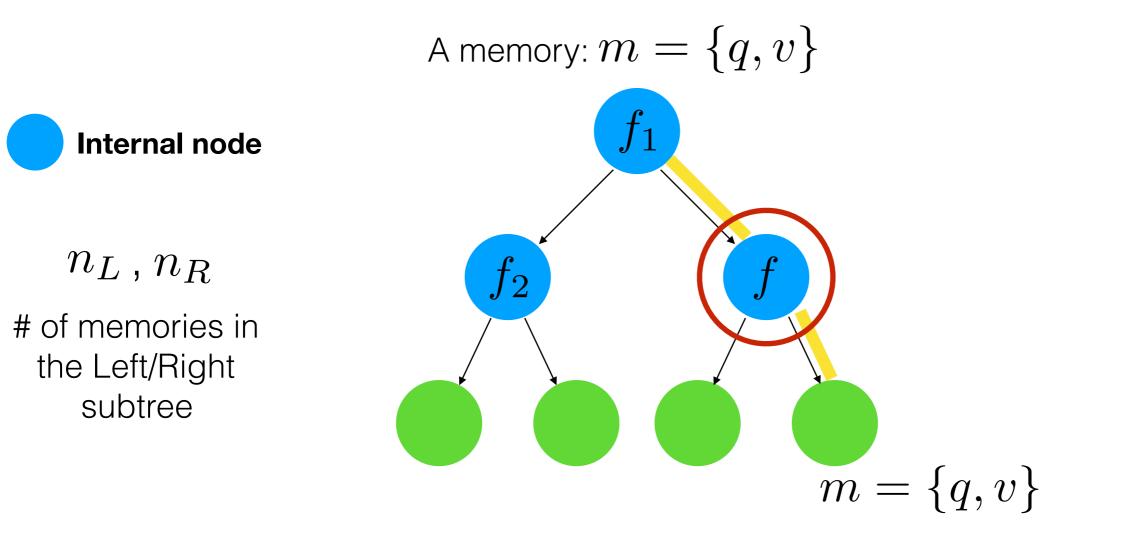


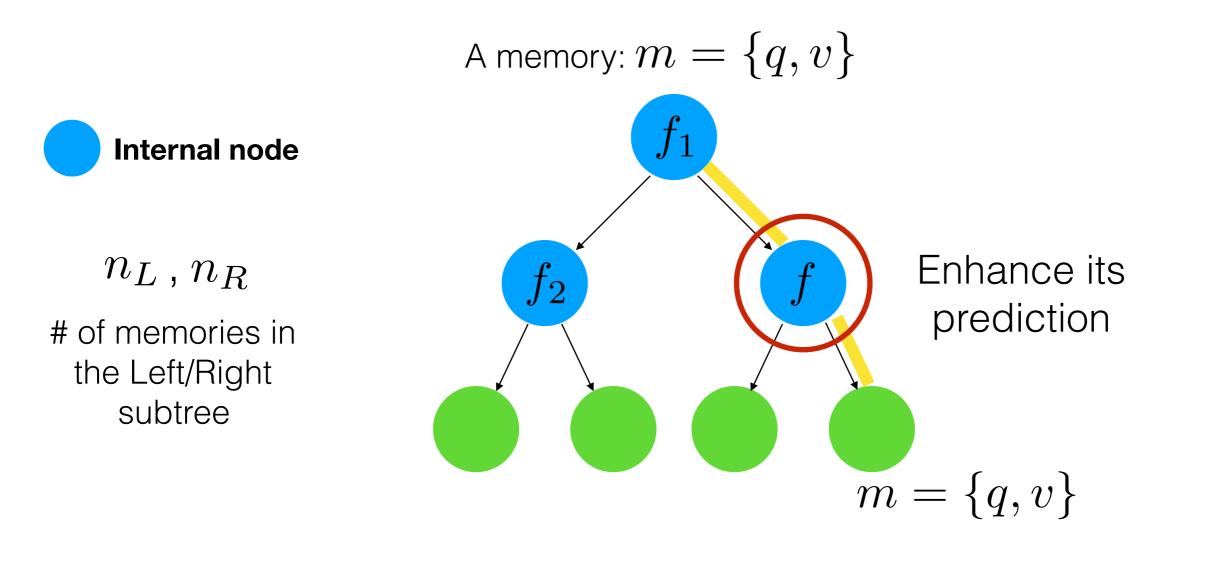
 n_L , n_R

of memories in the Left/Right subtree

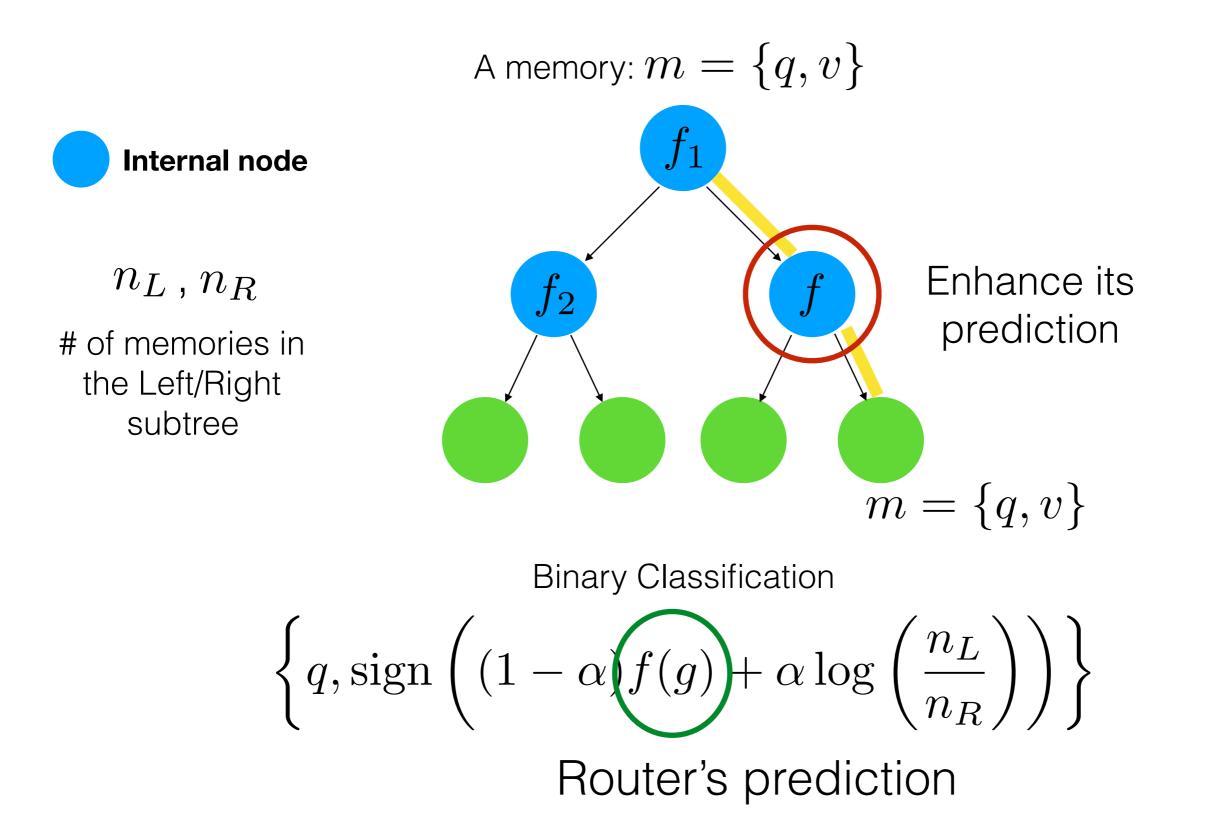




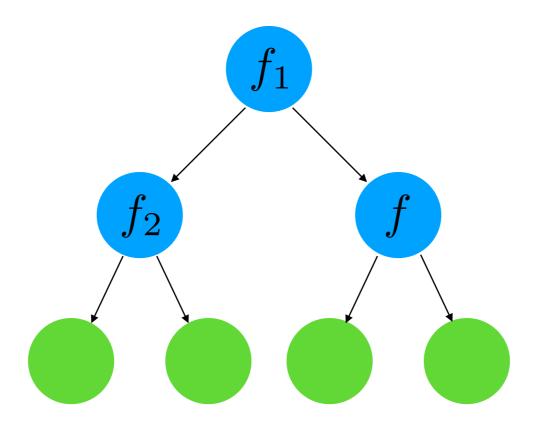




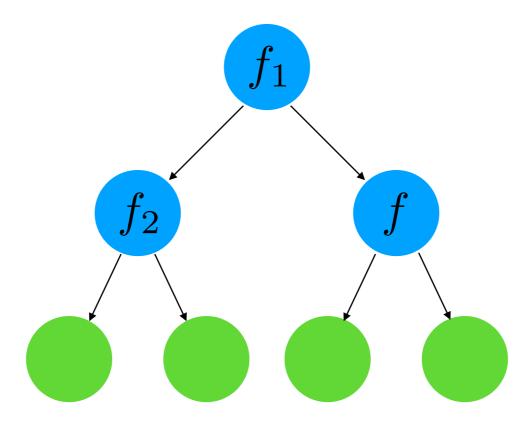




Routers are updated online and may result in a lack of self-consistency for previous insertions

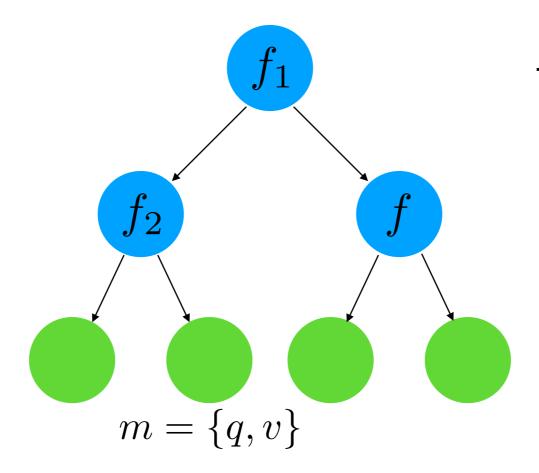


Routers are updated online and may result in a lack of self-consistency for previous insertions



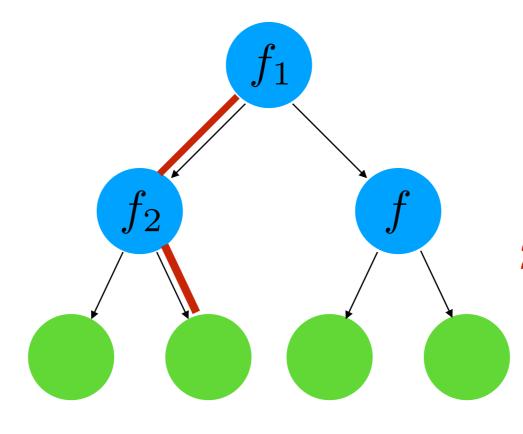
1. Randomly sample a memory

Routers are updated online and may result in a lack of self-consistency for previous insertions



1. Randomly sample a memory

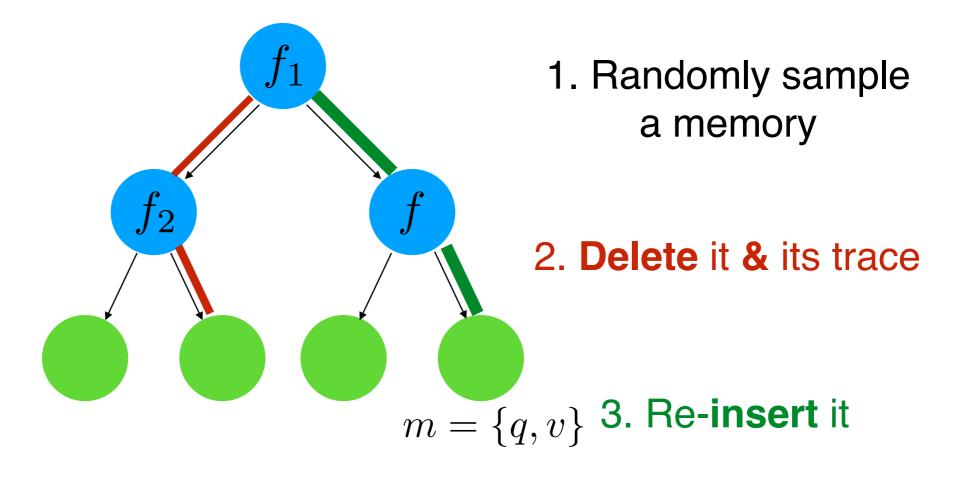
Routers are updated online and may result in a lack of self-consistency for previous insertions



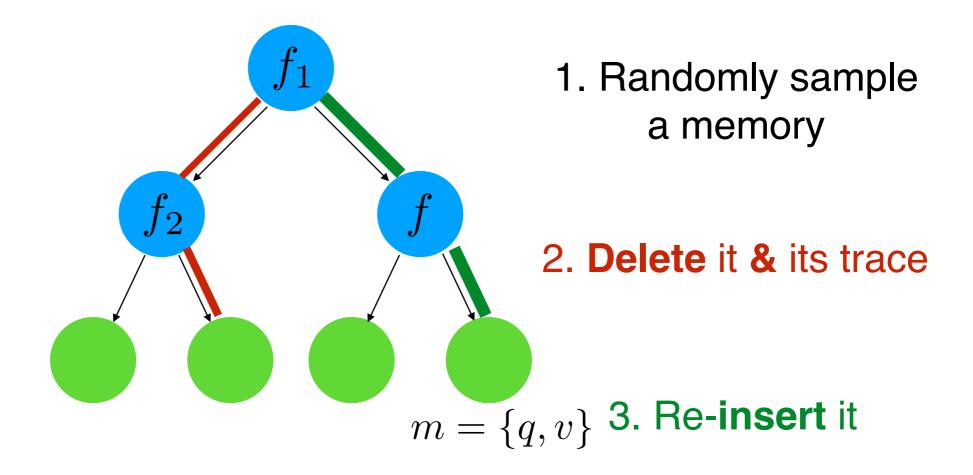
1. Randomly sample a memory

2. Delete it & its trace

Routers are updated online and may result in a lack of self-consistency for previous insertions



Routers are updated online and may result in a lack of self-consistency for previous insertions



Apply replay constant times per insertion

Extreme Multi-Class Classification:

(feature, label), zero-one loss

Extreme Multi-Class Classification:

(feature, label), zero-one loss

Extreme Multi-Label Classification:

(feature, set of labels), Hamming loss

Extreme Multi-Class Classification:

(feature, label), zero-one loss

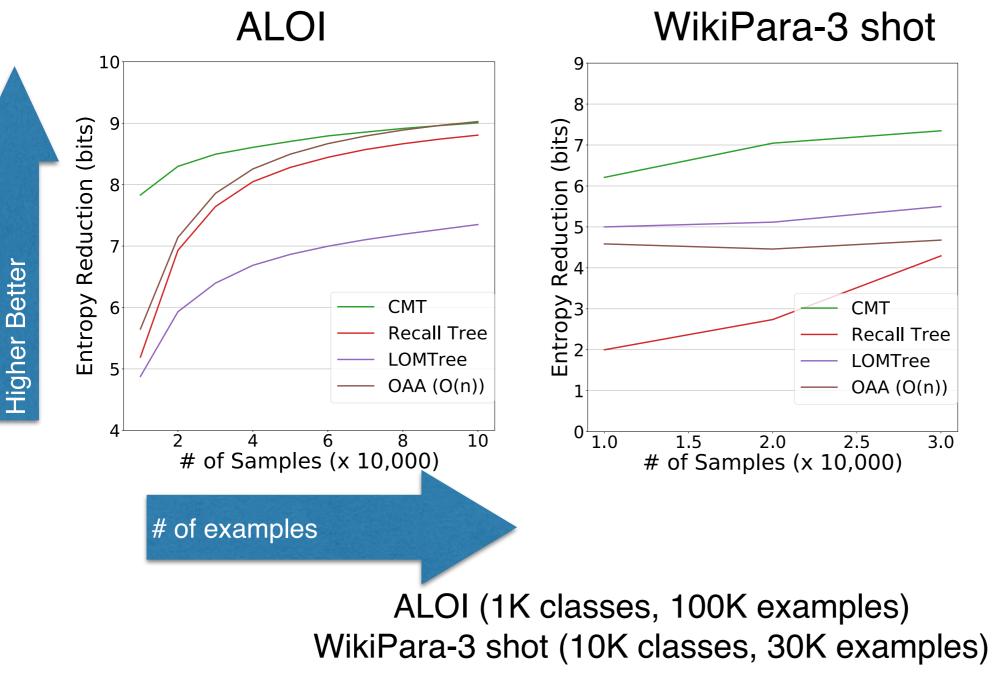
Extreme Multi-Label Classification:

(feature, set of labels), Hamming loss

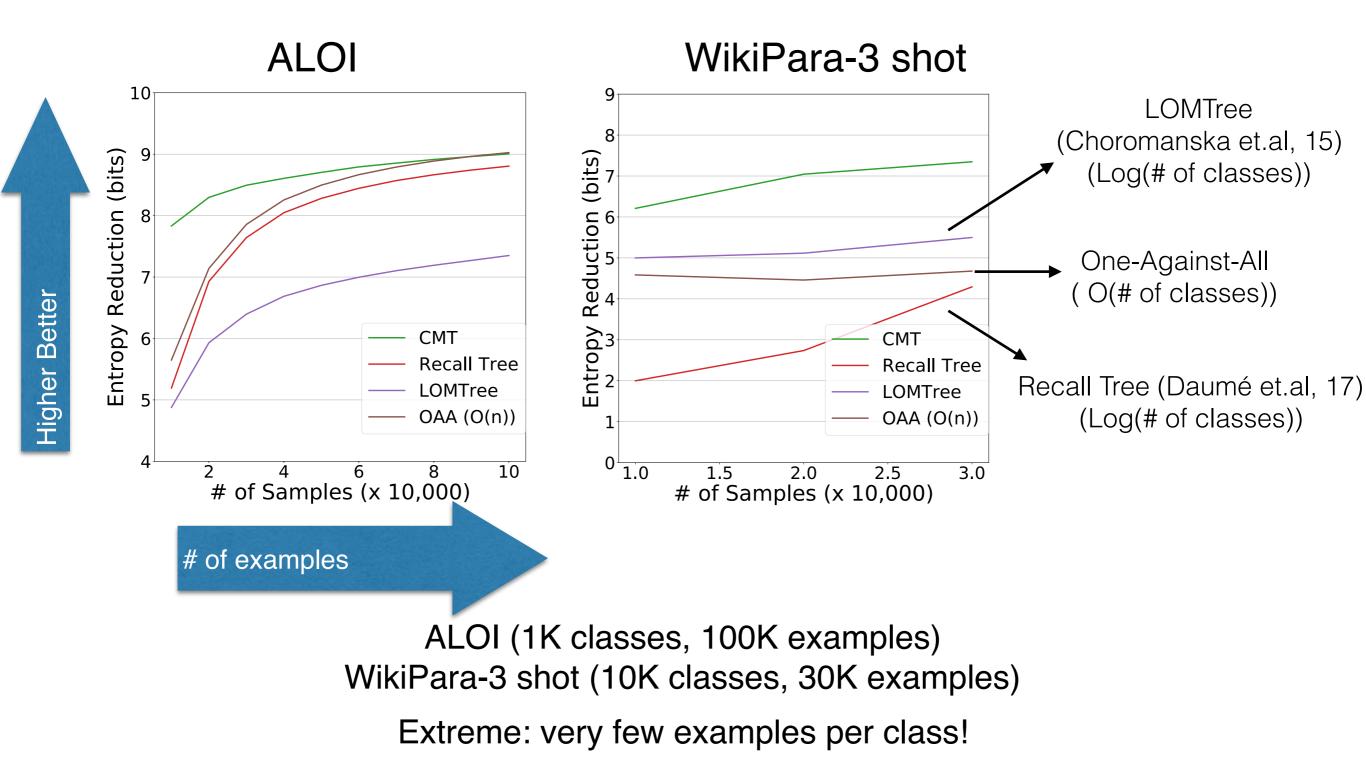
Image Retrieval (Caption, Image), Cosine Similarity

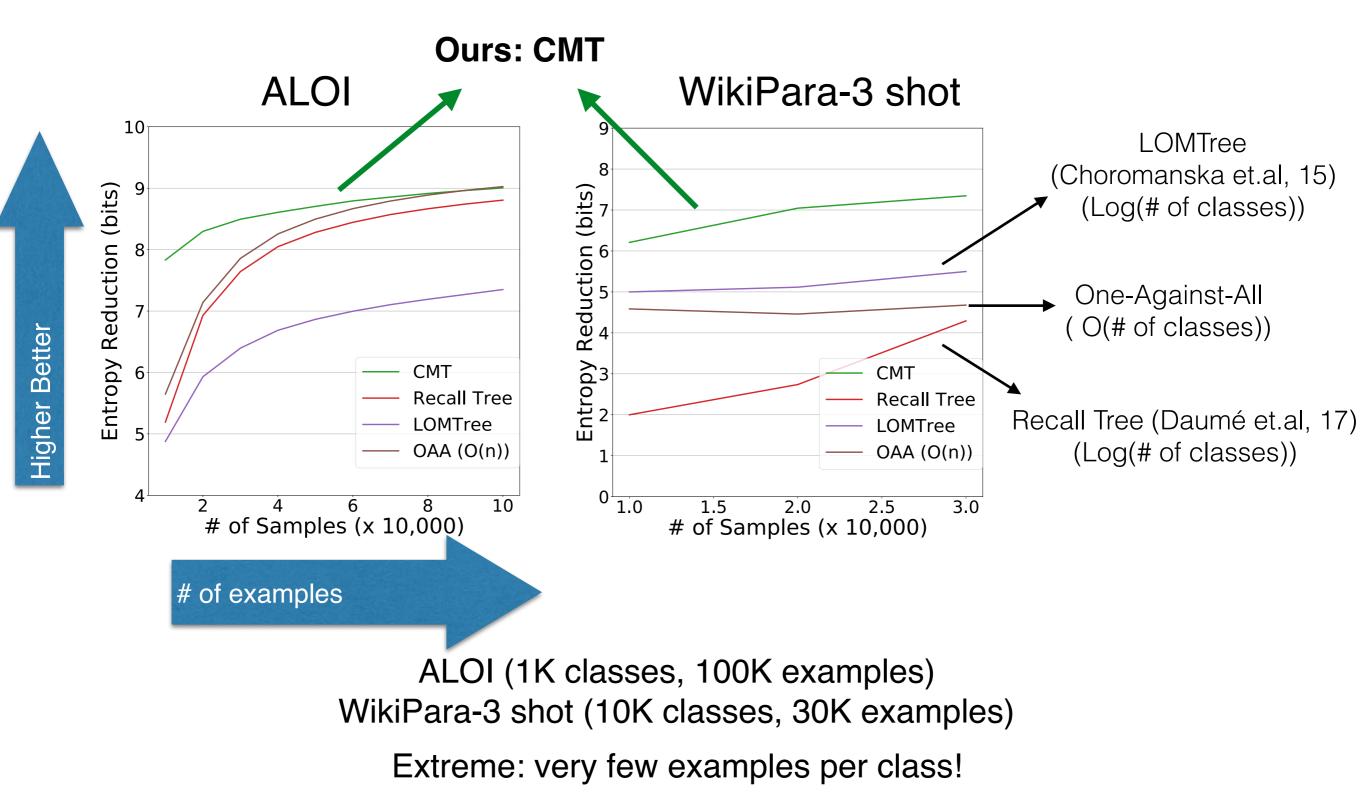
ALOI (1K classes, 100K examples) WikiPara-3 shot (10K classes, 30K examples)

ALOI (1K classes, 100K examples) WikiPara-3 shot (10K classes, 30K examples) Extreme: very few examples per class!

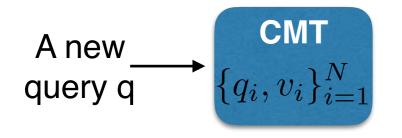


Extreme: very few examples per class!





(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)

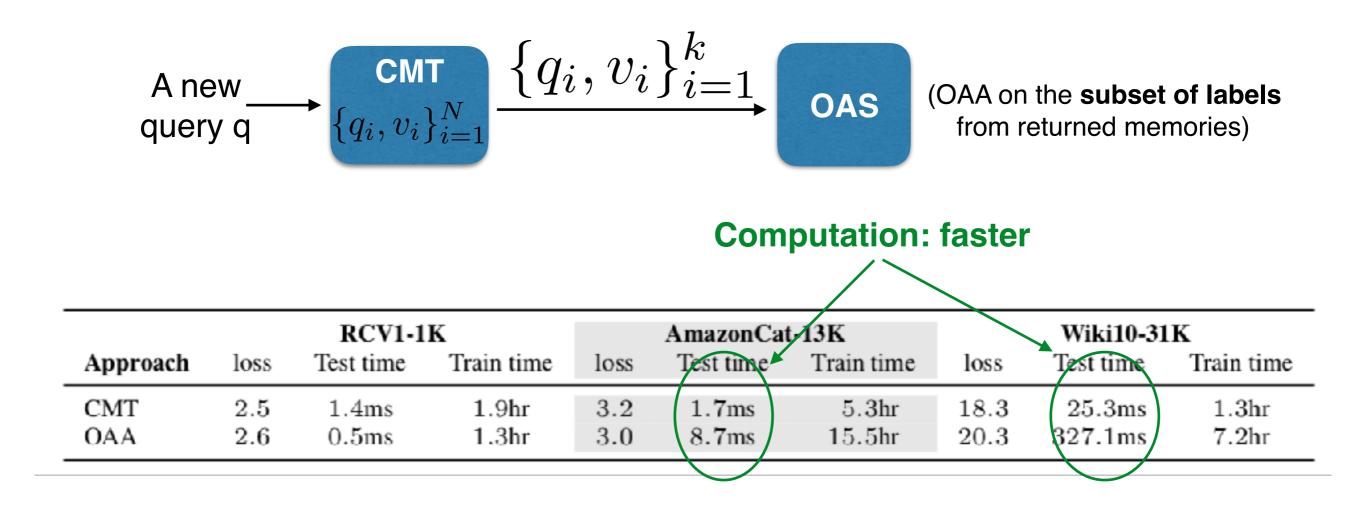


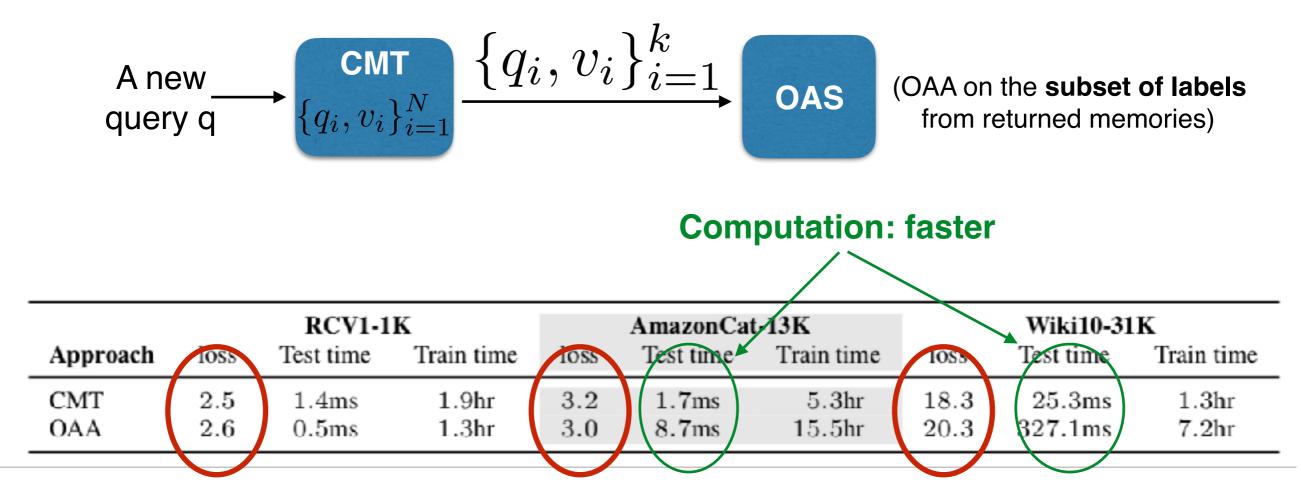
A new
$$(q_i, v_i)_{i=1}^N \xrightarrow{\{q_i, v_i\}_{i=1}^k} OAS$$

A new
$$\{q_i, v_i\}_{i=1}^N$$
 $\{q_i, v_i\}_{i=1}^k$ $\{q_i, v_i\}_{i=1}^k$ OAS (OAA on the subset of labels from returned memories)

A new
$$\{q_i, v_i\}_{i=1}^N$$
 $\{q_i, v_i\}_{i=1}^k$ $\{q_i, v_i\}_{i=1}^k$ OAS (OAA on the subset of labels from returned memories)

	RCV1-1K			AmazonCat-13K			Wiki10-31K		
Approach	loss	Test time	Train time	loss	Test time	Train time	loss	Test time	Train time
CMT	2.5	1.4ms	1.9hr	3.2	1.7ms	5.3hr	18.3	25.3ms	1.3hr
OAA	2.6	0.5ms	1.3hr	3.0	8.7ms	15.5hr	20.3	327.1 ms	7.2hr





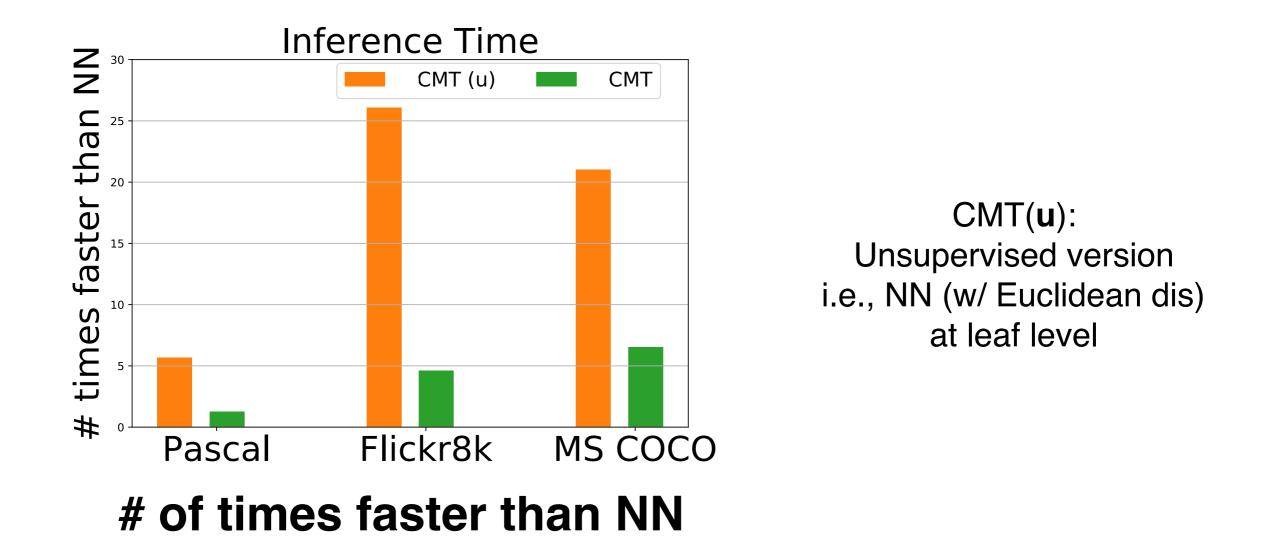
Statistical Performance: similar, sometimes even better

Image Retrieval: Comparison to Nearest Neighbor Approach

CMT(**u**): Unsupervised version i.e., NN (w/ Euclidean dis) at leaf level

(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)
Image feature: HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO
Captions feature: Token Occurrences with hashing (high-dim, very sparse)

Image Retrieval: Comparison to Nearest Neighbor Approach



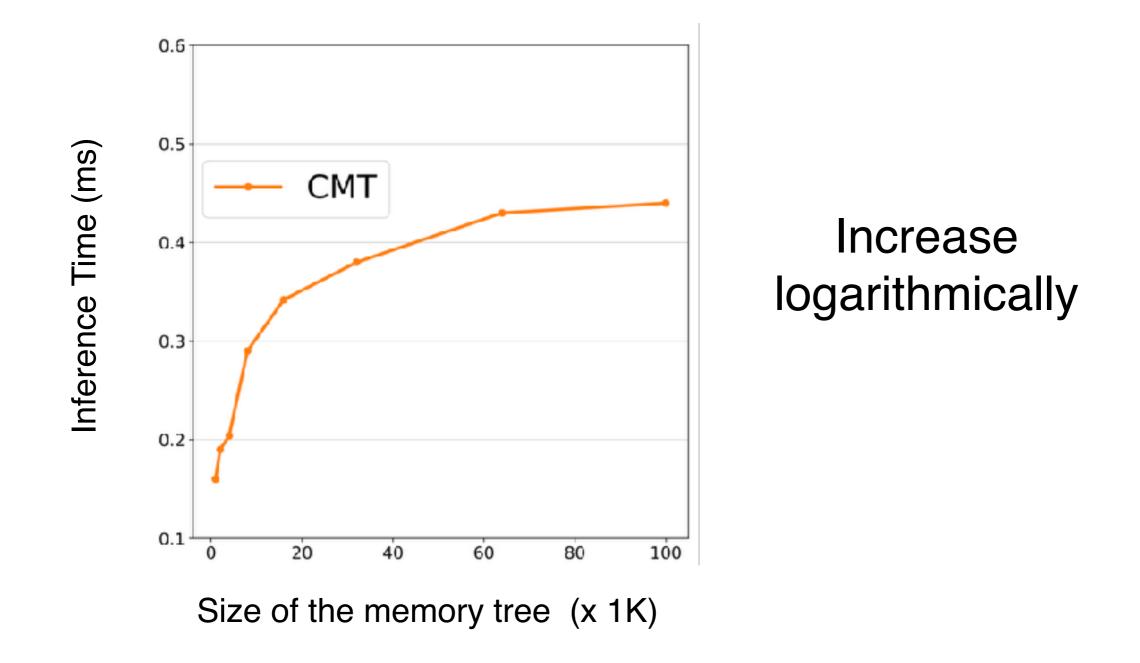
(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)
Image feature: HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO
Captions feature: Token Occurrences with hashing (high-dim, very sparse)

How does computation scale wrt the size of memory tree?

On ALOI, we range in dataset size from 1K to 100K

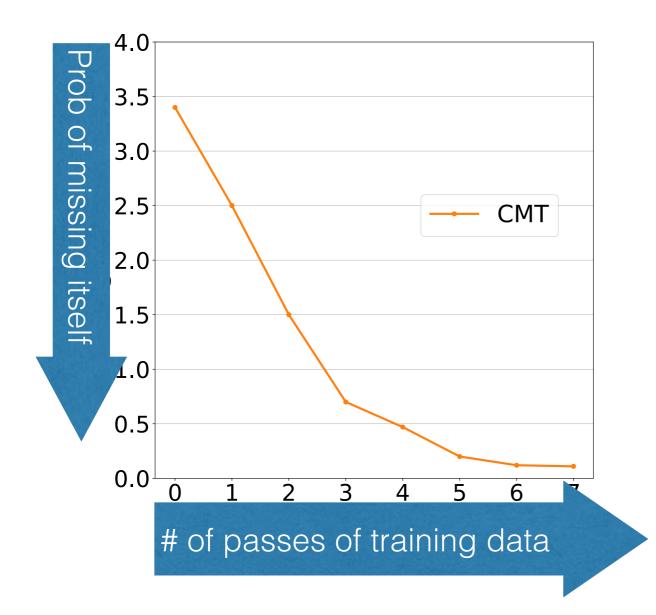
How does computation scale wrt the size of memory tree?

On ALOI, we range in dataset size from 1K to 100K



How does Self-Consistency improve?

1-shot dataset: 10K classes, 10K examples



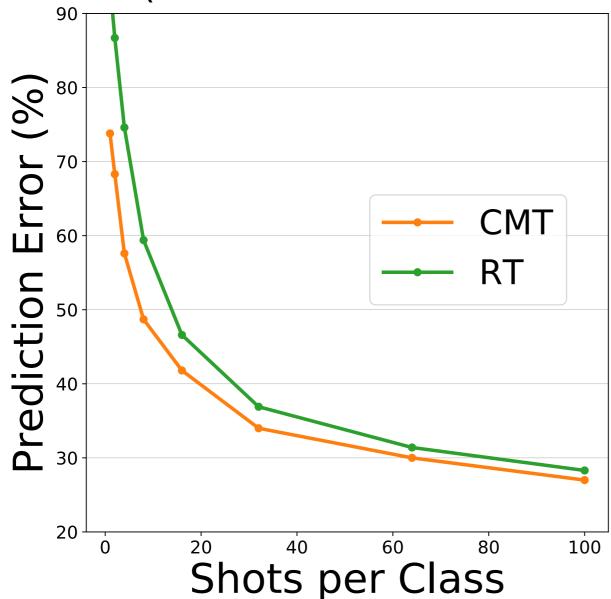
Self-Consistency improves over time

Zero training err means perfect self-consistency How does performance scale wrt classification difficulty?

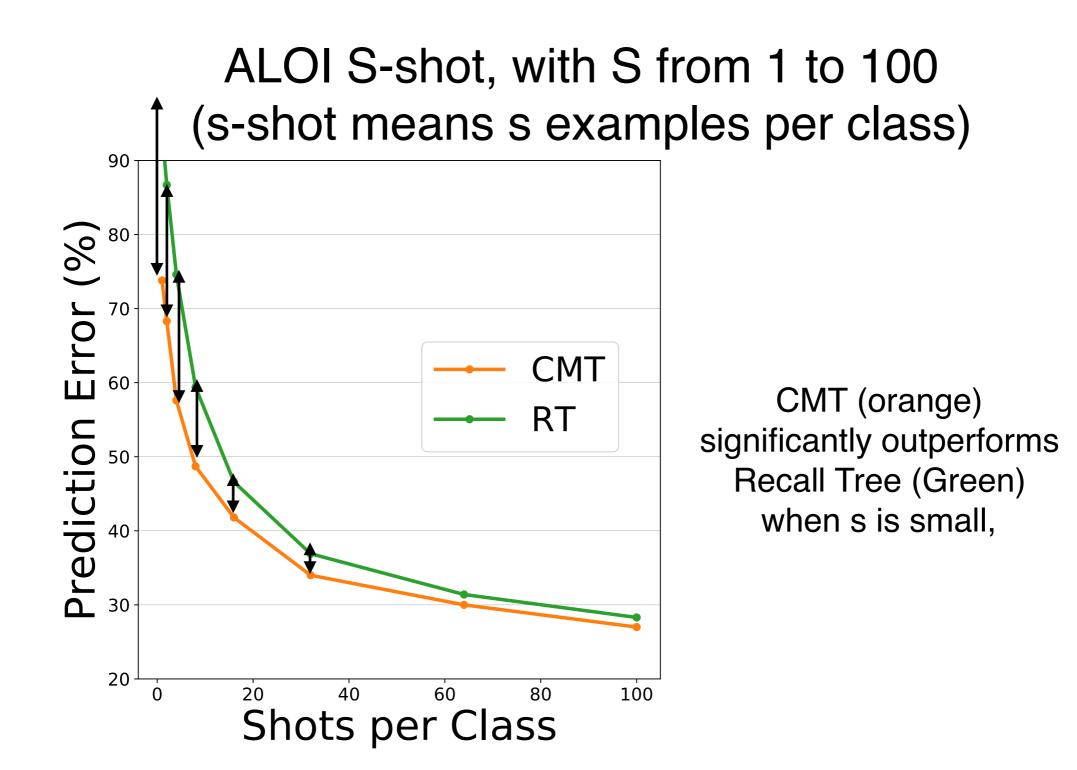
ALOI S-shot, with S from 1 to 100 (s-shot means s examples per class)

How does performance scale wrt classification difficulty?

ALOI S-shot, with S from 1 to 100 (s-shot means s examples per class)



How does performance scale wrt classification difficulty?



Online: Reduction to Online Classification

Online: Reduction to Online Classification

Linear Space: Store examples in leaves $O(N/\log(N)) \text{many nodes}$

Online: Reduction to Online Classification

Linear Space: Store examples in leaves $O(N/\log(N))$ many nodes

Logarithmic time: Regularization ensures a (provable) nearbalanced tree

Online: Reduction to Online Classification

Linear Space: Store examples in leaves $O(N/\log(N))$ many nodes

Logarithmic time: Regularization ensures a (provable) nearbalanced tree

Learning-based: Reinforcement

Online: Reduction to Online Classification

Linear Space: Store examples in leaves $O(N/\log(N))$ many nodes

Logarithmic time: Regularization ensures a (provable) nearbalanced tree

Learning-based: Reinforcement

Self-consistency: an asymptotic guarantee (due to replay)

Thanks!

CMT is in the latest Vowpal Wabbit (VW)

https://github.com/VowpalWabbit/vowpal_wabbit

Try out CMT demos!