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Online: every operation works one example at a time

Linear Space: O(# of examples)

Fast: Logarithmic Read & Write (Log(# of examples))

Learning-based: do not assume, e.g., Euclidean space

Self-consistency: identify the item seen before
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Learning Protocol of 
Contextual Memory Tree (CMT)

A memory (m): a pair of Query (q) & Value (v)
e.g., (A English Sentence, A Chinese Sentence)

QUERY(q)
1. Given a query q, 

(m1, . . . ,mk)

2. If reward      is given,  ri

UPDATE(             )q,mi, ri

3. If ground-truth  
value      is given,  v

INSERT(      )q, v
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f

f1

f2

m = {q, v}

qSame query: 

If a query has been seen before, we want to just retrieve it!
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Amortized Experience Replay

f

f1

f2

1. Randomly sample 
a memory

2. Delete it & its trace 

3. Re-insert it

Apply replay constant times per insertion

m = {q, v}

Routers are updated online and may result in a lack of 
self-consistency for previous insertions
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Extreme Multi-Class Classification: 
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Extreme Multi-Label Classification: 
(feature, set of labels), Hamming loss

Image Retrieval
(Caption, Image), Cosine Similarity
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(1) RCV1 (1K labels), (2) AmazonCat 13K (13K labels), and (3) Wiki10-30K (30K labels)
Extreme: very large number of labels (hence linear infer = slow)

{qi, vi}ki=1 OAS (OAA on the subset of labels 
from returned memories)

CMTA new 
query q {qi, vi}Ni=1

Computation: faster 

Statistical Performance: similar, sometimes even better
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(1) Pascal (1K examples), (2) Flickr8k (8k examples), (2) MSCOCO (80K examples)
Image feature: HoG for Pascal & Flickr, Pre-trained VGG-19 for MSCOCO
Captions feature: Token Occurrences with hashing (high-dim, very sparse)

# of times faster than NN

CMT(u):
Unsupervised version

i.e., NN (w/ Euclidean dis) 
at leaf level 
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On ALOI,  we range in dataset size from 1K to 100K
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How does Self-Consistency improve?

1-shot dataset: 10K classes, 10K examples

Self-Consistency 
improves over time

Zero training err 
means  

perfect self-consistency

# of passes of training data

Prob of m
issing itself
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How does performance scale 
wrt classification difficulty?

CMT (orange) 
significantly outperforms 

Recall Tree (Green)
when s is small, 

ALOI S-shot, with S from 1 to 100
(s-shot means s examples per class)
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Revisit our Desired Properties

Online: Reduction to Online Classification

Logarithmic time: Regularization ensures a (provable) near-
balanced tree

Learning-based: Reinforcement

Self-consistency: an asymptotic guarantee (due to replay)

Linear Space: Store examples in leaves
O(N/ log(N))many nodes



Thanks! 

CMT is in the latest Vowpal Wabbit (VW)

https://github.com/VowpalWabbit/vowpal_wabbit

Try out CMT demos!


