Online Bellman Residual Algorithms
with Predictive Error Guarantees

Wen Sun
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
wensun@cs.cmu.edu

Abstract

We establish a connection between optimizing
the Bellman Residual and worst case long-term
predictive error. In the online learning frame-
work, learning takes place over a sequence of tri-
als with the goal of predicting a future discounted
sum of rewards. Our analysis shows that, to-
gether with a stability assumption, any no-regret
online learning algorithm that minimizes Bell-
man error ensures small prediction error. No sta-
tistical assumptions are made on the sequence of
observations, which could be non-Markovian or
even adversarial. Moreover, the analysis is in-
dependent of the particular form of function ap-
proximation and the particular (stable) no-regret
approach taken. Our approach thus establishes a
broad new family of provably sound algorithms
for Bellman Residual-based learning and pro-
vides a generalization of previous worst-case re-
sult for minimizing predictive error. We investi-
gate the potential advantages of some of this fam-
ily both theoretically and empirically on bench-
mark problems.

1 INTRODUCTION

Reinforcement learning (RL) is an online paradigm for op-
timal sequential decision making where an agent interacts
with an environment, takes actions, receives rewards and
tries to maximize its long-term reward, a discounted sum
of all the rewards that will be received from now on. An
important part of RL is policy evaluation, the problem of
evaluating the expected long-term rewards of a fixed pol-
icy. Temporal Difference (TD) is a famous family of algo-
rithms for policy evaluation. In practice, we are typically
interested in complex problem domains (e.g., continuous
state space RL) and function approximations (e.g., linear
functions) are used for policy evaluation. However, it has
been observed that when combined with function approxi-

J. Andrew Bagnell
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
dbagnell@ri.cmu.edu

mation, TD may diverge and lead to poor prediction. The
Residual Gradient (RG) was proposed (Baird, 1995) to ad-
dress these concerns. RG attempts to minimize the Bellman
Error (BE) (see definition in Sec. 2), typically with linear
function approximation, using stochastic gradient descent.
Since then comparison between the family of TD algo-
rithms and RG has received tremendous attention, although
most of the analyses heavily rely on certain stochastic as-
sumptions of the environment such as that the sequence of
observations are Markovian or from a static Markov De-
cision Process (MDP). For instance Schoknecht and Merke
(2003) showed that TD converges provably faster than RG if
the value functions are presented by tabular form. Scherrer
(2010) shows that Bellman Residual minimization enjoys a
guaranteed performance while TD does not in general when
states are sampled from arbitrary distributions that may not
correspond to trajectories taken by the system. Experimen-
tally, they also show that TD converges faster but may gen-
erate poor prediction when it is close to divergence.

Schapire and Warmuth (1996) and Li (2008) provided
worst-case analysis of long-term predictive error for vari-
ants of the linear TD and RG under a non-probabilistic on-
line learning setting. Their results rely on an elegant spec-
tral analysis of a matrix that is related to specific update
rules of the TD and RG algorithms under linear function ap-
proximation. Unfortunately, this approach makes it more
difficult to extend their worst-case (assumption free) anal-
ysis to broader families of algorithms and representations
that target the Bellman and Temporal Difference errors.

Following Schapire and Warmuth (1996) and Li (2008)’s
online learning framework, we present a simple, general
connection between long-term predictive error and no-
regret online learning that attempts to minimize BE. The
central idea is that methods such as RG should be funda-
mentally understood as online algorithms as opposed to
standard gradient methods, and that one cannot simultane-
ously make consistent predictions in the sense of BE while
doing a poor job in terms of long-run predictions. Similar
to Schapire and Warmuth (1996) and Li (2008), our anal-
ysis does not rely on any statistical assumptions about the



underlying system. This allows us to analyze more diffi-
cult scenarios such as Markov Decision Process with tran-
sition probabilities changing over time or even with each
transition chosen entirely adversarial. Our analysis gener-
alizes to a broader class of functions to approximate the
value function. Previous work from Robards et al. (2011)
and Engel et al. (2005) explored the possibility of using
non-linear function approximation, but to our knowledge
no further analysis on the soundness with respect to predic-
tion error are known.

Our analysis of the connection between online long-term
reward prediction and no-regret online learning provides a
unifying view of the relationship between prediction errors
and BE and consequently suggests a broad new family of
algorithms. Specifically, we present and analyze concrete
examples of how to apply several well-known no-regret on-
line algorithms such as Online Gradient Descent (OGD)
from Zinkevich (2003), Online Newton Step (ONS) from
Hazan et al. (2006) and Online Frank Wolf (OFW) from
Hazan and Kale (2012) to online prediction of long-term
rewards. Particularly, our analysis generalizes the RG algo-
rithm from Baird (1995) in the following three aspects: (1)
RG is a specific example of our family of algorithms that
runs OGD on a sequence of BE loss functions, (2) RG can
be naturally combined with more general function approx-
imation such as functions in Reproducing Kernel Hilbert
Space (RKHS), and (3) applying our analysis to RG pro-
vides asymptotically tighter bounds on the average predic-
tion error of long-term rewards than that provided in Li
(2008). We also find that ONS, which has no-regret rate of
O(logT/T), has a faster convergence of the average pre-
diction error of long-term rewards. With OFW, we are able
to achieve sparse predictors under some conditions. We an-
alyze these algorithms in detail in Sec. 4.

We emphasize that stability of online algorithms is essen-
tial for our results— the no-regret property can be shown
by example to be insufficient to achieve low predictive er-
ror. We hence introduce the definition of Online Stability
condition in Sec. 2, which intuitively measures the differ-
ence between two successive predictors. Our online sta-
bility condition is general enough such that most popular
no-regret online algorithms naturally satisfy this condition
and hence this condition does not severely limit the scope
of no-regret online algorithms. Our analysis shows that the
combination of the no-regret property and online stability
is sufficient to promise small predictive error on the long-
term rewards.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We consider the sequential online learning model presented
in Schapire and Warmuth (1996); Li (2008) where no sta-

tistical assumptions about the sequence of observations are
made. The sequence of the observations forms a connected
stream of states which can either be Markovian as typi-
cally assumed in RL problem settings or even adversar-
ial. We define the observation at time step ¢ as x; € R",
which usually represents the features of the environment
at t. Throughout the paper, we assume that feature vec-
tor x is bounded as ||x|2 < X,X € RT. The corre-
sponding reward at step ¢ is defined as r, € R, where we
assume that reward is always bounded |r| < R € R™T.
Given a sequence of observations {x;} and a sequence
of rewards {r;}, the long-term reward at ¢ is defined as
v = Y ope, V¥ rg, where v € [0,1) is a discount fac-
tor. Given a function space F the learner chooses a pre-
dictor f at each time step from F for predicting long-term
rewards. Throughout this paper, we assume that any pre-
diction made by a predictor f at a state x is upper bounded
as |f(x)| < P e RT, forany f € F and x.

At time step ¢ = 0, the learner receives Xy, initializes a
predictor fy € F and makes prediction of vy as fo(xg).
Rounds of learning then proceeds as follows: the learner
makes a prediction of v, at step ¢ as f;(x;); the learner then
observes a reward r; and the next state x;1; the learner
updates its predictor to f;y1. This interaction repeats and
is terminated after 7" steps. Throughout this paper, we call
this problem setting as online prediction of long-term re-
ward.

We define the signed Bellman Error at step t for predic-
tor f; as by = fi(x¢) — 1t — Yvfe(X¢41), which mea-
sures effectively how self consistent f; is in its predic-
tions between time step ¢ and ¢ + 1. For any f* € F,
we define the corresponding signed Bellman Error as by =
fr(x¢) = re — vf*(x¢t+1). We denote the Bellman Error
(BE) as the square of the signed Bellman error b?.

The Signed Prediction Error of long-term reward at ¢ for
fiis defined as e; = fi(x¢) — vy and e = f*(x;) — vy for
f* accordingly. We will typically be interested in bounding
the Prediction Error (PE) e? of a given algorithm in terms
of the best possible PE. To lighten notation in the following
sections, all sums over time indices implicitly run from 0
to 7' — 1 unless explicitly noted otherwise.

2.2 NO-REGRET ONLINE LEARNING

Under our online setting, we will define loss functional I,
at step ¢ as the traditional Bellman Error (BE):

L(f) = (f(xe) = re — vf(xe11))> (1)

Note that [;(f;) = b2.

Following the setting of online prediction of long-term re-
ward, the learner computes predictor f; at time step ¢ and
then receives the loss function I; and the loss I;(f;) (after
the learner receives r; and x;4;). We say that the online



algorithm is no-regret with respect to BE if:

1 1
Jim = () = 5D L) <0 @)

for any predictor f* € F, including the best predictor that
minimizes Y [;(f) in hindsight.

The sequence of predictors f; being no-regret intuitively
means that the predictors are giving nearly as consistent
predictions over time as is possible in that function class.
One might wish that the sequence of predictors being no-
regret is a sufficient condition for small prediction error.
More formally, one might expect that if Eq. 2 holds for the
sequence of predictors {f;}, >_ €2 can be upper bounded:

lim — E e? <
T—oo T

where C' € R is a constant. Schapire and Warmuth (1996)
showed such a conclusion (Eq. 3) for TD and later on Li
(2008) proved such a conclusion for RG, both under the
assumption that f(x) is linear.

Ze , YfPeF, (3

Unfortunately, however, simply being no-regret (Eq. 2) is
not a sufficient condition for upper bounding prediction er-
ror (3 e?) as in the form of Eq. 3 for general function ap-
proximation form:

Theorem 2.1 There exists a sequence of {f:} that is no-
regret with respect to the loss functions {l;(f)}, butno C €
R exists that makes Eq. 3 hold.

We prove Theorem 2.1 by providing an example in Ap-
pendix (see Supplementary Material) which is no-regret on
{l:(f+)} (Eq. 2 holds) but Eq. 3 does not hold.

2.3 ONLINE STABILITY

The counter example that supports Theorem 2.1 presents
a sequence of unstable predictors { f;} where two succes-
sive predictors f; and f; 1 vary wildly when predicting the
long-term reward of x;,1. Such behavior is rather unusual
for typical no-regret online learning algorithms. This sug-
gests introducing a notion of Online Stability which we de-
fined as:

Definition Online Stability: For the generated sequence
of predictors f;, we say the algorithm is online stable if:

Am % D (felxe1) = frpr(xe1))* = 0. (&)

Intuitively, the online stability means that on average
the difference between successive predictors is eventu-
ally small. That is, the difference between f;(x;+1) and
ft4+1(x¢+1) is small on average. Online stability is a gen-
eral condition and does not severely limit the scope of the
online learning algorithms. For instance, when f is linear,

the definition of stability of online learning in (Saha et al.,
2012) (see Eq. 3 in Saha et al. (2012)) and (Ross and Bag-
nell, 2011) implies our form of online stability. We also
show in the following section that many popular no-regret
online learning algorithms including OGD, ONS and OWF,
satisfy our online stability condition.

We show in next section that the sequence of predictors
{ft} being no-regret with respect to the loss functions
{l;(f)} and satisfying the online stability condition is
sufficient for deriving an upper bound for prediction error
as shown in Eq. 3.

3 ONLINE LEARNING FOR
LONG-TERM REWARD PREDICTION

In this section, we combine the no-regret condition on
loss functions {I;(f)} and the online stability condition to-
gether to provide a worst-case analysis of sum of PE > €2,
which builds a connection between the PE of long-term re-
wards, regret and online stability.

More formally, our worst-case analysis shows that if the
online algorithm running on the sequence of loss {l;(f)}
is no-regret and the generated sequence of predictors { f;}
satisfies the online stability condition, predictor error can
be upper bounded in the form of Eq. 3. The analysis does
not place any probabilistic assumption on the sequence of
observations {x;} or any assumption on the form of pre-
dictors f € F (e.g., f(x) does not have to be linear).

We start by first providing two important lemmas below:

Lemma 3.1 Let us define d; = fi(x¢)—1¢

We have:

dodi=(1-

= fer1(Xeg1)

(V¥ =7)(er—€p). (5

DI

Note that the difference between d; and b; is that d; uses
fia1(x¢21) to estimate the long-term reward at step ¢ + 1
while bt uses ft (Xt+1).

Proof Schapire and Warmuth (1996) implicitly showed

that d; = (fi(x) — v + v — (re + Vfrr1(xe41))) =
(et — yer+1). Squaring both sides and summing over from
t=0tot=T—1, we get:

de = Z(Et —ers1)’
=D G+ -2 el
ZzeervQZefﬂ —7D) =D e

N2 ef+ (P =)t — €f). (6)

The first inequality is obtained by applying Young’s in-
equality to 2ee441 to get 2ee,41 < e +e7 .



Lemma 3.2 For any f* € F, the prediction error Y. e}?
upper bounds the BE > b;? as follows:

D < (1497 et +

(v + ) (eg? — ex?). ()

The proof of Lemma 3.2 is similar to the one for
Lemma 3.1. We present the proof in Appendix.

Now let us define a measure of the change in predictors be-
tween the steps of the online algorithm as ¢; = f;(x¢41) —
fi+1(x¢41), which is closely related to the online stability
condition. The b; and d; are then closely related with each
other by ¢;:

di = ft(xt) — T
= bt + Y€t

=Y fer1 (K1) = Ve (Xegr) + 7 e(Xe41)

Squaring both sides, we get:

@2 = b2 + 2byve, + 722 < b2 4 b2 + 262 + 42
= 207 4 272%€2, ®)

where the first inequality is coming from applying Young’s
inequality to 2b;ye; to get 2b,ve; < b7 + €2, We are now
ready to state the following main theorem of this paper:

Theorem 3.3 Assume a sequence of predictors {f:} is
generated by running some online algorithm on the se-
quence of loss functions {l;}. For any predictor f* € F,
the sum of prediction errors > e? can be upper bounded
as:

Y e <2) (bF — b +29° D €

+214+9)2) e+ M, (9
where

M =2(y +7°)(eg* — e7?) — (v° = 1)(ef — €f).

By running a no-regret and online stable algorithm on the
loss functions {l;(f)}, as T — oo, the average prediction
error is then asymptotically upper bounded by a constant
factor of the best possible prediction error in the function
class:

Sel_21+7)? Sep?

ST o

li :
T1—r>Ic1>o T

Proof Combining Lemma. 3.1 and Lemma. 3.2, we have:

Zd2—2Zb*2
UDICE
—2(1+47) Zet

=2(y +7%)(e5* — ).

2

(v = 7)(et — €5)

(1)

Subtracting 2b}2 on both sides of Eq. 8, and then summing
over fromt = 1to T — 1, we have:

S - Yo <23 R - b2+ 22 Y€
Combining the above two inequalities together, we have:
22 b27b*2 +2"}/2Z€2
MY et + (P = )(et — €))
—2(1+7) Zet 2(y +7%)(ef?

Rearrange inequality (12) and define M = 2(y+72)(ef? —
ex?) — (v — v)(e% — €3), we obtain inequality (9).

Assume that the f = argminscz > l;(f), then if the on-
line algorithm is no-regret, we have

1 2 _ 1

0 b =5 D () — L)
1 —

< = S ()~ ()

1
= TRegret <0, T — oo.

—ei?).  (12)

(13)

If the online algorithm satisfies the stability condition (Eq.
4), we have: 1. 5" €? = 0 when T — oo.

Also, since we assume |f(x)| < P and |r| < R, we can
see M must be upper bounded by some constant. Hence,
we must have & 7 =0,as T — oc.

Under the conditions that the online algorithm is no-regret
and satisfies online stability, we get Eq. 10 by dividing both
sides of Eq. 9 by T and taking T’ to infinity. |

Note that in Theorem 3.3, Eq. 9 holds for any f* € F,
including the f* that minimizes the prediction error. But
note that the one that minimizes prediction error, PE, does
not necessarily optimize the BE, which may lead to an im-
provement of the bound in Eq. 10 in practice. To see this,
note that we showed in the proof that for a no-regret algo-
rithm:

1 o1
bef—bfg TRegretﬁO, asT — o0. (14)
Hence the limit of (1/7") Y (b7 — b;?) may be negative for
some f* € F, which could lead to a potential decrease
in the upper bound of (1/7) " e? in Eq. 10 and give us a
tighter bound in practice.

When e = 0, V¢, from Theorem 3.3, it is easy to see that
no-regret rate of (1/7) >"(b? — b;?) and the online stabil-
ity rate of (1/T") > €? together determine the rate of the
convergence of (1/T) Y e?.

When T' — oo and v — 1 (specifically when v >
(1/+/2)), our upper bound analysis in Eq. 10 is asymptot-
ically tighter than the upper bound in Li (2008) (Eq. 12)



provided for RG, which is a special case of our approach
as we demonstrate in the following section. As we will ad-
ditionally show, a large number of popular no-regret online
algorithms also satisfy the online stability condition, broad-
ening the family of algorithms that can be used to learn
predictors of long-term rewards.

4 ALGORITHMS

Our analysis in Sec. 3 provides a reduction from the on-
line prediction of long-term reward to the no-regret online
learning setting on a sequence of loss functions {l;(f)} de-
fined in Sec. 2.1, which enables us to develop a new set
of algorithms. In this section, we give concrete examples
of new Bellman Residual algorithms based on well-known
no-regret online learning procedures such as Online Gra-
dient Descent (OGD), Online Newton Step (ONS) and the
Online variant of Frank Wolfe (OFW). The choice of al-
gorithm depends on the size and sparsity level of features
and the available computational budget. For instance, OGD
generalizes RG and has O(n) computational complexity at
every update step which makes it suitable for applications
where sampling observations is cheap (e.g., RL for video
games). ONS provides a logarithmic no-regret rate and
could lead to faster convergence in practice, making it po-
tentially suitable for applications where obtaining samples
of observations is expensive (e.g., RL for a physical robot).
Finally, OFW introduces sparsity and can be applied to
problems where the feature dimension is larger than the
number of samples.

Although the analysis in Sec. 3 does not place any assump-
tion on predictors f € F, in practice to achieve the no-
regret property on the loss functions {l;(f)}, additional as-
sumptions of loss functions (e.g., convexity) are needed.
Since we discuss concrete no-regret online algorithms in
this section, for F we focus on vector spaces equipped
with inner product. Specifically, we focus on two vector
spaces: (1) Reproducing Kernel Hilbert Spaces (RKHS)
where f = Y o;K(x;,-) € F, for some kernel K (x,-)
and (2) spaces consisting of linear functions f(x) = w’x,
w € W'. We now summarize the assumptions that we will
use in section:

1. We assume F (or W) is convex and bounded in a
sense that the diameter of F (or W) is upper bounded
asmaxy, fer ||fi— f2]l < D € RT, where the norm
|| £]| is defined by the inner product associated with the
function space: || f||? = (f, f);

2. We assume that ||x;|ls < X, Vi, |K(x1,%2)] <
K,¥x1,%o, |fIl < F,¥Yf € F,and [|w[s < W,
Yw € W, where K e R, F e RT, W € RT.

'Linear function space is a special case of RKHS. We discuss
linear function separately since some online algorithms discussed
here only work for linear functions

Any prediction f(x) is always bounded, since for RKHS,
f(x) is bounded as | f(x)| < || K (%, )|| < FVK, and
for f(x) = wlx, we also have |f(x)| < [|wlz|x|l2 <

W X. For notation simplicity, we then simply assume that
f(x) is always bounded as | f(x)| < P, P € R*.

Lemma 4.1 With the above assumptions, for any pair of X
and X411, for RKHS, the loss functional l(f) is convex and
Lipschitz continuous with respect to the norm defined by the
inner product (-,-)x; for f(x) = wlx, the loss function
ly(w) is convex and Lipischitz continuous with respect to
either Ly norm || - ||1 or Ly norm || - ||2.

We present the proof of the above lemma in Appendix.

4.1 GRADIENT-BASED APPROACHES

Before diving into the detailed examples of mirror descent
and gradient based approaches, we first introduce an impor-
tant lemma about the stability of one particular online al-
gorithm: Follow the Regularized Leader (FTRL). It is well
known that gradient-based and mirror descent approaches
can be understood in the framework of FTRL. In particular,
we only focus on the case where the loss functions are con-
vex and L-Lipschitz continuous with a regularization that is
strongly-convex. We refer reader to Shalev-Shwartz (2011)
for detailed definitions of convex functions, Lipschitz con-
tinuous, and strong convexity.

The update rule of FTRL at step ¢ can be summarized as:
: 1
= i l; —R(f). 15
Jr41 = argmin ;:0 (f) + m (f) (15)

Lemma 4.2 For FRTL with convex and L-Lipschitz con-
tinuous loss functions I;(f) and strongly convex regular-

ization function R(f) (with respect to || f||), we have:
SONfe = feral < LTp. (16)
Setting © = % to achieve no-regret property, then we
have:
. 1
Tlgr;onIIft—fmll = 0. a7

Similar proofs has been shown in (Ross and Bagnell, 2011)
and (Saha et al., 2012). For completeness, we present the
proof of the above lemma in Appendix following our nota-
tion and problem setting.

4.1.1 Gradient Descent on BE

Gradient descent approaches can be understood in the
FTRL framework where the convex loss functions in FTRL
are replaced by a linear approximation:

t
, 1
feq1 = arg min ;:O (96, f) + ER(f)’ (18)



where g; € 0l;(ft) is a sub-gradient of I; at f; and R(f) is
a strongly convex regularizer.

We first consider the special case where f(x) =
linear. Note that our loss function is I;(w) = (

—ywTx,,1)? and its gradient g; at wy is g; = (W%Fxt
re — YWEXe11)(Xe — YX¢y1). Setting the regularization
R(w) = 3||w||3, which is 1-strongly convex, we obtain
the RG algorithm in Baird (1995), where the update step at
tis:

Wil i = Wi — ut(WtT(Xt - 7Xt+1) - 7”t)(Xt - ’Yxt+1)a
Note that the linear loss function is convex and Lipschitz
continuous (||g¢||2 is bounded based on our assumptions
that ||x||2, || and ||w]||2 are all bounded). Online Gra-
dient Descent (OGD) is no-regret (Zinkevich, 2003) with
u =1/ VT and from Lemma 4.2, we have:

1
T Do (Wi — wiixe)?
<z D I l3lwe = wesa |3

1
<X > lwe = w3 =0, T—o00, (19

which exactly satisfies the online stability condition.
Hence, RG enjoys the guarantee of our main theorem 3.3.

4.1.2 Exponentiated Gradient Descent on BE

When we set the regularization R(w) = >, w'(log(w?) —
1), where for vector w, w is the i-th component of w, we
generalize RG to Exponentiated Gradient (EG) descent as
Precup and Sutton (1997) did for TD.

Since we assumed that |w|s < W, then |w|; < W’
for W € R*. Then the regularization R(w) becomes
(1/W")-strongly-convex and the loss function /;(w) is Lip-
schitz continuous with respect to L; norm || - ||;. Solving
Eq.18, we obtain the update step at ¢ as:

= YXeg1) = Te) (%

= wi exp ( — (W;‘F(xt

Wi
Similar to RG, using Lemma 4.2 (the norm in Lemma 4.2
becomes L1 norm) we can show that EG satisfies our online
stability condition:

1
T T 2
T > (W] x4 — WXig1)

1
< sz > lwe = w3

1
< fXQ D lwi—wialf =0, T—o00,  (20)

and is also no-regret on {I;(w)} when p; = 1/+/T. Hence,
EG descent approach enjoys our main theorem 3.3.

- ’YXiH))'

4.1.3 Gradient Descent in RKHS

Now we consider functions f(x) that belongs to RKHS
Hyc. For the special case where R(f) = 1(f, )k, we
obtain an RG-style update based on functional gradient de-
scent (Scholkopf and Smola, 2001):

((ft(xt) =71 — v fe(Xe41))

x (K (xs,-) — 'yK(xt+1,~))). Q1)

ft+1 = fi — Mt

Similarly, it is straightforward to show that gradient descent
in RKHS satisfies our stability condition and no-regret con-
dition when pu; = 1/ VT. Hence, gradient descent in
RKHS also enjoys the predictive error guarantees derived
in Theorem 3.3.

4.2 IMPLICIT ONLINE LEARNING

Recently Tamar et al. (2014) has demonstrated implicit on-
line learning for temporal difference method. We consider
the same approach for Bellman Residual minimization by
applying implicit online learning from Kaulis et al. (2010)
to the loss functions {l;(f)} and thus provide worst-case

guarantees. Specifically at iteration ¢, f;1; is computed
implicitly as:
Jt+1 = argrfréigDR(f, ft) + wele(f) (22)

= afg?éi}_lDR(ﬁ fo) + pe(f(@e) = 7 f(@e1) = 74)%,
where Dr is a Bregman divergence. Saha et al. (2012)
show that when p; = 1/+/%, the generating function R(f)
is positive and strongly-convex, and the loss function I;( f)
is convex and Lipschitz continuous, implicit online learn-
ing is shown to be no-regret and also satisfies Eq. 17.

4.2.1 Implicit Online Gradient Descent

Particularly, we first consider f = 3 «; K (x;, -) in RKHS.
Setting R(f) = 1(f, f)i, we have Dn(f, f;) = L|If —
f:||?. Then solving Eq. 22, we obtain the following update
rule:

feer == fi— s
L el K (e, ) = VK (X1, |2
X (fe(xe) = Vfe(Xe41) — 1)
X (K (%) = 7K (X4, ))-
When considering linear function f(r) = w?’x and

R(w) = 1| /wl|3, we obtain a similar update step:

Hi
w = W;—
T b — a2
X (WtT(Xt — YXe1) — ) (Xe — YXKeq1)-

As we will show in the experiments, compared to RG
(OGD on BE), implicit OGD on BE is less sensitive to the



choice of step-size, which enables us to set large step-size
to achieve faster convergence for (1/7) Y e?. This phe-
nomenon is also observed by Tamar et al. (2014) when they
compare implicit temporal difference to the original TD al-
gorithm (Sutton and Barto, 1998).

4.3 ONLINE NEWTON STEP

We also analyze an online second-order method: the Online
Newton Step (ONS) (Hazan et al., 2006) for online predic-
tion of long-term reward. For ONS, we only focus on linear
function approximation f(x) = w?’x. We slightly adapt
the ONS for our loss function /;(w). We first present the
following lemma:

Lemma 4.3 For loss function I;(w) = (wlix; — r; —

’yWTxt_H)Q, there exists a A € RT, such that for all w
and wW':

Li(w) >l (W) + VI (w) T (w — w)

+ %(W —w)IVIL (W) V(W) (w —w).

We present the proof of the above lemma in appendix.

With ), then the iterative update rule for ONS is:
Ap_1 1 —1
wy =1L, | Wi — XAt_lvh—l(Wt—l) ,  (23)

where A; = 31, Vii(w:) Vi (w;)T + e, ¢ € RT, and
H{i‘\j is a projection to VW with the norm induced by A;:
H’é\j (y) = argming ey (w—y)T A;(w—y), which makes
this projection operator H’S\} not trivial and equal to solving
a convex program usually.

Since ||x|l2 < X, ||w]2 < W and |r| < R, we have
[Vl (w)|2 < G, for G € RY. The following lemma
shows that ONS satisfies the our online stability condition:

Lemma 4.4 The sequence {w.} generated by ONS satis-
fies the online stability condition:

1
T T 2
T > (W X1 — WXei1)
2

< — = .
< TGQ)\anOg(T+1) 0, T — (24)

The proof borrows ideas from Hazan et al. (2006) and is
presented in the Appendix. Note that the convergence rate

of % S(fe(x441) — fra1(xe41))? is O(log T/T'), which is
the same as the no-regret rate of ONS.

44 PROJECTION-FREE ONLINE LEARNING

We analyze the Online Frank Wolfe (OFW) (Hazan and
Kale, 2012) for online prediction of long-term reward. Pre-
viously introduced methods, including OGD, EG, OGD in

RKHS, Implicit OGD, and implicit OGD in RKHS, usually
need a projection operation in each update step if the newly
updated predictor is out of its pre-defined convex set F, al-
though in many cases, projection operations are simple?.
OFW is a projection-free online method and every step in-
volves solving a (typicaly very simple) linear programming
problem. Again, we restrict our analysis to linear functions
f = wTx for OFW. Without loss of generality, we as-
sume [;(w) is L-Lipschitz continuous with some I € R™
(Lemma 4.1).

Applying the adversarial variant of OFW to the sequence
of loss functions {I;(f)}, we have the following iterative
update step:

= in VFy(w;)Tw,
A arggg% H(we)'w
Wit = (1 — t_a)Wt + t_th, (25)

where o = § and Fy(w) is computed as:

=73 ((WZ-TXz‘ — 1 — YW, Xip1) (X — yXip1) W
1=0

+ aillw = wol3),

where o, = (L/D)t~1/*, wy is the initialization.

The online stability of OFW can be shown easily:
1
T > (Wixep1r — Wiy Xeq)?

1
< TXg > o lwe = w3

1 —2a
STXQZt 2 wi = vell3

1 212 —2a __
< 7X°D Yt =0, T — oo

The first inequality comes from Cauchy-Schwartz inequal-
ity and the assumption that ||x||s < X. The last equality
follows from the fact that 2o > 0, and ZtT:1 t=¢ =0,
when ¢ > 0and T' — oc.

Note that the output of the OFW wy is sparse when W is
defined as W = {w : ||w]||; < W'} for some W’ € R
and wy is initialized to the origin or any corner point of V.
This is because the output v; of Eq. 25 will be always one
of the corner points of VW and w; hence is a linear com-
bination of corner points {wy, vq..., v¢_1 }, leading to the

2Usually, when W is defined as {w : ||w|]> < W}, an Lo
projection to such W is easy and can be implemented in O(n).
The same for Ly projection in RKHS when F = {f : || f|| < F}.



g{&r)ldom Walk (f(z) = w'z), v =0.95, n =10

= —RG
=i Implicit OGD
= 80 —ONS
S ' OFW
T 60 EG
'S_é —TD(0)
A, 40
®
g; 20+
- 0
0 1000 2000 3000 4000
Number of Steps
(a) Linear
Random Walk (RKHS), v = 0.95, n =10
' "~ [TD(0)
7 —RG

Implicit OGD

()]

Average Prediction Error
o

4 L
3 1 1 1
0 1000 2000 3000 4000
Number of Steps
(b) RKHS

Figure 1: Convergence of prediction error for Random
Walk with linear function approximation (top) and RKHS
(bottom).

fact that w, can have at most (¢4 1) non-zero entries. Also,
ifW = {w: ||w|y < W'}, Eq. 25 can be implemented
in O(n) as follows: (1) find the entry ¢ in VF;(w,) that
has the maximum absolute value; (2) set v¢ (the 7’th entry)
to be —sign(VF,(w;)")W’, and all other entries in v; to
Zero.

When W = {w : ||w]||2 < W}, we cannot achieve spar-

sity, but Eq. 25 can still be implemented in O(n) by setting
v, — —VF(wy) W
E VR w2

S EXPERIMENTS

We applied these algorithms to three simulated policy eval-
uation problems: (1) the Random Walk problem with a ring
chain, which is a variant of the Hall problem introduced by
Baird (1995), (2) PuddleWorld adopted from Sutton and
Barto (1998) and (3) Helicopter Hover using the simula-
tor from Coates et al. (2008). We also compare the above
algorithms to standard TD(0) (Sutton and Barto, 1998).

Random Walk The state space of the Random Walk task
has N = 50 states. The states are linked together as a
ring without any terminal states. At time step ¢, from any
state on the ring, the transition probability of moving clock-

lgléddle World (f(z) = wTz), v =0.99, n = 50

—RG
Implicit OGD

Average Prediction Error

o " "
0 1000 2000 3000
Number of Steps
(a) Linear
Puddle World (RKHS), v =0.99, n = 2
5 ' —RG
=8 Implicit OGD
= —TD(0)
g
£ 6
Q
e
&
g
&
=
<)
e
0 1000 2000 3000
Number of Steps
(b) RKHS

Figure 2: Convergence of prediction error for Puddle World
with linear function approximation (top) and RKHS (bot-
tom).

wise is 0.5/+/% and the probability of moving counterclock-
wise is (1 — 0.5/+/%). Note that the transition probability
changes over time. We randomly generate a feature vec-
tor x € R0 and assign it to a state. All rewards are uni-
formly sampled from [—3,3]. In this problem, we tested
both RKHS (Fig. 1(b)) and linear function approximation
(Fig. 1(a)). For RKHS, we use a RBF Kernel with band-
width 0.2, qualitatively chosen for the best performance in
terms of prediction error.

PuddleWorld In the PuddleWorld scenario, the state
space is a unit square with “puddles” and the agent’s state
is represented by its z and y coordinates. In each episode,
the agent’s starting state is uniformly sampled in the region
[0,0.2] x [0,0.2]. The policy at each time step selects to
go north or east with probability 0.5 each. For each step,
the reward is —1 if the agent does not step in a puddle, and
the reward decreases quadratically as the agent steps into
the puddles. The terminal region is defined as x +y > 1.9
(upper right corner of the square), which has reward 0. For
linear function approximation, we used 50 RBF features
(x € R%) of bandwidth 0.2, whose centers were uniformly
distributed in the state space (Fig. 2(a)). For RKHS, we
again use a RBF kernel bandwidth width 0.2 (Fig. 2(b)).



Helicopter Hover(f(z) = w’z), v = 0.99, n = 253
3 : ,

—RG
Implicit OGD
—ONS
2 OFW
EG
—TD(0)

Average Prediction Error

O n N n
0 2000 4000 6000

Number of Steps

(a) Linear

Figure 3: Convergence of prediction error for Helicopter
Hover with linear function approximation

Helicopter Hover The helicopter simulator has a con-
tinuous 21-dimensional state space and a continuous 4-
dimensional control. The reward is equal to the negative of
the quadratic deviation to the targeted hover state. To gen-
erate sequence of states, we apply an LQR controller using
linearized dynamics around the target hover state. We ad-
ditionally corrupt the dynamics simulation with noise sam-
pled from a Gaussian distribution. We used a degree-two
polynomial feature that maps an original 21-dimensional
state to a feature vector x € R2% (Fig. 3(a)) and attempt
to predict the long-term cost-to-go.

Analysis of results We fixed TD(0)’s step-size but a wide
range of step-sizes were tried, and the best choice in terms
of prediction error was used for TD(0). For RG, implicit
OGD, and EG, we set the step-size to ¢/ V/t, where ¢ is a
constant. We also tried a range of ¢ and chose the one that
leads to the best performance. For all algorithms, we pro-
vided the same random initialization. All the results are
computed by averaging over 100 random trials. As we can
see from Fig. 3, ONS and implicit OGD give good conver-
gence speed in general. Implicit OGD performed well with
both RKHS and linear function approximation. Through-
out the experiments, we found that implicit OGD was able
to use a larger c to speed up convergence while still main-
taining good stability. Surprisingly, our experimental re-
sults clearly show that our approaches have the possibility
to achieve smaller prediction error than TD(0) (e.g., Fig.
2(b), bottom). This runs counter to the fact that the up-
per bound of prediction error provided by our analysis in
Sec. 3 is looser than the upper bound of prediction error
of TD(0) from both Li (2008) and Schapire and Warmuth
(1996). Though our analysis is more general, further inves-
tigation is needed to tighten the worst-case bounds on our
approach.

6 CONCLUSION

We established a general connection between the worst-
case prediction of long term reward and Bellman errors for

stable prediction algorithms. We showed that together with
this online stability condition, any no-regret online learn-
ing algorithm optimizing Bellman errors ensures small pre-
diction errors. The stability condition is weak enough such
that most popular no-regret online algorithms satisfy it.
Our approach then suggests and provides soundness guar-
antees for online prediction of long-term reward using a
broad new family of algorithms, including Online BE New-
ton Step, Online BE Frank Wolf, Implicit BE online learn-
ing (implicit gradient descent). The analysis itself can be
applied to more general function space of hypotheses in-
cluding Reproducing Kernel Hilbert Space representations
and even to discrete hypothesis classes (i.e. trees). How-
ever we also want to point out that while our setting is very
general, one might expect that in strongly non-Markovian
situations there may fail to be a good predictor—e.g., no
linear predictor using only the features of x; can do a good
job. In that sense our theorem in this paper is relative—
essentially temporally coherent predictions (in the sense of
small Bellman error) imply doing nearly as well as can be
done at long term prediction: whether that is actually good
performance depends on the quality of both features and
hypothesis class, but not on any probabilistic assumptions.

7 DISCUSSION

Although our analysis provides broad and sound general-
izations of RG, it does not provide guarantees on what we
believe are the natural generalization of TD(0) or its vari-
ants as online algorithms on a sequence of temporal differ-
ence loss functions (TD-loss) which is defined as:

1(f) = (f(x¢) = re — 7 fe(xe41))? (26)

Note that the difference between l~t and [; is the subsript
on the second predictor. The reason that we call it TD-
loss is that when f(x) = w”x is linear, applying OGD
to I(w) with respect w exactly reveals the update step of
TD(0). By properly choosing step-size (1 = O(1/VT)),
OGD is no-regret on the TD-loss functions {I,(f)}. Simi-
lar to our analysis of Bellman error algorithms, we believe
that it is possible that no-regret property on TD-loss func-
tions and stability condition of online algorithms together
could lead us to similar predictive guarantees as shown in
Theorem 3.3. In fact our empirical results (included in Ap-
pendix) suggested that such approaches are both sound and
may outperform Bellman Residual methods. We leave it as
future work to establish regret bounds for temporal differ-
ence minimizing online algorithms.

8§ ACKNOWLEDGEMENTS

This work is supported by the ONR MURI grant NO0O14-
09-1-1052, Reasoning in Reduced Information Spaces. We
gratefully thank Arun Venkatraman for valuable discus-
sions.



References

Leemon Baird. Residual algorithms: Reinforcement learn-
ing with function approximation. Proceedings of the
12th International Conference on Machine Learning
(ICML-95), pages 30-37, 1995.

Adam Coates, Pieter Abbeel, and Andrew Y Ng. Learning
for control from multiple demonstrations. Proceedings

of the 25th international conference on Machine learn-
ing - ICML 08, pages 144—151, 2008.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforce-
ment learning with Gaussian processes. Proceedings of
the 22nd international conference on Machine learning,
2005.

Elad Hazan and Satyen Kale. Projection-free Online Learn-
ing. 29th International Conference on Machine Learn-
ing (ICML 2012), pages 521-528, 2012.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarith-
mic regret algorithms for online convex optimization.
Proceedings of the 19th annual conference on Computa-
tional Learning Theory (COLT), pages 169—-192, 2006.

Brian Kulis, Peter L Bartlett, Bartlett Eecs, and Berkeley
Edu. Implicit Online Learning. Proceedings of the 27th
international conference on Machine learning (ICML),
pages 575-582, 2010.

Lihong Li. A worst-case comparison between temporal
difference and residual gradient with linear function ap-
proximation. Proceedings of the 25th international con-
ference on Machine learning - ICML °08, pages 560—
567, 2008.

Doina Precup and Richard S. Sutton. Exponentiated Gra-
dient Methods for Reinforcement Learning. In Proceed-
ings of the 14th International Conference on Machine
Learning (ICML), 1997.

M Robards, Peter Sunehag, Scott Sanner, and B Marthi.
Sparse Kernel-SARSA(lambda) with an Eligibility
Trace. ECML PKDD, 2011.

Stephane Ross and J. Andrew Bagnell. Stability Conditions
for Online Learnability. arXiv:1108.3154,2011.

Ankan Saha, Prateek Jain, and Ambuj Tewari. The Inter-
play Between Stability and Regret in Online Learning.
arXiv preprint arXiv:1211.6158, pages 1-19, 2012.

Robert E. Schapire and Manfred K. Warmuth. On the
worst-case analysis of temporal-difference learning al-
gorithms. Machine Learning, 22(1):95-121, 1996. ISSN
0885-6125. doi: 10.1007/BF00114725.

Bruno Scherrer. Should one compute the Temporal Differ-
ence fix point or minimize the Bellman Residual? The
unified oblique projection view. International Confer-
ence on Machine Learning (ICML 2010), 2010.

Ralf Schoknecht and Artur Merke. TD(0) Converges Prov-
ably Faster than the Residual Gradient Algorithm. In-
ternational Conference on Machine Learning (ICML
2003), pages 680-687, 2003.

Bernhard Scholkopf and Alexander J. Smola. Learning
with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press Cambridge, MA,
USA, 2001.

Shai Shalev-Shwartz. Online Learning and Online Con-
vex Optimization. Foundations and Trends in Machine
Learning, 4(2):107-194, 2011.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Aviv Tamar, Panos Toulis, Shie Mannor, and
Edoardo M. Airoldi. Implicit Temporal Differences.
arXiv:1412.6734, pages 1-6, 2014.

Martin Zinkevich. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In International
Conference on Machine Learning (ICML 2003), pages
421-422,2003.



A Proof of Theorem. 2.1

Proof To prove Theorem. 2.1, we provide an example where the sequence of predictors { f;} is no-regret on loss {l;(f)}
but Eq. 3 does not hold.

Let us assume there exist a f* € F such that f*(z;) = v, = Zf:t v*~tr;. Namely we assume that the best
predictor in F can predict long-term reward exactly. Note that this f* minimizes the PE and BE simultaneously as

f* =argminger 33 (f(x¢) —v;)* and f* = argminger Y li(f).

Let us assume that f;(x¢) = v¢ + @ and fi(X¢41) = ve41 + %a, Vt, for a € R*. Then we have:
1
by = fi(xe) =1 — v fi(Xeq1) = v +a—ry —yUp41 — 7;(1 =0. 27)
Hence, for regret, we have:
Regret = 3 l(fi) =mind U(f) = D U(fi) —l(f*) = 3 b7 =4 = 0, (28)

which means that this sequence of predictor { f;} is no-regret with respect to the loss functions {I;(f)}.

However, on the other hand, when we check the predictor error e;, we have e; = f;(x;) — v4 = a, which makes the sum
of prediction error Y €7 increase linearly: " e? = (T)a” and (1/T) Y €? = a. Since we have e; = 0 for all ¢ and thus
>~ e;? = 0, there is no such constant C' € R that could make the Eq. 3hold. ]

This example presents a sequence of predictors that does not satisfy the online stability condition. In fact, it is this example
that motivates us to study stability condition of online algorihtms.

B Proof of Lemma. 3.2

Proof Note that b} = f*(x;) — vy + vy — r — vf*(X¢41) = ef — ve;, 1. Squaring both sides and summing over from

t=0toT — 1, we have:
Zbi‘z = Z(el‘ - 76:4-1)2
=D e+ > et -2 eiern
<Y e+ Y et Y et + > et
= (147D e + (7 + (e —ep).

*

Again, the first inequality is obtained by applying Young’s inequality to —2ejef, ; to get —2eje;, < er? + e;ﬁl. |

C Proof of Lemma. 4.1

Proof To show [;(f) is convex with respect to f, we only need the assumption that F belongs to a vector space. Since the
function space F belongs to a vector space, for any two function f € F and g € F, and a scalar ¢ € R and x, we have:

(f +9)(x) = f(x) + 9(x), (29)
(af)(x) = af(x). (30)

To prove the convexity of the loss functional ,(f), we show that for any o € [0, 1], we have l;(af + (1 — a)g) <
ali(f) + (1 — a)li(g). For ly(af + (1 — a)g), we have:

L(af +(1—a)g) = ((af + (1= a)g)(x¢) —re —v(af + (1 — a)g)(x141))° (€Y
= ((f(x¢) =7f(xe41) = ) + (1 — a)(g(xe) = v9(Xeg1) — 7)) (32)
= ®(f(x¢ — 7 f (xeg1) — 7)) + (1 — @) (g(xe) = vg(xe41) — 70)° (33)

+2a(1 — a)(f(xt) = vf(xe1) — 1) (9(%t) — 79(Xpt1) — 7). (34)



For ady(f) + (1 — @)l (g), we have:

aly(f) + (1= a)li(g) = a(f(x¢) = vf(xep1) = r0)° + (1= @) (9(xt) = 7g(xe41) = 70)%. (35)
Define b(f) = (f(x:) — vf(x¢t+1) — ) and b(g) = (g(x¢) — vg(x¢+1) — r+). Subtract Eq. 35 from Eq. 34, we have:
l(af + (1= a)g) — (ede(f) + (1 = a)li(g)) (36)
= (a® = a)b(f)* + (1 — @) = (1 — a))b(g)* + 2(a(1 — @))b(f)g(f) (37)
= (a® = a)(b(f)* +b(g9)* = 2b(f)g(f)) = (® — Q) (b(f) — g(f))* < 0. (38)

Now we prove I;(f) is Lipschitz continuous. First, consider the case when F is in RKHS. I;(f) is differentiable and its
gradient is:

VI(f) = (f(x¢) = e — 7 f(xe41)) (K (%t 1) — VE (Xe41, 7)) (39)
Note that the norm of VI,(f) is:
IV = (f(xe) = re — Vf (%e41))2 (1 + 7% — 29K (X4, X¢41))- (40)

Under the assumption that | f(x)| < P, |r| < R, |K(x¢, x¢11)| < K, it is easy to see that | VI,(f)|| is upper bounded by
some postive constant. The fact that a function is differentialbe and has bounded gradient implies the function is Lipschitz
continuous.

For the case when f(x) = w’x, we have [;(w) is differentiable and the gradient is:

Viy(w) = (WTXt — 7y — 'waxt)(xt — YXt41)- 41)

Under the assumptions that ||w|j2 < W, ||x||2 < X, |r| < R, itis easy to see that | VI, (w)||2 is bounded. Hence, I;(w) is
Lipschitz continuous with respect to Lo norm.

To see that I;(w) is also Lipschitz continuous with respect to L, norm, note that ||Vi;(w)||, must be upper bounded, since
|f(x)| < P,|r| < R,and |x‘| < X, where x" stands for the i’th entry of the vector x. |

D Proof of Lemma. 4.2

Proof Without loss of generality, we assume the regularization R(f) is 1-strongly convex with respect to norm || - ||. Due
to strong convexity, we have:

t t
> L)+ lR(ft) > L(fie1) + lR(fm)
i=0 " i=0 H

1
+ﬂ|\ft*ft+1||- 42)

The inequality follows from the fact that > I, + %R is a strongly convex function and f; 1 is a minimizer of ZZ:O L+ %R.
Similarly, We also have:

t—1

Zli(ftJrl) p R(fi+1) ZZ (fe) + th)
i=0

=0

+27|‘ft*ft+l||7 (43)

because f; is a minimizer of ZZ oli + —R Adding (42) and (43) together side by side and cancelling out repeated
terms from both sides, we get:

(/W fe = frall? < L(fe) = L(frer)
< e(fe) = Le(fer)l S LI fe — fraall 44)

Setting z = || f; — — fi41]] € Lu. Sum from

t =0to T, set u = 1/+/T and take the limit 7 — oo, we getto Eq. 17 |}




E Proof of Lemma. 4.3
Proof [;(w) is a quadratic function with respect w. Hence, taking the Tayplor expension of I;(w) at w’, we have:

Li(w) = (W) + VI(w)T (w —w') + %(W —w)TVVIL (W) (w — w'). (45)
Note that the Hessian VV1,(W') = 2(x; — yx¢+1)(X¢ — yX¢+1)T, which can be writted as:

(% = y%e41) (%6 — yxe41) "
(W'TXt —r — WW’TxtH)z

Vi (w') = 2(W’Txt — 7 — ’YW/TXt+1)2

1 1
= V(W) VI (W) > mvzt(w’)wt(w’)T, (46)

2(W’Txt — 7 — 'yw’TxtH)

where M = sup,, . wTx; — 1 — ywTx441)2. The derivation in Eq. 46 implicitly assumes that (w'” x; — ry —

Xt+1,’ft(

'yw’TxtH) # 0. But when (W/TXt—’I“t —vw’Txt_H) = 0, the final result from Eq. 46 still holds (VI;(w’)VI;(w')T = 0).

Note that M is a positive constant since we assume that ||w||, ||x|| and |r;| are all bounded. Hence, we have:

L(w) >l(W') + Vi (W) (w —w') + ﬁ(w w) IV, (W)Y (W) (w — w'). 47)

Setting A < 1/2M we prove the lemma. |

F Proof of Lemma. 4.4

Proof We next show that online newton method satisfies the online stability condition. For convenience, define y;;1 =
w; — + Ay Vi, (w;), we have:

1
Solwe=wiallh, <> lIwe—yiala, =D 154t "V (wi) 1%,

1
= Z FVZt(Wt lAtA Vlt (Wt )\2 Z Vlt Wt A Vlt(wt)

Following the proof in Hazan et al. (2006), it can be shown that:

2

TG
D Vi(wi)T A7 Vi (wy) < nlog( +1),

where G € Rt and G > ||V1;]|2. We simply set e = G2. Hence, the online stability condition is satisfied as:

1 X2
= Z(WtTXtH —wixe)® < Z Wi = wepal3
2
< *TZ [wi — wep |3, < TGQ)\znlog(T—i— 1)=0, T — oo.

The first inequality comes from Cauchy-Schwarz inequality and the assumption that ||x||2 < X. The second inequality
follows from the fact that the smallest eigenvalues of A;’s are bigger than or equal to €. |

G Disccusion and Results for Online Algorithms on TD-loss Functions {I;(f)}

First of all, we show similar to our analysis for Bellman Residual minimization, simply being no-regret on the TD-loss
functions {l;(f)} under general function approximation (not necessarily linear) is not sufficient to small predictive errors
(Eq. 3 doesn’t hold):

Theorem G.1 There exists a sequence of {f,} that is no-regret with respect to the TD-loss functions {l;(f)}, but no
C € R exists that makes Eq. 3 hold.



Random Walk (f(z) = wTz), v = 0.95, n = 10 Puddle World (f(z) = wTz), v = 0.99, n = 50
, . 70

80 : : :
implicit OGD (TD) implicit OGD (TD)
implicit OGD (BR) 60 implicit OGD (BR) ||
5 X —ONS (TD) 5| —ONS (TD)
560 ---ONS (BR) = ---ONS (BR)
= OFW (TD) k50 OFW (TD)
e OFW (BR) S OFW (BR)
5 —TD(0) £40¢ —TD(0)
g 40 ~RG T ~RG
A~ A 30
() [0
%D % 20 +
=
D | T e — Saaares < 10t
0 ‘ ‘ ‘ 0 ‘ "
0 1000 2000 3000 4000 0 1000 2000 3000
Number of Steps Number of Steps

Figure 4: Convergence of prediction error. We applied a set of online algorithms (OGD, implicit OGD, ONS, OFW) on
BE loss functions {/;(w)} (dot line) and TD-loss functions {I;(w)} (solid line) for Random walk (left) and Puddle World
(right).

Proof Again, we assume that f;(x;) = vy + a and fi(X¢41) = vep1 + %a, where ¢ € RT and v; = Z;F:t ~v$~try is the

long-term reward. Under this setting, the TD-loss Zt( f+) becomes:

1(fe) = (fe(x¢) = e — 7 fi(xe41))* = 0. (48)
Hence, this sequence of predictors { f;} is no-regret:

However this sequence of predictors performly badly in terms of prediction error 2 = (f;(x;) — v¢)?> = a>. Under the
assumption that the function space F (hypothesis class) is broad enough to have f* that perfectly predicts long-term reward
(f*(x¢) = vy, Vt), we always have 3" e7 = a® > Fe;2 = 0. Hence, it is impossible to find a postive constant C' such

that Eq. 3 will hold. |}

Note that in the above proof, the constructed predictors are not stable in a sense that f;(x;4+1) and fi41(x¢41) varies a lot
and hence it does not satisfies the online stability condition.

We conjecture that together with a similar stability analysis as we did for Bellman Residual minimization, we could achieve
similar predictive guarantees as in Theorem. 3.3. We leave it as a open question here and we currently are working on it.

G.1 Empirical Results

We applied several stable no-regret online learning algorithms including ONS, OFW, implicit OGD to TD-loss functions
I;(f) with linear function approximation (f(x) = w”x). Fig. 4 shows the results of applying the set of algorithms (OGD,
implicit OGD, ONS, and OFW) to BE and TD-loss for Random Walk and Puddle World. We compare their performance
to TD(0) and RG(0). Although we currently do not have sound predictive guarantees, these empirical results suggest that
applying stable no-regret online algorithms to TD-loss functions {l}(w)} in practice may give competitive performance
compared to Bellman Residual minimization algorithms and the 7D (0).



