
4. Proposed Work:
Temporal Difference Learning &

Apprenticeship Learning

20

RL

1. Policy Evaluation
(Online Bellman Residual)

[Sun & Bagnell, 15, UAI (Best Student Paper)]
Function Approximation

2. RL via Imitation
(Imitation Learning)
[Sun et.al 17, ICML; 18, ICLR]

Function Approximation &
Imitation

3. RL via Indirect
Imitation

(Dual Policy Iteration)
[Sun et.al, 18, submitted to ICML]

Function Approximation
 Optimal Control

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

 Policy

Maps states
to actions

Expert Feedback

21

Extra Assumptions:
expert policy at training;

cost (reward) signal
⇡e

Planner & Controller
(robotics) (e.g., Optimal Planner, MPC)

[Choudhury, et.al, ICRA, RSS, 17, Pan et.al,17]

Efficient RL via Imitation

Ground Truth
Labels + Utility

(NLP)

Search Algorithm
(e.g. A*) as expert

Human

22

Why bother imitating when

you have cost/reward signals?

23

Formalizing Advantages

ADVANTAGE #2

More Sample Efficient (i.e., Learns faster)

ADVANTAGE #1
Less sensitive to local optimality

DAgger (Data Aggregation) [Ross et.al, 11, AISTATS]

AggreVaTe (Aggregate with Values) [Ross&Bagnell14, arxiv]

24

There exist problems, s.t. with access to optimal expert, i.e.,

IL learns exponentially faster than RL

⇡e = ⇡⇤

[Sun et.al, 17,ICML]

s0

s1 s2

s3 s4 s5 s6

Consider a simple, tree like MDP

Go-Left Go-Right

< < <

25

Optimal Path

let us assume , and we can query ⇡e = ⇡⇤ Q⇤(s, a)

: the total cost of taking action at then following policy Q⇡(s, a) ⇡a s

c3 c4 c5 c6

s0

s1 s2

s3 s4 s5 s6

And an expert who tells us which action is better

< < <

Halving: Eliminate half of the nodes at every iteration

26

c3 c4 c5 c6

let us assume , and we can query ⇡e = ⇡⇤ Q⇤(s, a)

s0

s1 s2

s3 s4 s5 s6

< < <

27

[Sun et.al, 17,ICML]

In time logarithmic in #states,

we know an optimal policy

c3 c4 c5 c6

NX

i=1

(J(⇡i)� J(⇡⇤))  O(log(S))

s0

s1 s2

s3 s4 s5 s6

< < <

Now if we can only query unbiased but noisy

Poly-Log wrt S

In time logarithmic in #states,

we know an optimal policy

28

NX

i=1

(J(⇡i)� J(⇡⇤))  O
�
ln(S)(

p
ln(S)N +

p
ln(2/�)N)

�

[Sun et.al, 17,ICML]

c3 c4 c5 c6

s0

s1 s2

s3 s4 s5 s6

But For Pure RL

< < <

ANY RL ALGORITHM:

Proof uses a reduction from Multi-Armed Bandit
29

NX

i=1

(J(⇡i)� J(⇡⇤)) � ⌦(
p
SN)

[Sun et.al, 17,ICML]

c3 c4 c5 c6

Ex: AggreVaTe
[Ross & Bagnell, 14, arXiv]

Roll in Learned Policy,

Stop at a randomly picked
time step

s
a1

Roll out Expert’s Policy

a2

Q⇤(s, a1) = 100

Q⇤(s, a2) = 0

a3
Q⇤(s, a2) = 3

Cost-Sensitive classification dataset

n
s,

2

4
Q⇤(s, a1)
Q⇤(s, a2)
Q⇤(s, a3)

3

5
o

N

30

n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

⇡n

⇡n+1

Ex: AggreVaTe

Simple incremental update?

Cost-Sensitive Classifier

⇡n+1 = argmin
⇡

X

s2D

X

a

⇡(a|s)Q⇤(s, a)

s

⇡⇤

D +
n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

Aggregate
Dataset

31

[Ross & Bagnell, 14, arXiv]

Towards Differentiable AggreVaTe

(AggreVaTeD)

Stochastic parameterized policy:
⇡✓ = ⇡(·|s; ✓)

s ⇡(·|s) 2 �(A)

Non-Linear Layer

Softmax Layer

32

[Sun et.al, 17, ICML]

n
s,

2

4
Q⇤(s, a1)

...
Q⇤(s, aA)

3

5
o

N

⇡✓n+1

Differentiable AggreVaTe (AggreVaTeD)

`n(✓) =
X

s

X

a

⇡(a|s; ✓)Q⇤(s, a)r✓`n(✓)|✓n

⇡✓n

AggreVaTeD-GD (Gradient Descent):
✓n+1 = ✓n � µr✓`n(✓)|✓=✓n

AggreVaTeD-NG (Natural Gradient):
✓n+1 = ✓n � ⌘nI(✓n)

�1r✓n`n(✓n)

s ⇡⇤

33

[Sun et.al, 17, ICML]

Cost-Sensitive loss on
the new batch (no

aggregation)

Discrete MDP, Tabular Policy:

AggreVaTeD-GD
AggreVaTe with

Online Gradient Descent
[Zinkevich, 03]

AggreVaTeD-NG
AggreVaTe with

Weighted Majority
[Littlestone & Warmuth, 03]

• Practical Algorithms
• AggreVaTe’s theory as Guidance
• GD ensures Convergence

Strong Theoretical Guarantee

 J(⇡̂)  J(⇡e)

34

[Sun et.al, 17, ICML]

Differentiable AggreVaTe (AggreVaTeD)

Dependency Parsing on Handwritten Algebra Data

Dependency Parsing

35

Dependency Parsing <=> Sequential Decision Making
[Chang et.al 15, Duyck & Gordon 15]

Partial constructed parse tree + Action (Arc) => New partial parse tree
st at st+1+ =>

…… h

o1

a1

o2

a2

36

Dependency Parsing

37

Performance of AggreVaTeD, RL, and DAgger
U

nl
ab

el
le

d
At

ta
ch

m
en

t S
co

re

0

25

50

75

100

AggreVaTeD (LSTM) RL(LSTM) AggreVaTeD (NN) RL(NN) DAgger

83.2

38.6

53

82.6
92.4

Th
e

Hi
gh

er
 th

e
Be

tte
r

RL: Natural Policy Gradient [Kakade02, Bagnell 04]
DAgger result from Duyck & Gordon, 15

“Surprisingly”

It Can Outperform Expert

CartPole and Acrobot

Experts
R (y-axis): total reward

Th
e

Hi
gh

er
 th

e
Be

tte
r

38

