1. Policy Evaluation

(Online Bellman Residual)
[Sun & Bagnell, 15, UAI (Best Student Paper)]
Function Approximation

3. RL via Indirect
. Imitation
2 (Dual Policy Iteration)

2. RL via Imitation A
(Imitation Learning) |/

[Sun et.al 17, ICML; 18, ICLR]
[Sun et.al, 18, submitted to ICML]

Function Approximation &

Imitation Function Approximation

Optimal Control

4. Proposed Work:
Temporal Difference Learning &
Apprenticeship Learning

20



Imitation Learning

Machine .
I Expert Feedback Learning Policy T
Algorithm

SVM
Gaussian Process
Kernel Estimator Maps states

Deep Networks to actions

Random Forests
LWR

21



Efficient RL via Imitation

Extra Assumptlons 3

Planner &%Bﬁﬁcﬂ%pcy "

(I’ObO’[ICS oSt (reward) SI@@@' Optlmal Planner, MPC )

[Choudhury, et.al, ICRA, RSS, 17, Pan et.al,17]

Ground Truth
Labels + Utility >
(NLP)

Search Algorithm
(e.g. A¥) as expert

22



Why bother imitating when
you have cost/reward signals?

A

-
.
7 v

. 2 -, o

23
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Formalizing Advantages

ADVANTAGE #1

Less sensitive to local optimality
DAgger (Data Aggregation) [ross etal, 11, AISTATS]

AggreVaTe (Aggregate with Values) (rossssagneliis, arxiv]

ADVANTAGE #2
More Sample Efficient (i.e., Learns faster)

There exist problems, s.t. with access to optimal expert, i.e., 7¢ = 7*

IL learns exponentially faster than RL

[Sun et.al, 17,ICML]

24



Consider a simple, tree like MDP

X

let us assume 7° = 7" , and we can query Q™ (s, a)

Go-Left a; Go-Right ar

Cnon—leaf — 0

QW(S, a) : the total cost of taking action i at S then following policy 7T
25



And an expert who tells us which action is better
let us assume 7 = 7" , and we can query Q*(s, a)

@ Q*(307a/l) < Q*('SOaa'T‘)
Q*(Slval) < Q*(Slaar)

C3 < &4 < 6 < ©GCp
Halving: Eliminate half of the nodes at every iteration

20



[Sun et.al, 17,ICML]

In time logarithmic in #states,
we know an optimal policy




[Sun et.al, 17,ICML]

In time logarithmic in #states,

we know an optimal policy
Now if we can only query unbiased but noisy Q*

N

> (J(m) = J (%)) < O(In(S)(VIn(S)N + /In(2/5)N))

1=1

Poly-Log wrt S

28



[Sun et.al, 17,ICML]

But For Pure RL

ANY RLALGORITHM: Y (J(m;) — J (™)) > Q(VSN)

1=1
Proof uses a reduction from Multi-Armed Bandit
29



[Ross & Bagnell, 14, arXiv]

EX: AggreVale

Roll in Learned Policy, — ~
Stop at a randomly picked Le="" -1
time step \ R _

Y4
4

. *(s.a0) =0
Roll out Expert’s Policy M M )

Q*(s,a1)
s, |Q*(s,as)
{ Q" (s,a3) }N

Cost-Sensitive classification dataset

30



[Ross & Bagnell, 14, arXiv]

\Ex: AggreVaTe

Tn
----- (D i
?(/ y Q7(s,01) }
4 N

Q*(S,CLA)

Aggregate

+ Dataset
P

......
~ ..

N
~ ~
N~

Q*(Sv a'l)
Q*(Sa CLA)

31



Towards Differentiable AggreVale
(AggreValeD)

[Sun et.al, 17, ICML]

Stochastic parameterized policy:

| I

Non-Linear Layer

o = m(-|s;0)

I—»7T ) € A(A)

Softmax Layer

32



[Sun et.al, 17, ICML]

Differentiable AggreVale (AggreVaTleD)

U 0., _ _
Q*(Sa CLl) }
_Q*(S*,CLA)_ N
Voln (o, n(0) = Z Zw(a\s; 0)Q* (s, a)
AggreVaTeD-GD (Gradient Descent): ~ COSt-Sensitive loss on
Ot = 0, — 11V, (0)]9=0 the new batch (no

aggregation)
AggreVaTeD-NG (Natural Gradient):
en—l—l — en — nnl(en) 1 vé’n gn (en)

33



[Sun et.al, 17, ICML]

Differentiable AggreVale (AggreVaTleD)

Discrete MDP, Tabular Policy:

AggreVale with

AggreVaTeD-GD €= Online Gradient Descent
'Zinkevich, 03]

AggreVale with
Weighted Majority

[Littlestone & Warmuth, 03]

AggreValeD-NG

* Practical Algorithms |
. AggreVaTe's theory as Guidance Strong Theoretical Guarantee

* GD ensures Convergence J(ﬁ') < J(ﬂ_e)

34



Dependency Parsing

Dependency Parsing on Handwritten Algebra Data

) A2 N A\ = D A= N
Y v v v v 4 v
A5 () — 0 \ 4 X S
Y \| Y
o \ X 1

35



Dependency Parsing

Dependency Parsing <=> Sequential Decision Making
[Chang et.al 15, Duyck & Gordon 15]

PPN A

Root  Flying planes  cun be  dangerous /_\ Root  Flying plioes  cun be  dangerous

Partial constructed parse tree + Action (Arc) => New partial parse tree
St + Qy => St+1




Performance of AggreVaTeD, RL, and DAgger

100

O
| -
O
O
)
= 75
D
&
C
O
M 50
-
<
O
Q
© 25
O
O
-
- 0
AggreVaTeD (LSTM) RL(LSTM) AggreVaTeD (NN) RL(NN) DAgger

RL: Natural Policy Gradient [Kakade02, Bagnell 04]

37 DAgger result from Duyck & Gordon, 15



“Surprisingly”
It Can Outperform Expert

N

>

CartPole and Acrobot

450

Acrobot

400}
350
300}
250}

200 = expert
150} === natural
wot L 4 0202020200000 | eXpgrt . K _.-- - == regular |~ -
ol _',"" - - RL natural
’ - - RLregular
% 5 10 15 2 200 5 10 15
N n

R (y-axis): total reward
Experts
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