What Structural Conditions Permit Generalization in Reinforcement Learning?

Joint work with
Simon Du, Sham Kakade, Jason Lee, Shachar Lovett,
Gaurav Mahajan, Ruosong Wang
Solving Large-scale RL problems requires generalization

[AlphaZero, Silver et.al, 17]

[OpenAI Five, 18]

[OpenAI, 19]
Markov Decision Processes: a framework for RL

• A policy:
 \(\pi : \text{States} \rightarrow \text{Actions} \)

• Execute \(\pi \) to obtain a trajectory:
 \(s_0, a_0, r_0, s_1, a_1, r_1 \cdots s_{H-1}, a_{H-1}, r_{H-1} \)

• Cumulative \(H \)-step reward:
 \[
 V_H^\pi(s) = \mathbb{E}_\pi \left[\sum_{t=0}^{H-1} r_t \mid s_0 = s \right], \quad Q_H^\pi(s, a) = \mathbb{E}_\pi \left[\sum_{t=0}^{H-1} r_t \mid s_0 = s, a_0 = a \right]
 \]

• Goal: Find a policy \(\pi \) that maximizes our value \(V^\pi(s_0) \) from \(s_0 \).

 Episodic setting: We start at \(s_0 \); act for \(H \) steps; repeat…

![Diagram of Markov Decision Process](image-url)
Generalization is possible in the IID supervised learning setting!

To get ϵ-close to best in hypothesis class \mathcal{F}, we need # of samples that is:

- “Occam’s Razor” Bound (finite hypothesis class): need $O(\log |\mathcal{F}|/\epsilon^2)$

Various Improvements:

- VC dim: need only $O(\text{VC}(\mathcal{F})/\epsilon^2)$
- Classification: linearly separable + margin: $O(\text{margin}/\epsilon^2)$
- Linear Regression in d dimensions: $O(d/\epsilon^2)$
- Deep Learning: the algorithm also determines the complexity control

The key idea in SL: data reuse

With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!
Sample Efficient RL in the Tabular Case (no generalization here)

- **Thm:** In the episodic setting, \(\text{poly}(S, A, H, 1/\epsilon) \) samples suffice to find an \(\epsilon \)-opt policy with the \(E^3 \) algo. [Kearns & Singh ‘98]
 - also: [Brafman & Tennenholz ‘02; K. ‘03]
- Key idea: optimism + dynamic programming

- Regret guarantees with model based algs:
 - [Auer+ ‘09]
- Provable Q-learning (+bonus):
 - [Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]
- (asymptotically) optimal regret: \(\text{Reg}(\#\text{episodes}) = \sqrt{HSA \cdot \#\text{episodes}} \)
 - [Azar+ ‘17],[Dann+’17]
I: Provable Generalization in RL

Q1: Can we find an ϵ-opt policy with no S dependence?

- How can we reuse data to estimate the value of all policies in a policy class \mathcal{F}?

 Idea: Trajectory tree algo

 dataset collection: uniformly at random choose actions for all H steps in an episode.

 estimation: uses importance sampling to evaluate every $f \in \mathcal{F}$

- Thm: [Kearns, Mansour, & Ng ‘00]

 To find an ϵ-best in class policy, the trajectory tree algo uses $O(A^H \log(|\mathcal{F}|)/\epsilon^2)$ samples

 - Only $\log(|\mathcal{F}|)$ dependence on hypothesis class size.

 - There are VC analogues as well.

- Can we avoid the 2^H dependence to find an ϵ-best-in-class policy?

 Agnostically, **NO**!

 Proof: Consider a binary tree with 2^H-policies and a sparse reward at a leaf node.
II: Provable Generalization in RL

• Q2: Can we find an ϵ-opt policy with no S, A dependence and
 $\text{poly}(H, 1/\epsilon, "complexity measure")$ samples?

 • With various stronger assumptions, yes.
 • Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]
 • Linear MDPs: [Wang & Yang’18]; [Jin+ ’19] (the transition matrix is low rank)
 • Linear Quadratic Regulators (LQR): standard control theory model
 • FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]
 • Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]
 • Block MDPs [Du+ ’19]
 • Factored MDPs [Sun+ ’19]
 • Kernelized Nonlinear Regulator [K.+ ’20]
This talk:

Structural conditions

Under which Generalization is possible
Warm up

The linear Bellman Complete model:

Def: Given feature map $\phi(s, a) \in \mathbb{R}^d$, Bellman operator has linear closure

Given any $w \in \mathbb{R}^d$, there exists a $\theta \in \mathbb{R}^d$, such that:

$$\forall s, a : \theta^T \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(s, a)} \left[\max_{a'} w^T \phi(s', a') \right]$$

$$:= T(w)$$

Examples:

Linear MDPs, Linear Quadratic Regulator
Warm up

The linear Bellman Complete model:

Generalization is possible here:

∃ an algorithm, finding ϵ-near optimal policy only needs $\text{poly}(H, d, 1/\epsilon)$ many samples
Warm up

The linear Bellman Complete model:
what's the structure here that permits generalization?

We can rewrite the average Bellman error (averaged over any roll-in π) in a bilinear form:

Given a Q^* candidate $w^T \phi(s, a)$, we have:

$$
\mathbb{E}_{s, a \sim \pi} \left[w^T \phi(s, a) - r(s, a) - \mathbb{E}_{s' \sim P(s, a)} \max_{a'} w^T \phi(s', a') \right] \\
= \mathbb{E}_{s, a \sim \pi} \left[w^T \phi(s, a) - T(w)^T \phi(s, a) \right] = \left\langle w - T(w), \mathbb{E}_{s, a \sim \pi} \phi(s, a) \right\rangle
$$
Warm up

The linear Bellman Complete model:

what’s the unique structure here that permits generalization?

We can also estimate the value of the bilinear form:

Define discrepancy $\ell(s, a, s', w) = w^\top \phi(s, a) - r(s, a) - \max_{a'} w^\top \phi(s', a')$

We have:

$$\mathbb{E}_{s,a \sim \pi} \ell(s, a, s', w) = \langle w - T(w), \mathbb{E}_{s,a \sim \pi} \phi(s, a) \rangle$$

Note we have data reuse: given data from π, we can evaluate all w
Warm up

The linear Bellman Complete model:

In summary, it has a **bilinear structure**:

For any roll-in policy π, and any w, we have: (1)

$$
\mathbb{E}_{s,a \sim \pi} \left[w^\top \phi(s, a) - r(s, a) - \mathbb{E}_{s' \sim P(s,a)} \max_{a'} w^\top \phi(s', a') \right] = \left\langle w - T(w), \mathbb{E}_\pi \phi(s, a) \right\rangle
$$

AND (2) there exists a discrepancy function ℓ, s.t.,

$$
\mathbb{E}_{s,a \sim \pi} \ell(s, a, s', w) = \left\langle w - T(w), \mathbb{E}_\pi \phi(s, a) \right\rangle
$$

Note that the analytical form of bilinear structure is unknown
BiLinear Classes: structural properties to enable generalization in RL

- Realizable Hypothesis class: \(\{ f \in \mathcal{F} \} \), with associated state-action value, (greedy) value and policy: \(Q_f(s, a), V_f(s), \pi_f \)
- can be model based or model-free class.

Def: A \((\mathcal{F}, \ell)\) forms an (implicit) BiLinear class class if there are
\(W_h \in \mathcal{F} \mapsto \mathcal{H}, & X_h \in \mathcal{F} \mapsto \mathcal{H} \) (\(\mathcal{H} \) being some Hilbert space):

- **Bilinear regret:** on-policy difference between claimed reward and true reward
 \[
 \left| \mathbb{E}_{s_h, a_h \sim \pi_f} \left[Q_f(s_h, a_h) - r(s_h, a_h) - V_f(s_{h+1}) \right] \right| \leq \left\langle W_h(f) - W_h(f^*), X_h(f) \right\rangle
 \]
- **Data reuse:** there is discrepancy function \(\ell_f(s, a, s', g) \) & policy \(\pi_{est} \) s.t.
 \[
 \mathbb{E}_{s_h \sim \pi_f, a_h \sim \pi_{est}} \left[\ell_f(s_h, a_h, s_{h+1}, g) \right] = \left\langle W_h(g) - W_h(f^*), X_h(f) \right\rangle, \forall g \in \mathcal{F}
 \]

Note: \(W_h \) & \(X_h \) are implicit—no need to known them.
Back to Linear Bellman Complete:

(1) **Bilinear regret:** for any \(f(s, a) := w^\top \phi(s, a) \), we have:

\[
\mathbb{E}_{s_h, a_h \sim \pi_f} \left[w^\top \phi(s_h, a_h) - r(s_h, a_h) - \mathbb{E}_{s' \sim P(s,a)} \max_{a'} w^\top \phi(s', a') \right] = \left\langle \begin{array}{c} (w - T(w)) - (w - T(w^*)) \\mathbb{E}_{\pi} \phi(s, a) \end{array} \right\rangle
\]

AND (2) **data-reuse:** there exists a discrepancy function \(\mathcal{L} \), s.t.,

\[
\mathbb{E}_{\pi_f} \mathcal{L}(s, a, s', w') = \left\langle (w' - T(w')) - (w^* - T(w^*)) , \mathbb{E}_{s, a \sim \pi_f} \phi(s, a) \right\rangle
\]

Note \(W_h(f) \) is unknown as the Bellman backup \(T(w) \) is unknown
The Algorithm: BiLin-UCB

For $t = 0 \rightarrow T$:

- Find the “optimistic” $f_t \in \mathcal{F}$:
 \[
 \arg \max_{f \in \mathcal{F}} V_f(s_0), \text{ s.t., } \sigma^2_h(f) \leq R, \forall h
 \]

- Sample m trajectories π_{f_t} and create a batch dataset:
 \[
 D = \{(s_h, a_h, s_{h+1}) \in \text{trajectories}\}
 \]

- Update the cumulative discrepancy function $\sigma_h(\cdot), \forall h$
 \[
 \sigma^2_h(\cdot) \leftarrow \sigma^2_h(\cdot) + \left(\sum_{(s_h, a_h, s_{h+1}) \in D} \epsilon_{f_t}(s_h, a_h, s_{h+1}, \cdot)/|D| \right)^2
 \]

Note here we roughly have: $\sigma_h(g) \approx \sum_{i=0}^t \left(\mathbb{E}_{s_h, a_h \sim \pi_{f_i}} \epsilon_{f_i}(s_h, a_h, s_{h+1}, g) \right)^2$
Theorem 2: Generalization in RL

• Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang '21]
 Assume \mathcal{F} is a bilinear class and the class is realizable, i.e. $f^* \in \mathcal{F}$.
 Using $\gamma_T^3 \cdot \text{poly}(H) \cdot \log(1/\delta)/\epsilon^2$ trajectories, the BiLin-UCB algorithm returns an ϵ-opt policy (with prob. $\geq 1 - \delta$).

 γ_T is the max. info. gain

 $\gamma_T := \max_{h,f_0\ldots f_{T-1} \in \mathcal{F}} \ln \det \left(I + \frac{1}{\lambda} \sum_{t=0}^{T-1} X_h(f_t)X_h(f_t)^T \right)$

 $\gamma_T \approx d \log T$ for X_h in d-dimensions

• The proof is “elementary” using the elliptical potential function.
 [Dani, Hayes, K. ’08]
Proof Sketch

1. Optimism: $V^*(s_0) \leq V_{f_t}(s_0)$; this can be verified by showing f^* is always a feasible solution

2. Using optimism, we can upper bound per-episode regret Bilinear form (“simulation” lemma):

$$V^*(s_0) - V^\pi_{f_t}(s_0) \leq V_{f_t}(s_0) - V^\pi_{f_t}(s_0) \leq \sum_{h=0}^{H-1} \left| W_h(f_t) - W_h(f^*), X_h(f_t) \right|$$

3. If π_{f_t} is really sub-optimal, i.e., $V^*(s_0) - V^\pi_{f_t}(s_0) \geq \epsilon$, then f_t has large bilinear regret:

$$\exists h, \text{ s.t., } \left| W_h(f_t) - W_h(f^*), X_h(f_t) \right| \geq \epsilon/H$$

4. Recall in the alg, we have a constraint $\sigma_h(f_t) \leq R$, i.e.,

$$\sum_{i=0}^{t-1} \left(E_{s_h, a_h \sim \pi_{f_i}} \left[\mathcal{E}_{f_i}(s_h, a_h, s_{h+1}, f_t) \right] \right)^2 \leq R$$

$$\Rightarrow (W_h(f_t) - W_h(f^*))^T \Sigma_{t,h}(W_h(f_t) - W_h(f^*)) \leq R + \lambda \left(\Sigma_{t,h} := \sum_{i=0}^{t-1} X_h(f_i)X_h(f_i)^T + \lambda I \right)$$
Proof Sketch

3. If π_f is really **sub-optimal**, i.e., $V^*(s_0) - V^{\pi_f}(s_0) \geq \epsilon$, then f_t has large bilinear value:

$$\exists h, \text{ s.t., } |W_h(f_t) - W_h(f^*), X_h(f_t)| \geq \epsilon / H$$

4. Recall in the alg, we have a constraint $\sigma(f_t) \leq R$, i.e.,

$$\sum_{\tau=0}^{t-1} \left(\mathbb{E}_{s_h, a_h \sim \pi_{f_t}} \ell_{f_t}(s_h, a_h, s_{h+1}, f_t) \right)^2 \leq R$$

$$(W_h(f_t) - W_h(f^*))^\top \Sigma_{t,h}(W_h(f_t) - W_h(f^*)) \leq R + \lambda \quad \left(\Sigma_{h,t} := \sum_{i=0}^{t-1} X_h(f_t)X_h(f_t)^\top + \lambda I \right)$$

5. Finally, combine the two results and using Cauchy-Schwartz, we have:

$$\epsilon / H \leq \| W_h(f_t) - W_h(f^*) \|_{\Sigma_{h,t}} \| X_h(f_t) \|_{\Sigma_{h,t}^{-1}} \leq \sqrt{R + \lambda} \| X_h(f_t) \|_{\Sigma_{h,t}^{-1}}$$

$$\Rightarrow \| X_h(f_t) \|_{\Sigma_{h,t}^{-1}} \geq \frac{\epsilon}{H \sqrt{R + \lambda}}$$

In d-dimensional setting, such event cannot happen more than $\tilde{O}(d/\epsilon^2)$ many times....
Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21]

The following models are bilinear classes for some discrepancy function \(\ell (\cdot) \):

- **Linear Bellman Completion:** [Munos, ’05, Zanette+ ‘19]
- **Linear MDPs:** [Wang & Yang’18]; [Jin+ ’19] (the transition matrix is low rank)
- **Linear Quadratic Regulators (LQR):** standard control theory model
- **FLAMBE / Feature Selection:** [Agarwal, K., Krishnamurthy, Sun ’20]
- **Linear Mixture MDPs:** [Modi+’20, Ayoub+ ’20]
- **Block MDPs** [Du+ ’19]
- **Factored MDPs** [Sun+ ’19]
- **Kernelized Nonlinear Regulator** [K.+ ’20]
- **Linear** \(Q^* \) & \(V^* \)
- **Reactive PSR/POMDP, Generalized linear MDP, and more…..**

(almost) all “named” models (with provable generalization) are bilinear classes

two exceptions: deterministic linear \(Q^* \); \(Q^* \)-state-action aggregation

- **Bilinear classes generalize the:** Bellman rank [Jiang+ ‘17]; Witness rank [Sun+ ’19]
Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

Low-rank MDP: \(P(s' \mid s, a) = \mu^*(s')\top \phi^*(s, a), \mu^* & \phi^* \) unknown

Function approximation for feature: \(\phi^* \in \Psi \subset S \times A \mapsto \mathbb{R}^d \)

Function approximation for \(Q^* \): \(Q := \{ w\top \phi(s, a) : w \in \text{Ball}_W, \phi \in \Psi \} \)

Q: can we find \(\epsilon \) optimal policy w/ samples \(\text{poly}(d, \ln(\Psi), H, 1/\epsilon) \)?

Yes & it’s in the Bilinear class!
Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

1. Claim: on-policy Bellman error of $f := w^T \phi$ has Bilinear form:

\[
\forall f \in \mathcal{Q} : \mathbb{E}_{s_h, a_h \sim \pi_f} \left[Q_f(s_h, a_h) - r_h - \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q_f(s_{h+1}, a') \right]
\]

\[
= \mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_f} \mathbb{E}_{s_h \sim P(\cdot|s_{h-1}, a_{h-1}), a_h \sim \pi_f(\cdot|s_h)} \left[Q_f(s_h, a_h) - r_h - \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q_f(s_{h+1}, a') \right]
\]

\[
= \mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_f} \int_{s_h} \phi^*(s_{h-1}, a_{h-1})^T \mu^*(s_h) \mathbb{E}_{a_h \sim \pi_f} \left[Q_f(s_h, a_h) - r_h - \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q_f(s_{h+1}, a') \right]
\]

\[
= \left\langle \mathbb{E}_{s_{h-1}, a_{h-1} \sim \pi_f} \phi^*(s_{h-1}, a_{h-1}), \mu^*(s_h) \mathbb{E}_{a_h \sim \pi_f} \left[Q_f(s_h, a_h) - r_h - \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q_f(s_{h+1}, a') \right] \right\rangle
\]
Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

2. Claim: The bilinear regret is estimable using some ℓ

Define $\ell(s, a, s', g) = \frac{1\{a = \pi_g(s)\}}{1/A} \left(Q_g(s, a) - r(s, a) - \max_{a'} Q_g(s', a') \right)$

$$\mathbb{E}_{s_h \sim \pi_f} \mathbb{E}_{a_h \sim U(A)} \ell(s_h, a_h, s_{h+1}, g) = \left\langle W_h(g) - W_h(f^*), X_h(f) \right\rangle$$
Another Example: Linear Q^* & V^*

What’s the role of linear function approximation in RL?

We have linear MDP, Linear Bellman complete...

The most natural one should just be Q^* being linear-realizable:

$$Q^*(s, a) = (w^*)^\top \phi(s, a), \text{ under known feature } \phi$$

However generalization is **impossible** here:

- **Theorem [Weisz, Amortila, Szepesvári ‘21]:** There exists an MDP w/ linear Q^*, s.t any online RL algorithm requires $\Omega(\min(2^d, 2^H))$ samples to output a near optimal policy
Additional Example: Linear Q^* & V^*

What's the role of linear function approximation in RL?

However, if we further assume $V^*(s) = (\theta^*)^\top \psi(s)$, then we will be ok:

- **Theorem** [Du, Kakade., Lee, Lovett, Mahajan, S, Wang '21]
 For any MDP with both Q^* and V^* being realizable (under some known features, e.g., RKHS), there exists an algorithm that learns with # of samples: $\frac{d^3 \text{poly}(H)}{\epsilon^2}$
Additional Example: Linear Q^* & V^*

Linear Q^* & V^* has Bilinear Structure

Function classes for $Q^* \in \mathcal{Q} := \{ w^T \phi(s, a) : w \in \text{Ball}_w \}$, $V^* \in \mathcal{V} := \{ \theta^T \psi(s) : \theta \in \text{Ball}_B \}$

Key step: pre-process function class

$$\{Q, V\} := \left\{ (w, \theta) : \forall s, \max_a w^T \phi(s, a) = \theta^T \psi(s) \right\}$$

(1) on-policy Bellman error of any $f := (w, \theta)$ has bilinear form:

$$\mathbb{E}_{s_h, a_h \sim \pi_f} \left[w^T \phi(s_h, a_h) - r_h - \mathbb{E}_{s' \sim P(s_h, a_h)} \theta^T \psi(s') \right] = \langle W_h([w, \theta]) - W_h([w^*, \theta^*]), X_h([w, \theta]) \rangle$$

(2) there exists $\ell(s, a, s', [w, \theta]) = w^T \phi(s, a) - r(s, a) - \theta^T \psi(s')$, s.t.,

$$\mathbb{E}_{s_h, a_h \sim \pi_f} \left[\ell(s_h, a_h, s'_{h+1}, [w', \theta']) \right] = \langle W_h([w', \theta']) - W_h([w^*, \theta^*]), X_h(f) \rangle, \forall [w', \theta']$$
Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:

Function class: \(\mathcal{F} = \{ P : P(s' \mid s, a; \theta) = \theta^\top \phi(s, a, s'), \theta \in \text{Ball}_W \} \)

Why this model is ever interesting?

Imagine we have \(d \) simulators, \(P^i(s' \mid s, a), i \in [d] \), we assume the ground truth is the linear mixture of \(d \) simulators:

\[
P^*(s' \mid s, a) = \sum_{i=1}^{d} \theta^*[i] P^i(s' \mid s, a)
\]
Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:

Function class: $\mathcal{F} = \{ P : P(s' \mid s, a; \theta) = \theta^\top \phi(s, a, s'), \theta \in \text{Ball}_W \}$

(Notation: $f \in \mathcal{F}$ is a potential transition, and $f^* := P^*$)

Claim 1: For any $f \in \mathcal{F}$, the on-policy Bellman error of Q_f under π_f has bilinear form:

$$\mathbb{E}_{\pi_f} \left[Q_f(s_h, a_h) - r(s_h, a_h) - \mathbb{E}_{s' \sim f^*(s_h, a_h)} V_f(s') \right] = \langle W_h(f) - W_h(f^*), X_h(f) \rangle$$

(Notation: f^* is a potential transition, and $f^* := P^*$)
Final Example: Linear Mixture Model

The linear Mixture Model:

Function class: \(\mathcal{F} = \{ P : P(s' | s, a; \theta) = \theta^\top \phi(s, a, s'), \theta \in \text{Ball}_W \} \)

(Notation: \(f \in \mathcal{F} \) is a potential transition, and \(f^* := P^* \))

Claim 2: For any \(f \in \mathcal{F} \), there exists discrepancy \(\ell_f(s, a, s', g) \) to measure bilinear form:

\[
\ell_f(s, a, s', g) = \mathbb{E}_{s' \sim g(s,a)} \left[V_f(s') \right] - V_f(s')
\]

s.t., \(\mathbb{E}_{\pi_f} \ell_f(s_h, a_h, s'_{h+1}, g) = \langle W_h(g) - W_h(f^*), X_h(f) \rangle \)