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Solving Large-scale RL problems requires generalization

THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

-
'l
-, —
e, % .
Sl |
-l
S g

%-.a{ 8
D% _._..,,J
‘o

At last — a compufer program that .'57-( : A - 3 1 601 688 {}:: -:z. . &

-
can beat a champion Go player PAGE 484 )
. 71411714
S,

ALLSYSTEMSGO | =% i : . :8wa -

[AlphaZero, Silver et.al, 17] ' [OpenAl Five, 18] [OpenAl,19]

6




Markov Decision Processes:

a framework for RL

A policy:
Tt . States — Actions

state

Execute & to obtain a trajectory:

0> A0s Fys S15 A1 -+ -Sp—15 Arg_15 Fry—1
Cumulative //-step reward:

H—-1
Vi(s) = E, lz r,

=0

So = S] , Op(s,a) =

R,

reward

Rt+l

|-

5r+1

H—-1

2

=0

Environment

SO:S,CZO:CZ

Goal: Find a policy & that maximizes our value V" (s,) from s,

Episodic setting: We start at s,; act for H steps; repeat...

|



Provable Generalization in Supervised Learning (SL)

Generalization is possible in the IID supervised learning setting!

To get c-close to best in hypothesis class 7, we need # of samples that is:

 “Occam’s Razor” Bound (finite hypothesis class): need O(log | F | /e?)
Various Improvements:

. VC dim: need only O(VC(F)/e?)
. Classification: linearly separable + margin: O(margin)/e”)

. Linear Regression in d dimensions: O(d/¢”)
o Deep Learning: the algorithm also determines the complexity control

The key idea in SL: data reuse
With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!
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Sample Efficient RL in

the Tabular Case e N |
(no generalization here) ...
» Thm: In the episodic setting, poly(S, A, H,1/¢) 2 .- .
samples suffice to find an e-opt policy with the . ...-..

E’ algo. [Kearns & Singh ‘98]
also: [Brafman& Tennenholtz ‘02; K. '03]
Key idea: optimism + dynamic programming

* Regret guarantees with model based algos:
[Auer+ ‘09]

* Provable Q-learning (+bonus):
Strehl+ (2006)], [Szita & Szepesvari ‘“10],[Jin+ ‘18]

o (asymptotically) optimal reget: Reg(#episodes) = \/HSA - #episodes
[Azar+ ’17],[Dann+’17]




|: Provable Generalization in RL
Q1: Can we find an e¢-opt policy with no S dependence?

« How can we reuse data to estimate the value of all policies in a policy class & ? ALL SYSTEMS

ldea: Trajectory tree algo
dataset collection: uniformly at random choose actions for all H steps in an episode.

estimation: uses importance sampling to evaluate every | & &

e Thm:[Kearns, Mansour, & Ng ‘00]
To find an e-best in class policy, the trajectory tree algo uses O(AHlog( | F | )/e”) samples

 Only log(| % |) dependence on hypothesis class size.
« There are VC analogues as well.

. Can we avoid the 2 dependence to find an e-best-in-class policy?
Agnostically, NO!

Proof: Consider a binary tree with 21 -policies and a sparse reward at a leaf node. .



lI: Provable Generalization in RL

ALL S YS TEMS

- 02: Can we find an e-opt policy with no 5, A dependence and
poly(H,1/¢e, "complexity measure") samples?

With various stronger assumptions, yes.

 |inear Bellman Completion: [Munos, 05, Zanette+ ‘19]
 Linear MDPs: [Wang & Yang’'18]; [Jin+ '19] (the transition matrix is low rank)
* Linear Quadratic Regulators (LQR): standard control theory model

« FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun '20]

e Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]

 Block MDPs [Du+ ’19]

 Factored MDPs [Sun+ ’19]

 Kernelized Nonlinear Regulator [K.+ 20]



This talk:

Structural conditions

Under which Generalization is possible



Warm up

The linear Bellman Complete model:

Def: Given feature map ¢(s, a) € R¢ Bellman operator has linear closure

Given any w € RY, there exists a # € R?, such that:

max w ' (s, a’)]
a/

VS, 4} @l' (S, CZ) — V(Sa Cl) T —s'~P(s,0)
= T(w)

Examples:

Linear MDPs, Linear Quadratic Regulator



Warm up

The linear Bellman Complete model:

Generalization is possible here:

1 an algorithm, finding e-near optimal policy only needs
poly(H, d,1/e) many samples



Warm up

The linear Bellman Complete model:

what’s the structure here that permits generalization?

We can rewrite the average Bellman error (averaged over any roll-in x)

in a bilinear form:

Given a Q*candidate w ' ¢ (s, a), we have:

T T
= 8,a~TT 44 ¢(S, Cl) o V(Sa Cl) — Ly~P(s,a) mE}X W ¢(S’, Cl’)
a

s W OG5, @) = T (s, )] = (w = Tw), E, (s, a) )




Warm up

The linear Bellman Complete model:

what’s the unique structure here that permits generalization?

We can also estimate the value of the bilinear form:

Define discrepancy £(s, a, s’, w) = w' (s, a) — r(s,a) — maxw ' ¢(s’, a’)
al

We have:

el 5.0,50) = (30 = TO0). 1006 )

Note we have data reuse: given data from z, we can evaluate all w



Warm up

The linear Bellman Complete model:

In summary, it has a bilinear structure:

For any roll-in policy 7, and any w, we have: (1)

= caen | W (s, @) — 1(s,a) — E /'~ P(s,q) MAX w'l (s, a)| = <w — T(w), E_ (s, a)>

AND (2) there exists a discrepancy function 7, s.t.,

g amrnl (4,8, W) = <w — T(w), E_¢(s, a)>

Note that the analytical form of bilinear structure is unknown



BiLinear Classes: structural properties to enable

generalization in RL

» Realizable Hypothesis class: |/ € 7 |,
with associated state-action value, (greedy) value and policy: Qf(s, a), Vf(s), 47
* can be model based or model-free class.

Def: A (3‘7 £) forms an (implicit) Bilinear class class if there are
W eF X, &X, €F — H (H being some Hilbert space):

e Bilinear regret: on-policy difference between claimed reward and true reward
‘ _Sh,ahrv]rf[Qf(Sh’ ay) — (s, ay) — Vi(sj41)] ‘ < (W, (f) = W,(f ), X,()))

» Data reuse: there is discrepancy function £(s, a, s', g) & policy 7, s.t.

Sy eSf[ff (Sh> Aps Spv1 g)] - <Wh(8) - W,(f *),Xh(f )>,‘v’g e F

Note: W, & X, are implicit—no need to known them



Back to Linear Bellman Complete:

(1) Bilinear regret: for any (s, a) := w ' ¢(s, a), we have:

e | W01 @) = 153 @y) = Eyyp(y oy Max w (s’ a'>] = <<w — T(W)) — (W* = T(w*)), E (s, @)
a § g PN g PN . )
W,(f) W,(f*) X (f)

AND (2) data-reuse: there exists a discrepancy function 7, s.t.,

=, L(s,a, 8, W) = <(w’ —Tw")) — (Ww* = T(w™)), E s~z P(S: a)>

Note W, (f) is unknown as the Bellman backup 7(w) is unknown



The Algorithm: BiLin-UCB

Fort=0 — T:

e Find the “optimistic” f, € F:
arg max Vf(so), s.t., Glf(f) <R,Vh

fex
» Sample /71 trajectories 77, and create a batch dataset:
D = {(Sh’ ap, Sh-l—l) = trajeCtOrieS}
» Update the cumulative discrepancy function o, ( - ), V/

2
() eI+ (Y GG VD)
(s Sp1)VED

[

2
Note here we roughly have: 6,(g) ~ Z ( = ahNﬂ'f-f fi(Sh, Apy Sha1s g)>
i=0




Theorem 2: Generalization in RL

e Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21]
Assume Z is a bilinear class and the class is realizable, i.e. f* € F.

Using ;/;i - poly(H) - log(1/5)/e” trajectories, the BiLin-UCB algorithm
returns an e-opt policy (with prob. > 1 — 9).

1 T—1
. /T IS the max. info. gain yr:= max Indet (1+ I ZXh(fr)Xh(fz)T)

’-f() fT—lE =0

» vy~ dlogT for X, in d-dimensions

* The proof is “elementary” using the elliptical potential function.
[Dani, Hayes, K. '08]



Proof Sketch

1. Optimism: V*(s,) < Vi(s0); this can be verified by showing /™ is always a feasible solution

2. Using optimism, we can upper bound per-episode regret Bilinear form (“simulation” lemma):

H-1
V*(s0) = VAi(sp) < Vilso) = Vilso) < D | Wi = Wil ), Xy
h=0

3. 1t 7Ty i really sub-optimal, i.e., V*(sy) — V%(s,) > €, thenf has large bilinear regret:

34, S.t.,

W) = WilF ), X () | > elH

t—1 2
4. Recall in the alg, we have a constraint 6,(f,) < R, i.e,, Z ( S lfﬁ(sh, Ay, Spo 1 ft)] ) <R

—1 1=

z (Wi(fy) — W(f *)aXh(fi)>2 <R

1=0

—1
= (W,(f) = W,(f ) ' Z (W () — W (f ) <R + 2 (Eh;t = Z X, ()X, ()" + Al )
i=0



Proof Sketch

3. It 7Ty i really sub-optimal, i.e., V*(s,) — V¥(s,) > €, thenf has large bilinear value:

Ah, s, |Wi(f) = W(f ). X,(f)| > e/H
—1 )
4. Recall in the alg, we have a constraint 6(f,) < R, i.e,, Z ( S ¢ (Sps Ay Sp15 ft)) <R

=0 »
(Wh(ft) o Wh(f*))th,h(Wh(ft) o Wh(f*)) S R + A (Zh;t = gxh(fi)xh(fi)—r —|—M)

5. Finally, combine the two results and using Cauchy-Schwartz, we have:

e/H < || Wi(f) = Wy(£™) |

N AT

i R My

In d-dimensional setting, such event cannot happen more than O (d/e?) many times....



e Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21]

The following models are bilinear classes for some discrepancy function £( - )

 Linear Bellman Completion: [Munos, '05, Zanette+ ‘19]
 Linear MDPs: [Wang & Yang’18]; [Jin+ '19] (the transition matrix is low rank)
* Linear Quadratic Reqgulators (LQR): standard control theory model

« FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun 20}

e Linear Mixture MDPs: [Modi+’20, Ayoub+ '20]

 Block MDPs [Du+ ’19]

 [Factored MDPs [Sun+ ’19]

* Kernelized Nonlinear Regulator [K.+ *20]

o Linear O* & V*

 Reactive PSR/POMDP, Generalized linear MDP, and more.....

e (almost) all “named” models (with provable generalization) are bilinear classes

two exceptions: deterministic linear Q*; Q*—state—action aggregation
* Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witnhess rank [Sun+ ’19]



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

Low-rank MDP: P(s’| s, a) = u*(s") ' ¢*(s,a), u* & ¢* unknown

d

Function approximation for feature: p* € ¥ C S X A — |

Function approximation for O*: @ := {WT¢(S, a) . w € Bally, ¢ € ‘P}

Q: can we find € optimal policy w/ samples poly(d, In(V¥), H,1/¢)?

Yes & it’s in the Bilinear class!



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

1. Claim: on-policy Bellman error of f := w ' ¢ has Bilinear form:

Vf = @ : _ShaahNﬂf [Qf(Sh, ah) o rh o _S/NP(‘lS,Cl) ma,X Qf(Sh_I_l, a,)]

A

— — _ = /
Sh—150p— 1~ Sp~P ([ Sp_1,0_1) a5~ | 5p) [Qf (Sh’ ah) "'h s'~P(-|s,a) maa,X Qf(Sh+1a a )]

a

T = /
_Sh_l,ah_lfvnf [ ¢*(Sh—1’ ah—l) /’t*(sh) _ahrvnf [Qf(sh’ ah) — Iy~ s'~P(-|s,a) IIlE,lX Qf(Sh.Ha d )]
S

h

< _Sh_l,ah_1~ﬂf¢*(sh—l’ ah—l)’ [ /’t*(sh) _CthT[f [Qf(sh’ ah) — 'y = Byapr(s,a) IIIE/IX Qf(Sh+1’ Cl,)] >
X ) s

a
h

thf ) ~
W,.(f)



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

2. Claim: The bilinear regret is estimable using some ¢

1{a = ns))

Define (s, a, s’, g) = /A (Qg(S, a) —r(s,a) — m;}X Q, (s, d'))

_shan_ahNU(A)f (Sp> Ap> Spy15 8) = <Wh(g) — W, (f ), X,,(f )>




Another Example: Linear O* & V*

What's the role of linear function approximation in RL?

We have linear MDP, Linear Bellman complete...

The most natural one should just be O™ being linear-realizable:

Q*(s,a) = W*) ' ¢(s, a), under known feature ¢

However generalization is impossible here:

o Theorem [Weisz, Amortila, Szepesvari ‘21]: There exists an MDP w/ linear O™,

s.t any online RL algorithm requires Q(min(29,2/")) samples to output a near
optimal policy



Additional Example: Linear Q* & V*

What's the role of linear function approximation in RL?

However, if we further assume V*(s) = (8%) "w(s), then we will be ok:

e Theorem [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21]

For any MDP with both O™ and V* being realizable (under some known
features, e.g., RKHS), there exists an algorithm that learns with # of samples:

d’poly(H)

€2



Additional Example: Linear O* & V*

Linear O* & V* has Bilinear Structure
Function classes for O* € @ := {ngb(S, a) i w E Ballw}, V¥e 7 = {6’T1//(S) A= BallB}
Key step: pre-process function class

{Q, V} = { (w,0) : Vs, maxw ' (s, a) = 0" y(s) }

(1) on-policy Bellman error of any f := (w, 6) has bilinear form:

_Sh,ahNiz'f lWT¢(Sh’ ah) o rh o _S'NP(Sh,ah)QTW(S/)] — <Wh([wa 9]) o Wh([W*a 9*])9 Xh([wa 9])>

(2) there exists £(s, a, s', [w, 0]) = WT¢(S, a)—r(s,a) — HTl//(S’), S.t.,

_Sh,ahfv]z'f [K(S}p ah? S},z+19 [Wla H,])] — <Wh([w,9 9,]) T Wh([W*a H*])a Xh(f)>9 V[Wla 9,]




Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:
Function class: # = {P : P(s'|s,a;0) = HTqb(S, a,s'’), 0 & BallW}

Why this model is ever interesting?

Imagine we have d simulators, P'(s’| s, a), i € [d],

we assume the ground truth is the linear mixture of d simulators:

d
P*(s’|s,a) = 2 O*[i1P!(s'| s, a)
i=1



Final Example: Linear Mixture Model (model-based)

The linear Mixture Model:
Function class: # = {P : P(s'|s,a;0) = HTqb(S, a,s'’), 0 & BallW}

(Notation: f € & is a potential transition, and f* := P*)

Claim 1: For any f € &, the on-policy Bellman error of O, under 7, has bilinear form:

Tty

s :Qf(Slfp ap) — r(Sp, ap) — Egopes, a) VS /): = (W, () = W,( ). X,(f))



Final Example: Linear Mixture Model

The linear Mixture Model:
Function class: # = {P : P(s'|s,a;0) = HTqb(S, a,s'’), 0 & BallW}

(Notation: f € & is a potential transition, and f* := P*)

Claim 2: For any f € #, there exists discrepancy £ s, a, s', g) to measure bilinear form:

£1(5.0,5,8) = Eyyio) | V)| = Vi)

., B £(Sp O Sy, 8) = (Wi(8) = W,(F). X,(H)



