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Solving Large-scale RL problems requires generalization

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]



Markov Decision Processes: 
a framework for RL

• A policy: 



• Execute  to obtain a trajectory: 



• Cumulative -step reward: 

	 ,    

• Goal: Find a policy  that maximizes our value  from . 
Episodic setting: We start at ; act for  steps; repeat… 

π : States → Actions
π

s0, a0, r0, s1, a1, r1…sH−1, aH−1, rH−1
H

Vπ
H(s) = 𝔼π [

H−1

∑
t=0

rt s0 = s] Qπ
H(s, a) = 𝔼π [

H−1

∑
t=0

rt s0 = s, a0 = a]
π Vπ(s0) s0

s0 H



Generalization is possible in the IID supervised learning setting!

 
To get -close to best in hypothesis class  , we need # of samples that is:


• “Occam’s Razor” Bound (finite hypothesis class): need 

Various Improvements:


• VC dim: need only 


• Classification: linearly separable + margin: 


• Linear Regression in dimensions: 

• Deep Learning:  the algorithm also determines the complexity control  

The key idea in SL: data reuse

With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!

ϵ ℱ
O(log |ℱ | /ϵ2)

O(VC(ℱ)/ϵ2)
O(margin)/ϵ2)

𝑑  O(d/ϵ2)
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Provable Generalization in Supervised Learning (SL)



Sample Efficient RL in  
the Tabular Case 
(no generalization here)
• Thm: In the episodic setting,   

samples suffice to find an -opt policy with the 
 algo. [Kearns & Singh ‘98]  

also: [Brafman& Tennenholtz ‘02; K. '03] 
Key idea: optimism + dynamic programming 

• Regret guarantees with model based algos: 
[Auer+ ‘09] 


• Provable Q-learning (+bonus): 
[Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]


• (asymptotically) optimal reget:  
[Azar+ ’17],[Dann+’17]

poly(S, A, H,1/ϵ)
ϵ

E3

Reg(#episodes) = HSA ⋅ #episodes



I: Provable Generalization in RL 
Q1: Can we find an -opt policy with no  dependence?ϵ S

• How can we reuse data to estimate the value of all policies in a policy class ? 
Idea: Trajectory tree algo  
dataset collection: uniformly at random choose actions for all  steps in an episode.  
estimation: uses importance sampling to evaluate every   

• Thm:[Kearns, Mansour, & Ng ‘00] 
To find an -best in class policy, the trajectory tree algo uses  samples


• Only  dependence on hypothesis class size.

• There are VC analogues as well. 

• Can we avoid the  dependence to find an -best-in-class policy?  
Agnostically, NO! 
Proof: Consider a binary tree with -policies and a sparse reward at a leaf node.

ℱ

H
f ∈ ℱ

ϵ O(AH log( |ℱ | )/ϵ2)
log( |ℱ | )

2H ϵ

2H
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II: Provable Generalization in RL


• Q2: Can we find an -opt policy with no  dependence and 
 samples?


•With various stronger assumptions, yes. 

• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]

• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)

• Linear Quadratic Regulators (LQR): standard control theory model


• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]

• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]

• Block MDPs [Du+ ’19]

• Factored MDPs [Sun+ ’19]

• Kernelized Nonlinear Regulator [K.+ ’20]

ϵ S, A
poly(H,1/ϵ, "complexity measure")



This talk:

Structural conditions

Under which Generalization is possible 



Warm up

The linear Bellman Complete model:

Def: Given feature map , Bellman operator has linear closure ϕ(s, a) ∈ ℝd

Given any  there exists a such that:w ∈ ℝd, θ ∈ ℝd,

∀s, a : θ⊤ϕ(s, a) = r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼

w⊤ϕ(s′￼, a′￼)]
Examples: 


Linear MDPs, Linear Quadratic Regulator

:= T(w)



Warm up

The linear Bellman Complete model:

Generalization is possible here: 

 an algorithm, finding -near optimal policy only needs 
 many samples

∃ ϵ
poly(H, d,1/ϵ)



Warm up

The linear Bellman Complete model:

what’s the structure here that permits generalization?

We can rewrite the average Bellman error (averaged over any roll-in ) 


in a bilinear form:

π

Given a candidate , we have:Q⋆ w⊤ϕ(s, a)

𝔼s,a∼π [w⊤ϕ(s, a) − r(s, a) − 𝔼s′￼∼P(s,a) max
a′￼

w⊤ϕ(s′￼, a′￼)]
= 𝔼s,a∼π [w⊤ϕ(s, a) − T(w)⊤ϕ(s, a)] = ⟨w − T(w), 𝔼s,a∼πϕ(s, a)⟩



Warm up

The linear Bellman Complete model:

what’s the unique structure here that permits generalization?

We can also estimate the value of the bilinear form:

Define discrepancy ℓ(s, a, s′￼, w) = w⊤ϕ(s, a) − r(s, a) − max
a′￼

w⊤ϕ(s′￼, a′￼)

We have: 

𝔼s,a∼πℓ(s, a, s′￼, w) = ⟨w − T(w), 𝔼s,a∼πϕ(s, a)⟩
Note we have data reuse: given data from , we can evaluate all π w



Warm up

The linear Bellman Complete model:

In summary, it has a bilinear structure:

For any roll-in policy , and any , we have: (1)π w

𝔼s,a∼π [w⊤ϕ(s, a) − r(s, a) − 𝔼s′￼∼P(s,a) max
a′￼

w⊤ϕ(s′￼, a′￼)] = ⟨w − T(w), 𝔼πϕ(s, a)⟩
AND (2) there exists a discrepancy function , s.t., ℓ

𝔼s,a∼πℓ(s, a, s′￼, w) = ⟨w − T(w), 𝔼πϕ(s, a)⟩
Note that the analytical form of bilinear structure is unknown



BiLinear Classes: structural properties to enable 
generalization in RL

• Realizable Hypothesis class: ,   
with associated state-action value, (greedy) value and policy: 

• can be model based or model-free class. 

Def: A  forms an (implicit) Bilinear class class if there are 
 (  being some Hilbert space):


• Bilinear regret: on-policy difference between claimed reward and true reward 



• Data reuse: there is discrepancy function  & policy  s.t. 
	

{f ∈ ℱ}
Qf(s, a), Vf(s), πf

(ℱ, ℓ)
Wh ∈ ℱ ↦ ℋ, & Xh ∈ ℱ ↦ ℋ ℋ

𝔼sh,ah∼πf[Qf(sh, ah) − r(sh, ah) − Vf(sh+1)] ≤ ⟨Wh( f ) − Wh( f ⋆), Xh( f )⟩
ℓf(s, a, s′￼, g) πest

𝔼sh∼πf,ah∼πest[ℓf(sh, ah, sh+1, g)] = ⟨Wh(g) − Wh( f ⋆), Xh( f )⟩, ∀g ∈ ℱ

Note:  are implicit—no need to known them Wh & Xh



Back to Linear Bellman Complete:

(1) Bilinear regret: for any , we have:f(s, a) := w⊤ϕ(s, a)

𝔼sh,ah∼πf [w⊤ϕ(sh, ah) − r(sh, ah) − 𝔼s′￼∼P(s,a) max
a′￼

w⊤ϕ(s′￼, a′￼)] = ⟨(w − T(w))

Wh( f )

− (w⋆ − T(w⋆)

Wh( f ⋆)

), 𝔼πϕ(s, a)

Xh( f )
⟩

AND (2) data-reuse: there exists a discrepancy function , s.t., ℓ

𝔼πf
ℓ(s, a, s′￼, w′￼) = ⟨(w′￼− T(w′￼)) − (w⋆ − T(w⋆)), 𝔼s,a∼πf

ϕ(s, a)⟩
Note  is unknown as the Bellman backup  is unknownWh( f ) T(w)



The Algorithm: BiLin-UCB

• Find the “optimistic” : 
	 


• Sample  trajectories   and create a batch dataset: 
	 	 


• Update the cumulative discrepancy function  

	 	

ft ∈ ℱ
arg max

f∈ℱ
Vf(s0),  s.t., σ2

h( f ) ≤ R, ∀h

m πft
D = {(sh, ah, sh+1) ∈ trajectories}

σh( ⋅ ), ∀h

σ2
h( ⋅ ) ← σ2

h( ⋅ ) + ( ∑
(sh,ah,sh+1)∈D

ℓft(sh, ah, sh+1, ⋅ )/ |D |)
2

For : t = 0 → T

Note here we roughly have: σh(g) ≈
t

∑
i=0

(𝔼sh,ah∼πfi
ℓfi(sh, ah, sh+1, g))

2



Theorem 2: Generalization in RL
• Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21] 

Assume  is a bilinear class and the class is realizable, i.e. . 
Using   trajectories, the BiLin-UCB algorithm 
returns an -opt policy (with prob. ).


•  is the max. info. gain 


•   for  in -dimensions 
 

• The proof is “elementary” using the elliptical potential function.  
[Dani, Hayes, K. ’08]

ℱ f ⋆ ∈ ℱ
γ3

T ⋅ poly(H) ⋅ log(1/δ)/ϵ2

ϵ ≥ 1 − δ

γT γT := max
h,f0…fT−1∈ℱ

ln det (I +
1
λ

T−1

∑
t=0

Xh( ft)Xh( ft)⊤)
γT ≈ d log T Xh d



Proof Sketch
1. Optimism: ; this can be verified by showing  is always a feasible solutionV⋆(s0) ≤ Vft(s0) f ⋆

2. Using optimism, we can upper bound per-episode regret Bilinear form (“simulation” lemma):

V⋆(s0) − Vπft(s0) ≤ Vft(s0) − Vπft(s0) ≤
H−1

∑
h=0

Wh( ft) − Wh( f ⋆), Xh( ft)

3. If  is really sub-optimal, i.e.,  then  has large bilinear regret:πft V⋆(s0) − Vπft(s0) ≥ ϵ, ft

∃h,  s.t.,  Wh( ft) − Wh( f ⋆), Xh( ft) ≥ ϵ/H

4. Recall in the alg, we have a constraint , i.e., σh( ft) ≤ R
t−1

∑
i=0

(𝔼sh,ah∼πfi [ℓfi(sh, ah, sh+1, ft)])
2

≤ R
t−1

∑
i=0

(Wh( ft) − Wh( f ⋆), Xh( fi))2 ≤ R

⇒ (Wh( ft) − Wh( f ⋆))⊤Σt;h(Wh( ft) − Wh( f ⋆)) ≤ R + λ (Σh;t :=
t−1

∑
i=0

Xh( fi)Xh( fi)⊤ + λI)



Proof Sketch
3. If  is really sub-optimal, i.e.,  then  has large bilinear value:πft V⋆(s0) − Vπft(s0) ≥ ϵ, ft

∃h,  s.t.,  Wh( ft) − Wh( f ⋆), Xh( ft) ≥ ϵ/H

4. Recall in the alg, we have a constraint , i.e., σ( ft) ≤ R
t−1

∑
τ=0

(𝔼sh,ah∼πfτ
ℓfτ(sh, ah, sh+1, ft))

2
≤ R

(Wh( ft) − Wh( f ⋆))⊤Σt;h(Wh( ft) − Wh( f ⋆)) ≤ R + λ

5. Finally, combine the two results and using Cauchy-Schwartz, we have:  

ϵ/H ≤ Wh( ft) − Wh( f ⋆)
Σh;t

Xh( ft) Σ−1
h;t

≤ R + λ Xh( ft) Σ−1
h;t

⇒ Xh( ft) Σ−1
h;t

≥
ϵ

H R + λ

In -dimensional setting, such event cannot happen more than  many times….d Õ (d/ϵ2)

(Σh;t :=
t−1

∑
i=0

Xh( fi)Xh( fi)⊤ + λI)



• Theorem: [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21] 
The following models are bilinear classes for some discrepancy function 

• Linear Bellman Completion: [Munos, ’05, Zanette+ ‘19]

• Linear MDPs: [Wang & Yang’18]; [Jin+ ’19]  (the transition matrix  is low rank)

• Linear Quadratic Regulators (LQR): standard control theory model


• FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]

• Linear Mixture MDPs: [Modi+’20, Ayoub+ ’20]

• Block MDPs [Du+ ’19]

• Factored MDPs [Sun+ ’19]

• Kernelized Nonlinear Regulator [K.+ ’20]

• Linear 

• Reactive PSR/POMDP, Generalized linear MDP, and more….. 

• (almost) all “named” models (with provable generalization) are bilinear classes  
two exceptions: deterministic linear ; -state-action aggregation


• Bilinear classes generalize the: Bellman rank [Jiang+ ‘17]; Witness rank [Sun+ ’19]


ℓ( ⋅ )

Q⋆ & V⋆

Q⋆ Q⋆



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

Low-rank MDP: ,   unknownP(s′￼|s, a) = μ⋆(s′￼)⊤ϕ⋆(s, a) μ⋆ & ϕ⋆

Function approximation for feature: ϕ⋆ ∈ Ψ ⊂ S × A ↦ ℝd

Function approximation for :  Q⋆ 𝒬 := {w⊤ϕ(s, a) : w ∈ BallW, ϕ ∈ Ψ}

Q: can we find  optimal policy w/ samples ? ϵ poly(d, ln(Ψ), H,1/ϵ)

Yes & it’s in the Bilinear class!



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

1. Claim: on-policy Bellman error of  has Bilinear form:f := w⊤ϕ

∀f ∈ 𝒬 : 𝔼sh,ah∼πf [Qf(sh, ah) − rh − 𝔼s′￼∼P(⋅|s,a) max
a′￼

Qf(sh+1, a′￼)]
= 𝔼sh−1,ah−1∼πf

𝔼sh∼P(⋅|sh−1,ah−1),ah∼πf(⋅|sh) [Qf(sh, ah) − rh − 𝔼s′￼∼P(⋅|s,a) max
a′￼

Qf(sh+1, a′￼)]
= 𝔼sh−1,ah−1∼πf ∫sh

ϕ⋆(sh−1, ah−1)⊤μ⋆(sh) 𝔼ah∼πf [Qf(sh, ah) − rh − 𝔼s′￼∼P(⋅|s,a) max
a′￼

Qf(sh+1, a′￼)]
= ⟨𝔼sh−1,ah−1∼πf

ϕ⋆(sh−1, ah−1)

Xh( f )

, ∫sh

μ⋆(sh)𝔼ah∼πf [Qf(sh, ah) − rh − 𝔼s′￼∼P(⋅|s,a) max
a′￼

Qf(sh+1, a′￼)]
Wh( f )

⟩



Another Example: Feature Selection for Low-rank MDP

The feature selection problem:

2. Claim: The bilinear regret is estimable using some ℓ

𝔼sh∼πf
𝔼ah∼U(A)ℓ(sh, ah, s′￼h+1, g) = ⟨Wh(g) − Wh( f ⋆), Xh( f )⟩

Define ℓ(s, a, s′￼, g) =
1{a = πg(s)}

1/A (Qg(s, a) − r(s, a) − max
a′￼

Qg(s′￼, a′￼))



Another Example: Linear Q⋆ & V⋆

What’s the role of linear function approximation in RL?

We have linear MDP, Linear Bellman complete…

The most natural one should just be  being linear-realizable: Q⋆

 under known feature Q⋆(s, a) = (w⋆)⊤ϕ(s, a), ϕ

However generalization is impossible here:

• Theorem [Weisz, Amortila, Szepesvári ‘21]: There exists an MDP w/ linear , 
s.t any online RL algorithm requires  samples to output a near 
optimal policy

Q⋆

Ω(min(2d,2H))



Additional Example: Linear Q⋆ & V⋆

What’s the role of linear function approximation in RL?

However, if we further assume , then we will be ok:V⋆(s) = (θ⋆)⊤ψ(s)

• Theorem [Du, Kakade., Lee, Lovett, Mahajan, S, Wang ’21] 
For any MDP with both  and  being realizable (under some known 
features, e.g., RKHS), there exists an algorithm that learns with # of samples: 

 

Q⋆ V⋆

d3poly(H)
ϵ2



Additional Example: Linear Q⋆ & V⋆

Linear  has Bilinear StructureQ⋆ & V⋆

Function classes for , Q⋆ ∈ 𝒬 := {w⊤ϕ(s, a) : w ∈ Ballw} V⋆ ∈ 𝒱 := {θ⊤ψ(s) : θ ∈ BallB}
Key step: pre-process function class

{Q, V} := {(w, θ) : ∀s, max
a

w⊤ϕ(s, a) = θ⊤ψ(s)}
(1) on-policy Bellman error of any  has bilinear form:f := (w, θ)

𝔼sh,ah∼πf [w⊤ϕ(sh, ah) − rh − 𝔼s′￼∼P(sh,ah)θ
⊤ψ(s′￼)] = ⟨Wh([w, θ]) − Wh([w⋆, θ⋆]), Xh([w, θ])⟩

(2) there exists , s.t., ℓ(s, a, s′￼, [w, θ]) = w⊤ϕ(s, a) − r(s, a) − θ⊤ψ(s′￼)

𝔼sh,ah∼πf [ℓ(sh, ah, s′￼h+1, [w′￼, θ′￼])] = ⟨Wh([w′￼, θ′￼]) − Wh([w⋆, θ⋆]), Xh( f )⟩, ∀[w′￼, θ′￼]



Final Example: Linear Mixture Model (model-based)
The linear Mixture Model:

Function class: ℱ = {P : P(s′￼|s, a; θ) = θ⊤ϕ(s, a, s′￼), θ ∈ BallW}

Why this model is ever interesting?

Imagine we have d simulators, , 


we assume the ground truth is the linear mixture of d simulators:


 

Pi(s′￼|s, a), i ∈ [d]

P⋆(s′￼|s, a) =
d

∑
i=1

θ⋆[i]Pi(s′￼|s, a)



Final Example: Linear Mixture Model (model-based)
The linear Mixture Model:

Function class: ℱ = {P : P(s′￼|s, a; θ) = θ⊤ϕ(s, a, s′￼), θ ∈ BallW}

Claim 1: For any , the on-policy Bellman error of   under   has bilinear form:f ∈ ℱ Qf πf

𝔼πf [Qf(sh, ah) − r(sh, ah) − 𝔼s′￼∼f⋆(sh,ah)Vf(s′￼)] = ⟨Wh( f ) − Wh( f ⋆), Xh( f )⟩

(Notation:  is a potential transition, and )f ∈ ℱ f ⋆ := P⋆



Final Example: Linear Mixture Model
The linear Mixture Model:

Function class: ℱ = {P : P(s′￼|s, a; θ) = θ⊤ϕ(s, a, s′￼), θ ∈ BallW}

Claim 2: For any , there exists discrepancy  to measure bilinear form:f ∈ ℱ ℓf(s, a, s′￼, g)

ℓf(s, a, s′￼, g) = 𝔼s′￼∼g(s,a) [Vf(s′￼)] − Vf(s′￼)

s.t., 𝔼πf
ℓf(sh, ah, s′￼h+1, g) = ⟨Wh(g) − Wh( f ⋆), Xh( f )⟩

(Notation:  is a potential transition, and )f ∈ ℱ f ⋆ := P⋆


