Truncated Horizon Policy Search: Combining Reinforcement Learning and Imitation Learning

Problem Setup: Reinforcment Learning

Sequential Decision Making

Minimize Discounted Expected Total Cost

$$J(\pi) = \mathbb{E}[c_1 + \gamma c_2 + \gamma^2 c_3 + ... | a \sim \pi(\cdot | s)]$$

Extra Source of Help: Imitation

Some Expert's Cost-to-go Oracle: $\hat{V}^e(s)$

But, imperfect expert information:

$$|\hat{V}^e(s) - V^*(s)| \approx \epsilon \in \mathbb{R}^+$$

- Learned from Expert's demonstration (e.g.TD)
- Prior knowledge of the task [Reward Shaping, Ng, 99]
- From imperfect model (e.g., learned model)

Challenge: How we can leverage such an imperfect oracle to speed up learning, if possible?

Previous Pure Imitation Learning Works

AggreVaTe & AggreVaTeD

[Ross & Bagnell, 14; Sun et.al, ICML,17]

$$\hat{\pi}(s) = \arg\min_{a} \left[c(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} [\hat{V}^e(s)] \right]$$

They can learn near-optimal policy when the oracle provides unbiased estimate of the optimal policy's cost-to-go, i.e.,

$$\hat{V}^e(s) = V^*(s)$$

Wen Sun, Drew Bagnell, and Byron Boots {wensun, dbagnell}@cs.cmu.edu, bboots@cs.gatech.edu

Cost (Reward) Shaping

$$c'(s,a) = c(s,a) + \gamma \mathbb{E}_{s'\sim P(\cdot|s,a)} \Phi(s') - \Phi(s)$$

New MDP with c' shares the same optimal

New MDP with c'shares the same optimal policy as the original MDP [Ng,99]

$$\Phi(s) = V^*(s) \Rightarrow \pi^*(s) = \arg\min c'(s, a)$$

Optimal Cost-to-go => a new one-step greedy MDP

AggreVaTe & AggreVaTeD is solving one-step Greedy MDP, which explains why it's faster than RL

Oracle Accuracy VS Planning Horizon

Core idea: Imitation Learning via Cost Shaping with $\hat{V}^e(s)$

AggreVaTe can fail with imperfect oracle:

$$|\hat{V}^e(s) - V^*(e)| = \epsilon, \forall s \Rightarrow J(\hat{\pi}) - J(\pi^*) \ge \Omega\left(\frac{\gamma}{1 - \gamma}\epsilon\right)$$

Core idea: Be less greedy and do Multi-step look ahead

$$\hat{\pi}(s) = \arg\min_{a} \mathbb{E}[\sum_{i=1} \gamma^{i-1} c'(s_i, a_i) | s_1 = s, a \sim \hat{\pi}], \forall s.$$

$$c(s_1, a_l) + \gamma c(s_2, a_l) - \hat{V}(s_4) = c'(s_1, a_l) + \gamma c'(s_2, a_l)$$

Optimizing the tree policy =
Optimizing a reshaped MDP
with 2 steps

Find a policy that optimizes K steps of the reshaped MDP (cost function c')

$$J(\hat{\pi}) - J(\pi^*) \le O(\frac{\gamma^k}{1 - \gamma^k} \epsilon)$$

Pure IL This Work

Less accurate cost-to-go oracle

One-step (Greedy)

Full Horizon

Pure RL

Georgia College of Tech Computing

Experiments

- 1. Learned \hat{V}^e from a set of expert demonstrations using TD.
- 2. Use Actor-Critic (TRPO-GAE [schulman et.al, 16]), where critic only estimates k-step Q.

Sparse Reward Setting

General continuous control

For large state space problems, the oracle learned from a set of demonstrations is inaccurate. We need expert during the training loop to improve the critic.