PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning

Joint work with Alekh Agarwal, Mikael Henaff, and Sham Kakade

Policy Optimization

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

[OpenAI,19]

Can we design Provably Correct Policy Gradient algorithms?

Infinite Horizon Discounted MDPs

Policy: state to action

Reward & Next State

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Objective:
$$\max_{\pi} \mathbb{E}_{\pi,P} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \right]$$

Infinite Horizon Discounted MDPs

Policy: state to action

Reward & Next State

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Objective:
$$\max_{\pi} \mathbb{E}_{\pi,P} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \right]$$

Assume $s_0 \sim \mu_0$ and we can only reset from μ_0

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

$$\theta = \theta + \eta \nabla_{\theta} J(\pi_{\theta})$$

$$\theta = \theta + \eta F_{\theta}^{-1} \nabla_{\theta} J(\pi_{\theta})$$

Preconditioning w/ Fisher Information matrix

(TRPO and PPO are variants of it)

Strong Agnostic guarantee:

Compete to the best policy in the given class: $\widetilde{\pi} \in \Pi$

Strong Agnostic guarantee:

Compete to the best policy in the given class: $\widetilde{\pi} \in \Pi$

under a "wide" reset distribution (e.g., see Agarwal et al 19)

Strong Agnostic guarantee:

Compete to the best policy in the given class: $\widetilde{\pi} \in \Pi$

under a "wide" reset distribution (e.g., see Agarwal et al 19)

Strong Agnostic guarantee:

Compete to the best policy in the given class: $\widetilde{\pi} \in \Pi$

under a "wide" reset distribution (e.g., see Agarwal et al 19)

Q-learning, Fitted Q iteration:

Realizability (& Bellman Complete)

$$Q^{\star} \in \mathcal{Q}$$

Robot hand manipulation (OpenAI, 19)

Robot hand manipulation (OpenAI, 19)

Robot hand manipulation (OpenAI, 19)

Robot hand manipulation (OpenAI, 19)

A notable technique

Domain Randomization:

Robot hand manipulation (OpenAI, 19)

A notable technique

Domain Randomization:

Robot hand manipulation (OpenAI, 19)

A notable technique

Domain Randomization:

Make μ_0 as "wide" as possible!!

But PG Fails if initial condition does not hold, provably

Initialization: S_0 + random walk

But PG Fails if initial condition does not hold, provably

Initialization: S_0 + random walk

Extremely flatten gradient:

magnitude of gradient is exponentially small (even in higher order): 2^{-H}

(e.g., see CPI from Kadade & Langford 02, and Agarwal et al 19)

Supervised Learning

Supervised Learning

- Gradient descent tends to just work
- Not sensitive to initialization
- Saddle point is not a problem

Supervised Learning

- Gradient descent tends to just work
- Not sensitive to initialization
- Saddle point is not a problem

Supervised Learning

- Gradient descent tends to just work
- Not sensitive to initialization
- Saddle point is not a problem

- Extremely flatten region even at initialization
- Due to lack of exploration

"survived" state (white): 9 out of 10 actions go to bad state (black)

"survived" state (white): 9 out of 10 actions go to bad state (black)

Bad state (cannot recover) has Anti-shaped reward:

$$r = 1/H$$

"survived" state (white): 9 out of 10 actions go to bad state (black)

Bad state (cannot recover) has Anti-shaped reward:

$$r = 1/H$$

2. Forgetting (policy becomes deterministic

"survived" state (white): 9 out of 10 actions go to bad state (black)

Bad state (cannot recover) has Anti-shaped reward:

$$r = 1/H$$

2. Forgetting (policy becomes deterministic

Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Algorithm	Horizon			
	2	5	10	15
PPO	1.0	0.0	0.0	0.0
PPO+RND	0.75	0.40	0.50	0.55
PC-PG	?	?	?	?

PPO+RND: Random Network Distillation [Burda et.al, 19]

Success Rate (visit the better chain):

Algorithm	Horizon				
	2	5	10	15	
PPO	1.0	0.0	0.0	0.0	
PPO+RND	0.75	0.40	0.50	0.55	
PC-PG	?	?	?	?	

PPO+RND: Random Network Distillation [Burda et.al, 19]

Success Rate (visit the better chain):

Algorithm	Horizon				
	2	5	10	15	
PPO	1.0	0.0	0.0	0.0	
PPO+RND	0.75	0.40	0.50	0.55	
PC-PG	?	?	?	?	

> Forgets to visit the other chain!

RND traces during training

Policy quickly becomes too deterministic and forgets to explore the other (better!) chain

Summary of PG methods' common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)

Summary of PG methods' common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)

Next:

Our Solution: Policy Cover Policy Gradient (PC-PG)
Policy Ensemble + Reward Bonus

Notations

Policy: state to action

Reward & Next State

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Notations

Policy: state to action

agent

Value and Q function

$$V^{\pi}(s) = \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \dots \mid s_0 = s, a_h \sim \pi(s_h)\right]$$
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

Reward & Next State

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Notations

Policy: state to action

agent

Value and Q function

$$V^{\pi}(s) = \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \dots \mid s_0 = s, a_h \sim \pi(s_h)\right]$$
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

Reward & Next State

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Policy's state-action distribution

$$d^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}^{\pi} \left((s_h, a_h) = (s,a) \right)$$

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\{\pi_1,\pi_2,\ldots,\pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / n$$

1. Form Cover:

$$\{\pi_1,\pi_2,\ldots,\pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / n$$

1. Form Cover:

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / n$$

1. Form Cover:

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / r$$

1. Form Cover:

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / r$$

1. Form Cover:

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / r$$

1. Form Cover:

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i}/n$$

$$\hat{f} = \max_{f \in \mathcal{F}} \sum_{i} (f(s_i, a_i) - Q_{r+b^n}^{\pi}(s_i, a_i))^{\frac{1}{2}}$$
3. On-Policy Critic Fit (least square)

1. Form Cover:

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i}/n$$

2. Bonus

$$\pi(s, a) \Leftarrow \pi(s, a) \exp(\eta \hat{f}(s, a))$$

4. Actor NPG update (mirror descent)

1. Form Cover:

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i}/n$$

2. Bonus

$$\pi(s,a) \Leftarrow \pi(s,a) \exp(\eta \hat{f}(s,a))$$

4. Actor NPG update (mirror descent)

$$\hat{f} = \max_{f \in \mathcal{F}} \sum_{i} \left(f(s_i, a_i) - Q_{r+b^n}^{\pi}(s_i, a_i) \right)^2 \longleftarrow \left\{ \begin{pmatrix} s_i, a_i \end{pmatrix}, Q_{r+b^n}^{\pi}(s_i, a_i) \right\}$$
3. On-Policy Critic Fit (least square)

1. Form Cover:

$$\{\pi_1,\pi_2,\ldots,\pi_n\}$$

$$\rho_n := \sum_{i=1}^n d^{\pi^i} / n$$

5. Append

$$\pi(s,a) \Leftarrow \pi(s,a) \exp(\eta \hat{f}(s,a))$$

4. Actor NPG update (mirror descent)

$$\hat{f} = \max_{f \in \mathcal{F}} \sum_{i} \left(f(s_i, a_i) - Q_{r+b^n}^{\pi}(s_i, a_i) \right)^2 \longleftarrow \left\{ \begin{pmatrix} s_i, a_i \end{pmatrix}, Q_{r+b^n}^{\pi}(s_i, a_i) \right\}$$
3. On-Policy Critic Fit (least square)

At episode n: Natural PG is optimizing

$$\mathbb{E}_{s_0,a_0 \sim \rho_n} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + b^n(s_t, a_t) \right) \right]$$

At episode n: Natural PG is optimizing

$$\mathbb{E}_{s_0,a_0\sim\rho_n}\left[\sum_{t=0}^{\infty}\gamma^t\left(r(s_t,a_t)+b^n(s_t,a_t)\right)\right]$$

Use the cover and roll-in via policies in the cover

(note we do not start at μ_0)

At episode n: Natural PG is optimizing

$$\mathbb{E}_{s_0,a_0\sim\rho_n}\left[\sum_{t=0}^{\infty}\gamma^t\left(r(s_t,a_t)+b^n(s_t,a_t)\right)\right]$$

Use the cover and roll-in via policies in the cover

Bonus based on the cover

(note we do not start at μ_0)

At episode n: Natural PG is optimizing

$$\mathbb{E}_{s_0,a_0\sim\rho_n}\left[\sum_{t=0}^{\infty}\gamma^t\left(r(s_t,a_t)+b^n(s_t,a_t)\right)\right]$$

Use the cover and roll-in via policies in the cover

Bonus based on the cover

(note we do not start at μ_0)

No more forgetting!

At episode n: Natural PG is optimizing

$$\mathbb{E}_{s_0,a_0\sim\rho_n}\left[\sum_{t=0}^{\infty}\gamma^t\left(r(s_t,a_t)+b^n(s_t,a_t)\right)\right]$$

Use the cover and roll-in via policies in the cover

(note we do not start at μ_0)

Bonus based on the cover

No more sparse reward!

No more forgetting!

Use linear function $\theta \cdot \phi(s, a)$ to approximate Q^{π}

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\Sigma_{\pi_i} = \mathbb{E}_{s, a \sim d_{\pi_i}} \phi(s, a) \phi(s, a)^{\mathsf{T}}$$

$$\Sigma_n = \sum_{i=1}^n \Sigma_{\pi_i} + \lambda I$$

Use linear function $\theta \cdot \phi(s, a)$ to approximate Q^{π}

$$\left\{\pi_{1}, \pi_{2}, \dots, \pi_{n}\right\}$$

$$\Sigma_{\pi_{i}} = \mathbb{E}_{s, a \sim d_{\pi_{i}}} \phi(s, a) \phi(s, a)^{\mathsf{T}} \qquad b^{n}(s, a) = \mathbf{1} \left\{\phi(s, a)^{\mathsf{T}} \Sigma_{n}^{-1} \phi(s, a) \geq \beta\right\} / (1 - \gamma)$$

$$\Sigma_{n} = \sum_{n=1}^{\infty} \Sigma_{\pi_{i}} + \lambda I$$

Use linear function $\theta \cdot \phi(s, a)$ to approximate Q^{π}

$$\left\{\pi_{1}, \pi_{2}, \dots, \pi_{n}\right\}$$

$$\Sigma_{\pi_{i}} = \mathbb{E}_{s, a \sim d_{\pi_{i}}} \phi(s, a) \phi(s, a)^{\top}$$

$$b^{n}(s, a) = \mathbf{1} \left\{\phi(s, a)^{\top} \Sigma_{n}^{-1} \phi(s, a) \geq \beta\right\} / (1 - \gamma)$$

$$\Sigma_{n} = \sum_{n=1}^{n} \Sigma_{\pi_{i}} + \lambda I$$
Rewarding (s, a) whose feature $\phi(s, a)$ aligns with small eigenvectors

Use linear function $\theta \cdot \phi(s, a)$ to approximate Q^{π}

1. Form Cover:

$$\{\pi_{1}, \pi_{2}, \dots, \pi_{n}\}$$

$$\Sigma_{\pi_{i}} = \mathbb{E}_{s, a \sim d_{\pi_{i}}} \phi(s, a) \phi(s, a)^{\top}$$

$$\Sigma_{n} = \sum_{n=1}^{\infty} \sum_{\pi_{i}} \lambda_{n} I$$
Reconstruction

2. Bonus

$$b^{n}(s, a) = \mathbf{1} \left\{ \phi(s, a)^{\mathsf{T}} \Sigma_{n}^{-1} \phi(s, a) \ge \beta \right\} / (1 - \gamma)$$

Rewarding (s, a) whose feature $\phi(s, a)$ aligns with small eigenvectors

3. Natural PG:

$$Q_{r+b^n}^{\pi}(s,a) \approx \theta \cdot \phi(s,a) + b^n(s,a)$$
$$\pi \Leftarrow \pi \exp\left(\eta \left(b^n + \theta \cdot \phi\right)\right)$$

Use linear function $\theta \cdot \phi(s, a)$ to approximate Q^{π}

1. Form Cover:

$$\{\pi_1, \pi_2, \dots, \pi_n\}$$

$$\Sigma_{\pi_i} = \mathbb{E}_{s, a \sim d_{\pi_i}} \phi(s, a) \phi(s, a)^{\top}$$

$$\Sigma_n = \sum_{i=1}^n \Sigma_{\pi_i} + \lambda I$$

2. Bonus

$$b^{n}(s, a) = \mathbf{1} \left\{ \phi(s, a)^{\mathsf{T}} \Sigma_{n}^{-1} \phi(s, a) \ge \beta \right\} / (1 - \gamma)$$

Rewarding (s, a) whose feature $\phi(s, a)$ aligns with small eigenvectors

3. Natural PG:

$$Q_{r+b^n}^{\pi}(s,a) \approx \theta \cdot \phi(s,a) + b^n(s,a)$$

$$\pi \Leftarrow \pi \exp \left(\eta \left(b^n + \theta \cdot \phi \right) \right)$$

PC-PG Specialized to Tabular MDPs

One-hot vector: $\phi(s, a) \in \mathbb{R}^{SA}$

$$\rho_n = \sum_{i=1}^n d^{\pi_i}/n$$

$$\Sigma_n = \operatorname{diag}\left(..., \rho_n(s, a), ...,\right)$$

PC-PG Specialized to Tabular MDPs

One-hot vector: $\phi(s, a) \in \mathbb{R}^{SA}$

$$\rho_n = \sum_{i=1}^n d^{\pi_i}/n$$

$$\Sigma_n = \operatorname{diag}\left(..., \rho_n(s, a), ...,\right)$$

Rewarding state that has low probability of being covered

$$\phi(s,a)^{\mathsf{T}} \Sigma_n^{-1} \phi(s,a) \Leftarrow \frac{1}{\rho_n(s,a)}$$

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS:

[RKHS version of the Linear mdp model from Jin et al, 19]

$$r(s,a) = \theta \cdot \phi(s,a), P(\cdot \mid s,a) = \mu \phi(s,a)$$

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS:

[RKHS version of the Linear mdp model from Jin et al, 19]

$$r(s, a) = \theta \cdot \phi(s, a), P(\cdot \mid s, a) = \mu \phi(s, a)$$

A bellman backup of any f(s) will be linear in $\phi(s, a)$:

$$r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} f(s') = w^{\mathsf{T}} \phi(s,a)$$

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS:

[RKHS version of the Linear mdp model from Jin et al, 19]

$$r(s, a) = \theta \cdot \phi(s, a), P(\cdot \mid s, a) = \mu \phi(s, a)$$

A bellman backup of any f(s) will be linear in $\phi(s, a)$:

$$r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} f(s') = w^{\mathsf{T}} \phi(s,a)$$

$$V^{\hat{\pi}} \ge V^{\star} - \epsilon$$

with # of samples

$$poly(d, log(A), 1/(1 - \gamma), 1/\epsilon)$$

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS:

[RKHS version of the Linear mdp model from Jin et al, 19]

$$r(s, a) = \theta \cdot \phi(s, a), P(\cdot \mid s, a) = \mu \phi(s, a)$$

A bellman backup of any f(s) will be linear in $\phi(s, a)$:

$$r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} f(s') = w^{\mathsf{T}} \phi(s,a)$$

$$V^{\widehat{\pi}} \ge V^* - \epsilon$$

with # of samples
 $(d, \log(A), 1/(1 - \gamma), 1/\epsilon)$

Dim of feature

(extendable to RKHS w/ Information Gain)

[Agarwal et al 19]

A wide initial distribution:

$$\kappa = 1/\sigma_{\min} \left(\mathbb{E}_{s,a \sim \mu_0} \phi(s,a) \phi(s,a)^{\mathsf{T}} \right) < \infty$$

[Agarwal et al 19]

A wide initial distribution:

$$\kappa = 1/\sigma_{\min} \left(\mathbb{E}_{s,a \sim \mu_0} \phi(s,a) \phi(s,a)^{\mathsf{T}} \right) < \infty$$

$$V^{\hat{\pi}} \ge V^{\star} - \epsilon$$

w/# of samples $poly(1/\epsilon, 1/(1-\gamma), ln(A), \kappa)$

[Agarwal et al 19]

A wide initial distribution:

$$\kappa = 1/\sigma_{\min} \left(\mathbb{E}_{s,a \sim \mu_0} \phi(s,a) \phi(s,a)^{\mathsf{T}} \right) < \infty$$

$$V^{\hat{\pi}} \ge V^{\star} - \epsilon$$

w/# of samples $poly(1/\epsilon, 1/(1-\gamma), ln(A), \kappa)$

Condition number could be exponential!!

[Agarwal et al 19]

A wide initial distribution:

$$\kappa = 1/\sigma_{\min} \left(\mathbb{E}_{s,a \sim \mu_0} \phi(s,a) \phi(s,a)^{\mathsf{T}} \right) < \infty$$

$$V^{\hat{\pi}} \geq V^{\star} - \epsilon$$

w/# of samples $poly(1/\epsilon, 1/(1-\gamma), ln(A), \kappa)$

Condition number could be exponential!!

PC-PG eliminates the condition number by actively exploring and building policy cover

Robustness to Model-Misspecification

Average VS ℓ_{∞}

 $\phi: S \to Z$

Group "similar" states (s)

into an abstracted state (z)

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

 $|Z| \ll |S|$ poly(|Z|)

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

Model-misspecification:

$$s, s', s.t. \phi(s) = \phi(s')$$

$$||P(\cdot | s, a) - P(\cdot | s', a)||_1 \le \epsilon_{z,a}$$

$$\phi: S \to Z$$

Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

poly
$$(1/(1-\gamma))$$
 $\left(\max_{z,a} \epsilon_{z,a}\right)$

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

poly
$$(1/(1-\gamma))$$
 $\left(\max_{z,a} \epsilon_{z,a}\right) \leftarrow \ell_{\infty}$

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

poly
$$(1/(1-\gamma))$$
 $\left(\max_{z,a} \epsilon_{z,a}\right) \leftarrow \ell_{\infty}$

$$\mathbf{poly}(1/(1-\gamma)) \Big(\mathbb{E}_{z,a\sim d^{\widetilde{\pi}}} \left[\epsilon_{z,a} \right] \Big)$$

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

$$\operatorname{poly}\left(1/(1-\gamma)\right)\left(\max_{z,a}\epsilon_{z,a}\right) \leftarrow \ell_{\infty}$$

PC-PG
$$poly(1/(1-\gamma)) \left(\mathbb{E}_{z,a\sim d^{\widetilde{\pi}}} \left[\epsilon_{z,a} \right] \right)$$

 $\phi: S \to Z$ Group "similar" states (s)
into an abstracted state (z)

$$|Z| \ll |S|$$

$$poly(|Z|)$$

$$\operatorname{poly}\left(1/(1-\gamma)\right)\left(\max_{z,a}\epsilon_{z,a}\right) \leftarrow \ell_{\infty}$$

PC-PG Average over poly
$$(1/(1-\gamma))\Big(\mathbb{E}_{z,a\sim d^{\widetilde{\pi}}}\left[\epsilon_{z,a}\right]\Big)$$
 comparator's distribution

Features is **arbitrary** in the tree, i.e., model-misspecification can be very **serious**.

PC-PG is at least as good as the green trajectory

Features is **arbitrary** in the tree, i.e., model-misspecification can be very **serious**.

Experiments

Bidirectional Combination Lock

Good state (white): 9 out of 10 actions go to bad state (black)

Bad state has Anti-shaped reward: r=1/H

- Local minima
- 2. Forgetting

Feature vector: binary vector indicating state-action and time step

Policy Opt procedure: PPO w/ NN policy

Bonus: $\phi^{\top} \Sigma_{n}^{-1} \phi$

Feature vector: binary vector indicating state-action and time step

Policy Opt procedure: PPO w/ NN policy

Bonus: $\phi^{\top} \Sigma_{n}^{-1} \phi$

Success Rate (visit two chains):

Algorithm	Horizon			
	2	5	10	15
PPO	1.0	0.0	0.0	0.0
PPO+RND	0.75	0.40	0.50	0.55
PC-PG	1.0	1.0	1.0	1.0

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture

visitations for policy mixture

policy 31 policy 11 policy 28 policy 0

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture

visitations for policy mixture

policy 31 policy 11 policy 28 policy 0

The state visitations for policy mixture

visitations for policy mixture

Cover ρ_n near uniformly cover both chains

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture

Cover ρ_n near uniformly cover both chains

PG with ρ_n will succeed!

Reward-Free Explore in Maze

$$r(s,a) = 0$$

 $\phi(s,a)$: Random initialized CovNet

Policy Opt procedure: PPO w/ CovNet-based policy

Reward-Free Explore in Maze

Traces of policies in the policy cover:

Continuous Control w/ sparse reward

Sparse reward: large reward at the goal;

Anti-shaped reward: penalize control inputs

Continuous Control w/ sparse reward

Sparse reward: large reward at the goal;

Anti-shaped reward: penalize control inputs

Continuous Control w/ sparse reward

Sparse reward: large reward at the goal;

Anti-shaped reward: penalize control inputs

Strong agnostic results

Average model-misspecification VS ℓ_{∞}

Strong agnostic results

Average model-misspecification VS ℓ_{∞}

Polynomial Sample Complexity in well-specified case:

Linear MDPs (RKHS) & Tabular MDPs

Strong agnostic results

Average model-misspecification VS ℓ_{∞}

Polynomial Sample Complexity in well-specified case:

Linear MDPs (RKHS) & Tabular MDPs

Policy Cover/bonus solve the issue of flatten gradient & Forgetting

Treat policy cover's distribution as the reset distribution for PG

Strong agnostic results

Average model-misspecification VS ℓ_{∞}

Polynomial Sample Complexity in well-specified case:

Linear MDPs (RKHS) & Tabular MDPs

Policy Cover/bonus solve the issue of flatten gradient & Forgetting

Treat policy cover's distribution as the reset distribution for PG

Flexibility to leverage existing deep learning/RL tools

Vanilla implementation explores 4 to 5 rooms in M-Revenge