PC-PG: Policy Cover Directed Exploration for
Provable Policy Gradient Learning

Joint work with Alekh Agarwal, Mikael Henaff, and Sham Kakade

MicRrosoft° h “"’,
*oe UNIVERSITY of
esea rc Facebook Al Research WASHINGTON

Policy Optimization

Horn Status

THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

00:13

At last — a computer program that \i o B 15 3 1 601 688
can beat a champion Go player PAGE484 v Y

*»

VAl
! e - 171471714
N - .‘fﬂ' 4 = 87971193 4
. e g5 B -
tabiy | L : " . 46 Q|
4 @& \/ s 41+2 e/ 5
. o ' st s 0 .jl:l - \5/ @ ~185

\ﬂ"é 0/1700 - 60+2 TeRe LA AL LS

[AlphaZero, Silver et.al, 17] [OpenAl Five, 18] [OpenAl,19]

Can we design Provably Correct

Policy Gradient algorithms?

: Pl
. A w: 02
. i 1A
A = J -
, 1 . N 't 4 ~ “ ‘;
o T RGEET EEE o
b | _ f\
M: "".-.‘.“u“'u o’ _’"’ "
;v. . / .0, : e | L™
- .‘4 + g . ‘
. .
’4 ‘A' ,l : '. \
‘ P 4 3 ‘. .'y
: y ; 3
. --4.\ ~
|

:

: b :

; . g

" - mw i \
A e oo oo
Sow) ‘;*?-

A reey
:

{

Infinite Horizon Discounted MDPs

agent Policy: state to action

L A T P A -!'l"\

o n(s) = a

- T Reward & Next State

r(s,a),s’ ~ P(-|s,a)

Objective: max mp [ro + yr; + y2r2 +]

U

Infinite Horizon Discounted MDPs

[J [
agent Policy: state to action
-
oo n(s) — a
]] :
e
A% R—
.":\",l , ..P-?; -
fon 2 A
mito, § :
L, 4
A J
" &)7
: !
%
B\
TS

Reward & Next State

r(s,a),s’ ~ P(-|s,a)

Objective: max mp [ro + yr; + y2r2 +]

U

Assume s, ~ Hoand we can only reset from g

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

RNl
Sy

W RS
AL ‘]
) ' .
WA

VAL A

AN \
il 7
AN ‘

W l".' X %
AN

o

.“}V(
sy >

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

J(ﬁ'g) — _ﬂ.@ [7‘0 + }/Vl + }/27'2 +]

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

J(ﬂg) — _71.9 [r() + }/Vl + }/27'2 +]

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

J(ﬂg) — _71.(9 [r() + }/Vl + }/zrz +]

0=0+nF;'VyJ(m,)

Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

A *. / .
ek ek e e
TR A A
AR ML ﬂ“‘“{.&h PR AR
0 .W.;ﬂ@.%mw.wm?.
L NN
Sl 3‘-"'. Nﬂ”‘%ﬂl". R
G i c-’.'.‘-” X
\;‘.ﬁﬁ.ﬂ A A X
e &

J(ﬂg) — _ﬂ.@ [r() + }/Vl + }/27'2 +]

"% ‘v‘ w‘} ?‘.
O ¥ ‘ AR ".
L M‘.«.‘; -

208 2

0 = H‘I‘ 7’]F(9_1 V@J(ﬂ(g)

\

Preconditioning w/ Fisher Information matrix

(TRPO and PPO are variants of it)

Advantages of Policy Gradient Methods

Strong Agnostic guarantee:

Compete to the best policy in the given class: 7 € I1

Advantages of Policy Gradient Methods

Strong Agnostic guarantee:
Compete to the best policy in the given class: 7 € 1

under a “wide” reset distribution (e.g., see Agarwal et al 19)

Advantages of Policy Gradient Methods

Strong Agnostic guarantee:
Compete to the best policy in the given class: 7 € 1

under a “wide” reset distribution (e.g., see Agarwal et al 19)

e State distribution of 77

d*(s)
sup
) /’tO(S)
\ [nitial/reset dist

< 0

Advantages of Policy Gradient Methods

Strong Agnostic guarantee:
Compete to the best policy in the given class: 7 € 1

under a “wide” reset distribution (e.g., see Agarwal et al 19)

) e State distribution of 77
d”(s)

Q-learning, Fitted Q iteration:

< 00 Realizability (& Bellman Complete)

sup

) /’tO(S) Q* = Q

\ Initial/reset dist

Successful Story of PG:

Robot hand manipulation (OpenAl, 19)

Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

A notable technique

Domain Randomization:

Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

A notable technique

Domain Randomization:

Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

A notable technique

Domain Randomization:

State dist of the best 7T
N/
d”(s)
sup <
) /’tO(S)

\ Initial/reset dist

Make p as “wide” as possible !

But PG Fails if initial condition does not hold, provably

Initialization: S + random walk

n states Theun '982

But PG Fails if initial condition does not hold, provably

Initialization: S + random walk

Y | \

n staies Theun 92

Extremely flatten gradient:
magnitude of gradient is exponentially small (even in higher order): 2~

(e.g., see CPI from Kadade & Langford 02, and Agarwal et al 19)

The Optimization Landscape

saddle point

2 -2

Supervised Learning

The Optimization Landscape

saddle point

2 -2

Supervised Learning

* Gradient descent tends to just work
* Not sensitive to initialization

» Saddle point is not a problem

The Optimization Landscape

saddle point .
saddle point

2 -2
2 -2

Supervised Learning Reinforcement Learning:

* Gradient descent tends to just work
* Not sensitive to initialization

» Saddle point is not a problem

The Optimization Landscape

saddle point _
saddle point

2 -2
Supervised Learning Reinforcement Learning:
* Gradient descent tends to just work + Extremely flatten region even at

» Not sensitive to initialization initialization

* Saddle point is not a problem * Due to lack of exploration

S

Bidirectional Combination Lock

chain 1

chain 2

optimal

~ reward

~ suboptimal

~ reward

Initial state

Bidirectional Combination Lock

chain 1

N\

S

chain 2

optimal

~ reward

~ suboptimal

~ reward

Bidirectional Combination Lock

.. . optimal
Initial state . ’
chain 1

N\

S

~ reward

~ suboptimal

chain 2 reward

Bidirectional Combination Lock

.. . optimal
Initial state . ’
chain 1

N\

S

~ reward

~ suboptimal

chain 2 reward

Bidirectional Combination Lock

“survived” state (white): g out of 10 actions go to bad state (black)

Initial state hain 1

N\

S

chain 2

p

. optimal

~ reward

~ suboptimal

 reward

Bidirectional Combination Lock

“survived” state (white): g out of 10 actions go to bad state (black)

p

.. . optimal
Initial state . ’
chain 1

N\

S

~ reward

~ suboptimal

chain 2 reward

<

Bad state (cannot recover) has Anti-shaped reward:

r=1/H

Bidirectional Combination Lock

“survived” state (white): g out of 10 actions go to bad state (black)

Initial stat ~ optimal
>td e\chain 1 eward
S
0 =
~ suboptimal
chain 2 reward
<
Local minima
Bad state (cannot recover) has Anti-shaped reward: 2. Forgetting (policy

r — 1] / H becomes deterministic

Bidirectional Combination Lock

“survived” state (white): g out of 10 actions go to bad state (black)

p

.. . optimal
Initial state . ’
chain 1

N\

~ reward

S : ’
” =2 (5)
suboptimal
chain 2 -~ reward
.
LLocal minima
Bad state (cannot recover) has Anti-shaped reward: 2. Forgetting (policy

r — 1] / H becomes deterministic

Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Horizon
2 D 10 15

PPO 10 00 00 0.0
PPO+RND 0.75 0.40 0.50 0.55
PC-PG ? 7 ? 7

Algorithm

PPO+RND: Random Network Distillation [Burda et.al, 19]

Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Horizon
2 D 10 15

PPO 10 00 00 0.0
PPO+RND 0.75 040 0.50 Ojj)

PC-PG 72 7 7

Algorithm

PPO+RND: Random Network Distillation [Burda et.al, 19]

Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Horizon
2 D 10 15

PPO 10 00 00 0.0

FPO+RND 0.75 040 0.50 0.55 > Forgets to visit the
PC-PG ? ? ? ? other chain!

Algorithm

PPO+RND: Random Network Distillation [Burda et.al, 19]

Experiments on Bi-directional Comb Lock

RND traces during training
ep 500 ep 3000 ep 3500 ep 5000

ol ol ol
I B e O—-—

optimal chain

chain 1

Sub-optimal chain

chain 2

Experiments on Bi-directional Comb Lock

RND traces during training
ep 500 ep 3000 ep 3500 ep 5000

optimal chain

Sub-optimal chain

Experiments on Bi-directional Comb Lock

RND traces during training

ep 3000 ep 3500 ep 5000

optimal chain

chain 1

Sub-optimal chain

chain 2

chain 1

chain 2

Policy quickly becomes too deterministic and
forgets to explore the other (better!) chain

Summary of PG methods’ common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)

Summary of PG methods’ common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)

Next:
Our Solution: Policy Cover Policy Gradient (PC-PG)

Policy Ensemble + Reward Bonus

Notations

Policy: state to action

n(s) = a

A
e
; il.““ - f A
‘.. : mff“'j\

L % »
!%? . "‘:.-.. : : "’ 2
oy . =T o,
St § il
- - .- e ot ":’“ g
f'. L r v £ i
-y \
- 4 5 5 *»
- J 3
& -
i \
huk\

r(s,a),s’ ~ P(-|s,a)

s
.
-
’
-
3
3 e - Al A
: X
e Ly SRS
"{\ 3
4% ‘. B Fonc andaniniin mi A
+ » -~ >
'(\: . 3 2 4 oA w'
b B3 7 F 50 8N
X \5 o d B Ll
’ - . z\avn.ﬂ“"‘
ot s
) . .
M:I‘~4»7-}.‘ - .
. . 4
Fa, £
: -l y
:’. w "l
v‘ J
: d
i
\'

Policy: state to action

n(s) = a

"~ Reward & Next State

r(s,a),s’ ~ P(-|s,a)

Notations

V*(s) =

Value and Q function

Qﬂ(Sa Cl) — I"(S, Cl) i

4

- [r(so, ay) + yr(s,a) + ... |sg=s,0a, ~ JZ'(Sh)]

—s'~P(-|5,0) Vﬂ(s ,)

Notations

Policy: state to action Value and Q function

n(s) = a

—

V*(s) = E [r(so, ay) + yr(s,a) + ... |sg=s,0a, ~ JZ'(Sh)]

Q"(s,a) =r(s,a) + yEy _p(i5.0)V"(s)

~ Reward & Next State
Policy’s state-action distribution
r(s,a),s’ ~ P(-|s,a)

d*(s,a) = (1 —7)) v"P* (s, @) = (5. a))

h=0

PC-PG: Policy Cover - Policy Gradient

1. Form Cover:

{m1, Mo, ., Ty}

PC-PG: Policy Cover - Policy Gradient

1. Form Cover:

{m1, Mo, ., Ty}

D 1= Z d’”i/n
i=1

PC-PG: Policy Cover - Policy Gradient

T
Intrinsic Reward b S.d

1. Form Cover:

{m1, Mo, ., Ty}

D 1= Z d”i/n
i=1

PC-PG: Policy Cover - Policy Gradient

T
Intrinsic Reward b S.d

1. Form Cover:

PC-PG: Policy Cover - Policy Gradient

T
Intrinsic Reward b S.d

1. Form Cover:

PC-PG: Policy Cover - Policy Gradient

T
Intrinsic Reward b S.d

1. Form Cover:

PC-PG: Policy Cover - Policy Gradient

o (£
1. Form Cover: Intrinsic Reward a

8

{Wl,@...,wn} 3 ;
n @ 2. Bonus)

po=Y A"y
1=1 > 0

—2

—4

—6

8-

A

f

1. Form Cover:

1
3. On-Policy Critic Fit (least square)

PC-PG: Policy Cover - Policy Gradient

T
Intrinsic Reward b (S, a

8 -6 -4 -2 0

- 2
— I}lea]}_f (f(sza ai) Y 4pn (5’67 az D B { 527 az ’ r—|—bn (527 az}

PC-PG: Policy Cover - Policy Gradient

1. Form Cover-: . Intrinsic Reward bn (S, CL%
&
{Wl,@...,wn}) ;
n | @ 2. Bonus *
pn =Y _d" /n —_—
1=1 > 0
-2
R —4
m(s,a) < m(s,a)exp(nf(s,a))

4. Actor NPG update (mirror descent)

A - 2
f — IJ‘I}E&}((f(827 ai) - wr4bn (S’H CLZ D { SZ) a”L ’ fr—|—bn (827 QZ}

1
3. On-Policy Critic Fit (least square)

PC-PG: Policy Cover - Policy Gradlent

1. Form Cover:

{7?1,@ e T} 3
n | @ 2. Bonus
D 1= Zdﬂz/n
i=1

[4

'm(s,a) < w(s,a) exp(nf(s a))

4. Actor NPG update (mirror descent)

[
|
|
|
|
|
I

T -8 —|6 —I4 —2 0 2 4 6 8
. 2
f maxz f(s;,a;) ;T+bn(sz,az)) +— (Si, af,;) , :ern

3. On- -Policy Critic Fit (least SQUALE) = = = = = = m ;=== oS am===========-=

e

(87:, ai} g

L
------- '

PC-PG: Policy Cover - Policy Gradlent

1. Form Cover:

{Wl,@...,wn} 3
n @ 2. Bonus
Pn :Zdﬂ /n Ea—
1=1

- —-
- -n. _--
Ny -
y -
ny -
[——
Ny g m=

' 7T(3 a) < (s, a) exp(nf(s a))

4. Actor NPG update (mirror descent)

[
|
|
|
|
|
I

T -8 —|6 —I4 —2 0 2 4 6 8
. 2
f maxz f(s;,a;) ;T+bn(sz,az)) +— (Si, af,;) , :ern

3. On- -Policy Critic Fit (least SQUALE) = = = = = = m ;=== oS am===========-=

e

(87:, ai} g

L
------- '

What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

430 ag~Pn 27 3t7 at + bn(stv at))

What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

O

)| D1 (o) + s, 0)
t=0

Use the cover and roll-in via
policies in the cover

(note we do not start at [L0)

What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

(note we do not start at [L0)

What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

(note we do not start at [L0)

No more forgetting!

What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

v
(note we do not start at /L0) No more sparse reward!

No more forgetting!

PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{m1,mo, ..., Ty}
Zﬂ'i — _S,CZNdﬂi¢(S) Cl)¢ (S) a)T

=1

PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{W177727"'77Tn} 2. Bonus

= Egang, $(s,)P(s,a)" b"(s,a) = 1{(s,a)' = Pp(s,a) = p}/(1 =)

=1

PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{77-1771-27"'771-%} 2. Bonus

= Egang, $(s,)P(s,a)" b"(s,a) = 1{(s,a)' = Pp(s,a) = p}/(1 =)

=1

Rewarding (s, a) whose feature @ (s, a) aligns with small eigenvectors

PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{7‘-177‘-27.“77-‘-”} 2. Bonus
= T —)
En _ i Zﬂi) Rewarding (s, a) whose feature @ (s, a) aligns with small eigenvectors

l

3. Natural PG:

"os,a) =0 @(s,a)+ b"(s,a)

r+b"

7z<=7zexp<r](b”+«9-qb))

PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{7‘-177‘-27.“77-‘-”} 2. Bonus
= T —)
En _ i Zﬂi) Rewarding (s, a) whose feature @ (s, a) aligns with small eigenvectors

l

3. Natural PG:

"os,a) =0 @(s,a)+ b"(s,a)

r+b"

7z<=7zexp<r1(b”+«9-gb))

PC-PG Specialized to Tabular MDPs

SA

One-hot vector: ¢(s,a) € |

P, = i d"i/n
i=1

> =diag (...,pn(s, a), ,)

PC-PG Specialized to Tabular MDPs

SA

One-hot vector: ¢(s,a) € |

P, = i d"i/n
i=1

> =diag (...,pn(s, a), ,)

Rewarding state that has low probability of being covered

(s, a)TZ,; 1qb(s, a) <

Pu(s,a)

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear
mdp model from Jin et al, 19]

r(s,a) =0 ¢(s,a), P(- |s,a) = pg(s,a)

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear
mdp model from Jin et al, 19]

I”(S,Cl) — 9‘¢(S,CZ),P(' ‘S,d) =/1¢(S,Cl)

A bellman backup of any f(s) will be linear in ¢(s, a):

(5, @) + Egopsapf(s) = wTh(s, @)

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear

mdp model from Jin et al, 19]
r(s,a) =0-¢(s,a), P(- |s,a) = ug(s, a)

A bellman backup of any f(s) will be linear in ¢(s, a):

(5, @) + Egopsapf(s) = wTh(s, @)

VZ > VX —¢

with # of samples

poly(d,log(A),1/(1 —y),1/e)

Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear
mdp model from Jin et al, 19]

r(s,a) =0-¢(s,a), P(-|s,a) = ug(s, a)

A bellman backup of any f(s) will be linear in ¢(s, a):

(5, @) + Egopsapf(s) = wTh(s, @)

VZ > VX —¢

with # of samples

polg(A),l/(l —y).1/€)

Dim of feature

(extendable to RKHS w/ Information Gain)

Comparison to vanilla Natural PG in Linear MDPs
[Agarwal et al 19]

A wide initial distribution:

k=1/0,;, (= s.amp, PS> AP, a)T) < o0

Comparison to vanilla Natural PG in Linear MDPs
[Agarwal et al 19]

A wide initial distribution:

k= 1/o_. (= s.amp, PS> AP, a)T) < o0

VZ > V* —¢
w/ # of samples pOIY(l/G,l/(l —7),In(A),)

Comparison to vanilla Natural PG in Linear MDPs
[Agarwal et al 19]

A wide initial distribution:

k= 1/o_. (= s.amp, PS> AP, a)T) < o0

VZ > V* —¢
w/ # of samples pOIY(l/G,l/(l —7),In(A),)

A

Condition number could be exponential !!

Comparison to vanilla Natural PG in Linear MDPs
[Agarwal et al 19]

A wide initial distribution:

k=1/0,;, (= s.amp, PS> AP, a)T) < o0

Vi >V*—¢
w/ # of samples poly(1/€,1/(1 — }/), In(A),)

A

Condition number could be exponential !!

PC-PG eliminates the condition number by actively
exploring and building policy cover

Robustness to Model-Misspecification

Average VS {

Model-Misspecification from State-Abstraction

Q:.S—>7
Group “similar” states (s)
into an abstracted state (z)

Model-Misspecification from State-Abstraction

Q:.S—>7
Group “similar” states (s)
into an abstracted state (z)

|Z| < |S]
poly(]Z])

Model-Misspecification from State-Abstraction

Model-misspecification:

5,8, S.t.@(s) = (s’
|P(-|s,a) —P(-|s’a)ll; <€,

Q:.S—>7
Group “similar” states (s)
into an abstracted state (z)

|Z| < |S]
poly(]Z])

Model-Misspecification from State-Abstraction

q Model-misspecification:

| 5, S,’ S.L. ¢(S) - ¢(S,)
wd \ HP (' ‘S ’ Cl) — P (' ‘S g a)Hl < €za

Q:.S—>7
Group “similar” states (s)
into an abstracted state (z)

|Z| < |S]
poly(]Z])

Model-Misspecification from State-Abstraction

q Model-misspecification:

| 55 S,’ S.L. ¢(S) — ¢(S,)
<-4 \ HP () ‘S v Cl) T P () ‘S ,9 a)Hl S €Z,Cl

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) pOly (1/ (1 — 7/)) (max GZ,CZ)

into an abstracted state (z) z.d

|Z| < |S]
poly(]Z])

Model-Misspecification from State-Abstraction

q Model-misspecification:

| 55 S,’ S.L. ¢(S) — ¢(S,)
<-4 \ HP () ‘S v Cl) T P () ‘S ,9 a)Hl S €Z,Cl

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) p()]y (1 /(1 — 7/)) (max ez,a) — goc

into an abstracted state (z) z.d

|Z| < |S]
poly(]Z])

Model-Misspecification from State-Abstraction

q Model-misspecification:

- 5,8 ,9 S't' ¢ (S) — ¢ (S ,)

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) p()]y (1 /(1 — 7/)) maxe, , | «— gOO
into an abstracted state (z) za

| Z| < | 5] PC-PG

poly(|Z])

poly(1/(1 = n)(

Model-Misspecification from State-Abstraction

q Model-misspecification:

- 5,8 ,’ S‘t‘ ¢(S) — ¢(S ,)

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) p()]y (1 /(1 — 7/)) maxe, , | «— goc
into an abstracted state (z) za

| Z| < | 5] PC-PG

oly(1Z])
b poly(1/(1 = 1) (E, e [e.])

Model-Misspecification from State-Abstraction

Model-misspecification:

5,8, S.t.@(s) = (s’
€.a ~—_lIP(-|s,a) = P(-|s,a)|l, <€,

Bellman-backup based (e.g., Q-learning [Dong et al, 19])

Q:.S—->7Z
Group “similar” states (s) p()]y (1 /(1 — 7/)) max €0 — goo
into an abstracted state (z)
|Z] < |S] PC-PG \/ Average over
poly(|Z])

comparator’s
) distribution

poly(1/(1 = n)(

Additional Example w/ linear approximation

r(sg, L) =1/2

Additional Example w/ linear approximation

Additional Example w/ linear approximation

Additional Example w/ linear approximation

Additional Example w/ linear approximation

Additional Example w/ linear approximation

r(sg, L) =1/2
¢(SO7L) - €, J J /N
qusO,R) =eQ, e

Path with reward 1/2 ‘ Q

Vs € sub-tree, ¢(s’, a) L span(61,62,63

Additional Example w/ linear approximation

r(sg, L) =1/2
¢(SO7L) - €, J J /N
¢(SO7R) — €2,
P(s1,a) = e3 A@ e

Path with reward 1/2 ‘ 0

Vs € sub-tree, ¢(s’,a) L span(eq, 62,63

........

Features is arbitrary in the tree, i.e., model-
misspecification can be very serious.

Additional Example w/ linear approximation

r(sg, L) =1/2
qb(So, L) - €, /S S /S N
¢ S0 R) = €2, e .
(50, 1 N
¢(s1,a) = eg

PC-PG is at least as good as
Path with reward 1/2 . Q

Vs € sub-tree, ¢(s’,a) L span(eq, 62,63

........

the green trajectory

Features is arbitrary in the tree, i.e., model-
misspecification can be very serious.

Experiments

Bidirectional Combination Lock

Good state (white): g out of 10 actions go to bad state (black)

p
optimal o
chain 1 reward = 5
.
S0
£ .
suboptimal
chain 2 reward r =2
A

1. Local minima
Bad state has Anti-shaped reward: 17 = 1 / H 2. Forgetting

Experiments on Bi-directional Comb Lock

Feature vector: binary vector
indicating state-action and time step

Policy Opt procedure: PPO w/ NN policy
Bonus: ¢T ET_L 1 0,

Experiments on Bi-directional Comb Lock

Feature vector: binary vector
indicating state-action and time step

Policy Opt procedure: PPO w/ NN policy
Bonus: ¢T ZT_L 1 0,

Success Rate (visit two chains):

. Horizon
Algorithm 5 = 10 15
PPO 10 00 0.0 0.0
PPO+RND 0.75 0.40 0.50 0.55
PC-pG 10 1.0 10 1.0

lock 2 lock 1

Experiments on Bi-directional Comb Lock

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture

policy 31 policy 11 policy 28 policy 0

I . . —_——
— I B (S———

Experiments on Bi-directional Comb Lock

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture o . _
visitations for policy mixture

policy 31 - policy 11 policy 28 policy 0

1 i

H-
X
O
e,
N-
X
O
L=,

lock 2 lock 1

Experiments on Bi-directional Comb Lock

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture o . .
visitations for policy mixture

policy 31 - policy 11 policy 28 policy 0 -

Cover Pn near uniformly
cover both chains

lock 2 lock 1

Experiments on Bi-directional Comb Lock

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture - . .
visitations for policy mixture

policy 31 - policy 11 policy 28 policy 0 -

Cover Pn near uniformly
cover both chains

PG with Pn will succeed!

Reward-Free Explore in Maze

r(s,a) =0
¢(S, CL) : Random initialized CovNet

Policy Opt procedure: PPO w/ CovNet-based policy

Reward-Free Explore in Maze

Traces of policies in the policy cover:

Policy 1 Policy 4 Policy 5 Policy 11 Policy 12

Agent
start location +

—— PPO

(00
()
]

— PPO+RND

- PC-PG

~
()
]

()]
o
]

|
Q
)
)
Q
M
| -
)
O
I

-
Q

—

O

O

X

Q

n

D 5. //
m y

-+

¥ 40 -

o\o %/

w
o
]

0.0 0.2 0.4 0.6 0.8 1.0

steps e’

Continuous Control w/ sparse reward

Sparse reward: large
reward at the goal;

Anti-shaped reward:
penalize control inputs

Continuous Control w/ sparse reward

Reward

| -
)
s
e
)
an
| -
)
O
1

Sparse reward: large
reward at the goal;

Anti-shaped reward:
penalize control inputs

100 ~

50 A

—50 -

—100 A

—— PPO

— PPO+RND

—— PC-PG

0

100000

200000 300000

Episodes

400000

500000

Continuous Control w/ sparse reward

100 - { ' :

—50 -

Reward

| -
)
)
)
)
M
| -
)
O
I

—— PPO

— PPO+RND

~100° —— PC-PG

0 100000 200000 300000 400000 500000

Episodes
Sparse reward: large

reward at the goal;

Anti-shaped reward:
penalize control inputs

velocity

position

Conclusion

Conclusion

Strong agnostic results

Average model-misspecification VS £

Conclusion

Strong agnostic results

Average model-misspecification VS £

Polynomial Sample Complexity in well-specified case:
Linear MDPs (RKHS) & Tabular MDPs

Conclusion

Strong agnostic results

Average model-misspecification VS £

Polynomial Sample Complexity in well-specified case:
Linear MDPs (RKHS) & Tabular MDPs

Policy Cover/bonus solve the issue of flatten gradient & Forgetting

Treat policy cover’s distribution as the reset distribution for PG

Conclusion

Strong agnostic results

Average model-misspecification VS £

Polynomial Sample Complexity in well-specified case:
Linear MDPs (RKHS) & Tabular MDPs

Policy Cover/bonus solve the issue of flatten gradient & Forgetting

Treat policy cover’s distribution as the reset distribution for PG

Flexibility to leverage existing deep learning/RL tools

Vanilla implementation explores 4 to § rooms in M-Revenge

