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Can we design Provably Correct

Policy Gradient algorithms?
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Infinite Horizon Discounted MDPs

agent Policy: state to action
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Assume s, ~ Hoand we can only reset from g
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Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)
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Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

J(ﬂg) — _71.(9 [r() + }/Vl + }/zrz + ]
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Policy Gradient Methods

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)
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Preconditioning w/ Fisher Information matrix

(TRPO and PPO are variants of it)
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Advantages of Policy Gradient Methods

Strong Agnostic guarantee:
Compete to the best policy in the given class: 7 € 1

under a “wide” reset distribution (e.g., see Agarwal et al 19)

) e State distribution of 77
d”(s)

Q-learning, Fitted Q iteration:

< 00 Realizability (& Bellman Complete)

sup

) /’tO(S) Q* = Q

\ Initial/reset dist
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Successful Story of PG:
Robot hand manipulation (OpenAl, 19)

A notable technique

Domain Randomization:

State dist of the best 7T
N/
d”(s)
sup <
) /’tO(S )

\ Initial/reset dist

Make p as “wide” as possible !



But PG Fails if initial condition does not hold, provably

Initialization: S + random walk
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But PG Fails if initial condition does not hold, provably

Initialization: S + random walk

Y | \

n staies Theun 92

Extremely flatten gradient:
magnitude of gradient is exponentially small (even in higher order): 2~

(e.g., see CPI from Kadade & Langford 02, and Agarwal et al 19)
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The Optimization Landscape

saddle point _
saddle point

2 -2
Supervised Learning Reinforcement Learning:
* Gradient descent tends to just work + Extremely flatten region even at

» Not sensitive to initialization initialization

* Saddle point is not a problem * Due to lack of exploration
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Bidirectional Combination Lock

“survived” state (white): g out of 10 actions go to bad state (black)

p

.. . optimal
Initial state . ’
chain 1

N\

~ reward

S : ’
” =2 (5)
suboptimal
chain 2 -~ reward
.
LLocal minima
Bad state (cannot recover) has Anti-shaped reward: 2. Forgetting (policy

r — 1] / H becomes deterministic



Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Horizon
2 D 10 15

PPO 10 00 00 0.0
PPO+RND 0.75 0.40 0.50 0.55
PC-PG ? 7 ? 7

Algorithm

PPO+RND: Random Network Distillation [Burda et.al, 19]
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Experiments on Bi-directional Comb Lock

Success Rate (visit the better chain):

Horizon
2 D 10 15

PPO 10 00 00 0.0

FPO+RND 0.75 040 0.50 0.55 > Forgets to visit the
PC-PG ? ? ? ? other chain!

Algorithm

PPO+RND: Random Network Distillation [Burda et.al, 19]
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Experiments on Bi-directional Comb Lock

RND traces during training

ep 3000 ep 3500 ep 5000

optimal chain

chain 1

Sub-optimal chain

chain 2

chain 1

chain 2

Policy quickly becomes too deterministic and
forgets to explore the other (better!) chain



Summary of PG methods’ common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)



Summary of PG methods’ common issues

1. Lack ability to explore

1. Catastrophic forgetting (even w/ reward bonus)

Next:
Our Solution: Policy Cover Policy Gradient (PC-PG)

Policy Ensemble + Reward Bonus



Notations

Policy: state to action

n(s) = a
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Policy: state to action

n(s) = a

"~ Reward & Next State

r(s,a),s’ ~ P(-|s,a)

Notations

V*(s) =

Value and Q function

Qﬂ(Sa Cl) — I"(S, Cl) i

4

- [r(so, ay) + yr(s,a) + ... |sg=s,0a, ~ JZ'(Sh)]

—s'~P(-|5,0) Vﬂ(s ,)



Notations

Policy: state to action Value and Q function

n(s) = a

—

V*(s) = E [r(so, ay) + yr(s,a) + ... |sg=s,0a, ~ JZ'(Sh)]

Q"(s,a) =r(s,a) + yEy _p(i5.0)V"(s)

~ Reward & Next State
Policy’s state-action distribution
r(s,a),s’ ~ P(-|s,a)

d*(s,a) = (1 —7) ) v"P* (s, @) = (5. a))

h=0
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PC-PG: Policy Cover - Policy Gradient
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1. Form Cover:
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3. On-Policy Critic Fit (least square)

PC-PG: Policy Cover - Policy Gradient
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PC-PG: Policy Cover - Policy Gradient

1. Form Cover-: . Intrinsic Reward bn (S, CL%
&
{Wl,@...,wn} ) ;
n | @ 2. Bonus *
pn =Y _d" /n —_—
1=1 > 0
-2
R —4
m(s,a) < m(s,a)exp(nf(s,a))

4. Actor NPG update (mirror descent)
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PC-PG: Policy Cover - Policy Gradlent

1. Form Cover:
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PC-PG: Policy Cover - Policy Gradlent

1. Form Cover:
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What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

430 ag~Pn 27 3t7 at + bn(stv at))




What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

O

)| D1 (o) + s, 0)
t=0

Use the cover and roll-in via
policies in the cover

(note we do not start at [L0)



What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

(note we do not start at [L0)



What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

(note we do not start at [L0)

No more forgetting!



What objective function PC-PG is trying to optimize?

At episode n: Natural PG is optimizing

Use the cover and roll-in via
policies in the cover

Bonus based on the cover

v
(note we do not start at /L0) No more sparse reward!

No more forgetting!



PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{m1,mo, ..., Ty}
Zﬂ'i — _S,CZNdﬂi¢(S ) Cl)¢ (S ) a)T

=1
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PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{77-1771-27"'771-%} 2. Bonus

= Egang, $(s, )P(s,a)" b"(s,a) = 1{(s,a)' = Pp(s,a) = p}/(1 =)

=1

Rewarding (s, a) whose feature @ (s, a) aligns with small eigenvectors
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Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:
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PC-PG Specialized to Linear Function Approximation

Use linear function @ - ¢(s, a) to approximate Q”

1. Form Cover:

{7‘-177‘-27.“77-‘-”} 2. Bonus
= T —)
En _ i Zﬂi ) Rewarding (s, a) whose feature @ (s, a) aligns with small eigenvectors

l

3. Natural PG:

"os,a) =0 @(s,a)+ b"(s,a)

r+b"

7z<=7zexp<r1(b”+«9-gb))



PC-PG Specialized to Tabular MDPs
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PC-PG Specialized to Tabular MDPs

SA

One-hot vector: ¢(s,a) € |

P, = i d"i/n
i=1

> =diag (...,pn(s, a), ,)

Rewarding state that has low probability of being covered

(s, a)TZ,; 1qb(s, a) <

Pu(s,a)



Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear
mdp model from Jin et al, 19]
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A bellman backup of any f(s) will be linear in ¢(s, a):

(5, @) + Egopsapf(s) = wTh(s, @)
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with # of samples

poly(d,log(A),1/(1 —y),1/e)




Well-Specified Setting: Linear MDPs (and Tabular MDPs)

Reward and transition in RKHS: [RKHS version of the Linear
mdp model from Jin et al, 19]

r(s,a) =0-¢(s,a), P(-|s,a) = ug(s, a)

A bellman backup of any f(s) will be linear in ¢(s, a):

(5, @) + Egopsapf(s) = wTh(s, @)

VZ > VX —¢

with # of samples

polg(A),l/(l —y).1/€)

Dim of feature

(extendable to RKHS w/ Information Gain)
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Comparison to vanilla Natural PG in Linear MDPs
[Agarwal et al 19]

A wide initial distribution:

k=1/0,;, ( = s.amp, PS> AP, a)T) < o0

Vi >V*—¢
w/ # of samples poly(1/€,1/(1 — }/), In(A), )

A

Condition number could be exponential !!

PC-PG eliminates the condition number by actively
exploring and building policy cover



Robustness to Model-Misspecification

Average VS {
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Group “similar” states (s)
into an abstracted state (z)

|Z| < |S]
poly(]Z])
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poly(]Z])
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poly(]Z])
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Model-Misspecification from State-Abstraction

q Model-misspecification:

- 5,8 ,9 S't' ¢ (S ) — ¢ (S ,)

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) p()]y (1 /(1 — 7/)) maxe, , | «— gOO
into an abstracted state (z) za

| Z| < | 5] PC-PG

poly(|Z])
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Model-Misspecification from State-Abstraction

q Model-misspecification:

- 5,8 ,’ S‘t‘ ¢(S ) — ¢(S ,)

b:S—7 Bellman-backup based (e.g., Q-learning [Dong et al, 19])
S -

Group “similar” states (s) p()]y (1 /(1 — 7/)) maxe, , | «— goc
into an abstracted state (z) za

| Z| < | 5] PC-PG

oly(1Z])
b poly(1/(1 = 1) (E, e [e.] )




Model-Misspecification from State-Abstraction

Model-misspecification:

5,8, S.t.@(s) = (s’
€.a ~—_lIP(-|s,a) = P(-|s,a)|l, <€,

Bellman-backup based (e.g., Q-learning [Dong et al, 19])

Q:.S—->7Z
Group “similar” states (s) p()]y (1 /(1 — 7/)) max €0 — goo
into an abstracted state (z)
|Z] < |S] PC-PG \/ Average over
poly(|Z])

comparator’s
) distribution

poly(1/(1 = n)(




Additional Example w/ linear approximation

r(sg, L) =1/2
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Additional Example w/ linear approximation

r(sg, L) =1/2
¢(SO7L) - €, J J /N
qusO,R) =eQ, e

Path with reward 1/2 ‘ Q

Vs € sub-tree, ¢(s’, a) L span( 61,62,63

-------
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Additional Example w/ linear approximation

r(sg, L) =1/2
qb(So, L) - €, /S S /S N
¢ S0 R) = €2, e .
(50, 1 N
¢(s1,a) = eg

PC-PG is at least as good as
Path with reward 1/2 . Q

Vs € sub-tree, ¢(s’,a) L span(eq, 62,63

........
------------------------
--------------------------

the green trajectory

Features is arbitrary in the tree, i.e., model-
misspecification can be very serious.



Experiments

Bidirectional Combination Lock

Good state (white): g out of 10 actions go to bad state (black)

p
optimal o
chain 1 reward = 5
.
S0
£ .
suboptimal
chain 2 reward r =2
A

1. Local minima
Bad state has Anti-shaped reward: 17 = 1 / H 2. Forgetting
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Experiments on Bi-directional Comb Lock

Feature vector: binary vector
indicating state-action and time step

Policy Opt procedure: PPO w/ NN policy
Bonus: ¢T ZT_L 1 0,

Success Rate (visit two chains):

. Horizon
Algorithm 5 = 10 15
PPO 10 00 0.0 0.0
PPO+RND 0.75 0.40 0.50 0.55
PC-pG 10 1.0 10 1.0
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Due to the policy cover PC-PG maintains..
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Experiments on Bi-directional Comb Lock

Due to the policy cover PC-PG maintains..

State visitations for top weighted policies in mixture - . .
visitations for policy mixture

policy 31 - policy 11 policy 28 policy 0 -

Cover Pn near uniformly
cover both chains

PG with Pn will succeed!



Reward-Free Explore in Maze

r(s,a) =0
¢(S, CL) : Random initialized CovNet

Policy Opt procedure: PPO w/ CovNet-based policy




Reward-Free Explore in Maze

Traces of policies in the policy cover:

Policy 1 Policy 4 Policy 5 Policy 11 Policy 12

Agent
start location +

—— PPO

(00
()
]

— PPO+RND

- PC-PG

~
()
]

()]
o
]

|
Q
)
)
Q
M
| -
)
O
I

-
Q

—

O

O

X

Q

n

D 5. //
m y

-+

¥ 40 -

o\o %/

w
o
]

0.0 0.2 0.4 0.6 0.8 1.0

steps e’



Continuous Control w/ sparse reward

Sparse reward: large
reward at the goal;

Anti-shaped reward:
penalize control inputs



Continuous Control w/ sparse reward

Reward

| -
)
s
e
)
an
| -
)
O
1

Sparse reward: large
reward at the goal;

Anti-shaped reward:
penalize control inputs

100 ~

50 A

—50 -

—100 A

—— PPO

— PPO+RND

—— PC-PG

0

100000

200000 300000

Episodes

400000

500000



Continuous Control w/ sparse reward

100 - { ' :

—50 -
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— PPO+RND

~100° —— PC-PG

0 100000 200000 300000 400000 500000

Episodes
Sparse reward: large

reward at the goal;

Anti-shaped reward:
penalize control inputs

velocity

position
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Conclusion

Strong agnostic results

Average model-misspecification VS £

Polynomial Sample Complexity in well-specified case:
Linear MDPs (RKHS) & Tabular MDPs

Policy Cover/bonus solve the issue of flatten gradient & Forgetting

Treat policy cover’s distribution as the reset distribution for PG

Flexibility to leverage existing deep learning/RL tools

Vanilla implementation explores 4 to § rooms in M-Revenge



